1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Region-allocated data utilities.
use std::fmt::{Debug, Formatter};
use std::mem::ManuallyDrop;
use std::ops::{Deref, DerefMut};
/// A region allocator which holds items at stable memory locations.
///
/// Items once inserted will not be moved, and their locations in memory
/// can be relied on by others, until the region is cleared.
///
/// This type accepts owned data, rather than references, and does not
/// itself intend to implement `Region`. Rather, it is a useful building
/// block for other less-safe code that wants allocated data to remain at
/// fixed memory locations.
pub struct LgAllocRegion<T> {
/// The active allocation into which we are writing.
local: Region<T>,
/// All previously active allocations.
stash: Vec<Region<T>>,
/// The maximum allocation size
limit: usize,
}
// Manually implement `Default` as `T` may not implement it.
impl<T> Default for LgAllocRegion<T> {
fn default() -> Self {
Self {
local: Default::default(),
stash: Vec::new(),
limit: usize::MAX,
}
}
}
impl<T> Debug for LgAllocRegion<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("LgAllocRegion")
.field("limit", &self.limit)
.finish_non_exhaustive()
}
}
impl<T> LgAllocRegion<T> {
/// Construct a [LgAllocRegion] with a allocation size limit.
pub fn with_limit(limit: usize) -> Self {
Self {
local: Default::default(),
stash: Default::default(),
limit,
}
}
/// Clears the contents without dropping any elements.
#[inline]
pub fn clear(&mut self) {
unsafe {
// Unsafety justified in that setting the length to zero exposes
// no invalid data.
self.local.clear();
// Release allocations in `stash` without dropping their elements.
self.stash.clear()
}
}
/// Copies an iterator of items into the region.
#[inline]
pub fn copy_iter<I>(&mut self, items: I) -> &mut [T]
where
I: Iterator<Item = T> + std::iter::ExactSizeIterator,
{
self.reserve(items.len());
let initial_len = self.local.len();
self.local.extend(items);
&mut self.local[initial_len..]
}
/// Copies a slice of cloneable items into the region.
#[inline]
pub fn copy_slice(&mut self, items: &[T]) -> &mut [T]
where
T: Clone,
{
self.reserve(items.len());
let initial_len = self.local.len();
self.local.extend_from_slice(items);
&mut self.local[initial_len..]
}
/// Ensures that there is space in `self.local` to copy at least `count` items.
#[inline(always)]
pub fn reserve(&mut self, count: usize) {
#[cold]
fn reserve_inner<T>(this: &mut LgAllocRegion<T>, count: usize) {
// Increase allocated capacity in powers of two.
// We could choose a different rule here if we wanted to be
// more conservative with memory (e.g. page size allocations).
let mut next_len = (this.local.capacity() + 1).next_power_of_two();
next_len = std::cmp::min(next_len, this.limit);
next_len = std::cmp::max(count, next_len);
let new_local = Region::new_auto(next_len);
if !this.local.is_empty() {
this.stash.push(std::mem::take(&mut this.local));
}
this.local = new_local;
}
// Check if `item` fits into `self.local` without reallocation.
// If not, stash `self.local` and increase the allocation.
if count > self.local.capacity() - self.local.len() {
reserve_inner(self, count);
}
}
/// Allocates a new `Self` that can accept `count` items without reallocation.
pub fn with_capacity(count: usize) -> Self {
let mut region = Self::default();
region.reserve(count);
region
}
/// The number of items current held in the region.
pub fn len(&self) -> usize {
self.local.len() + self.stash.iter().map(|r| r.len()).sum::<usize>()
}
/// Visit contained allocations to determine their size and capacity.
#[inline]
pub fn heap_size(&self, mut callback: impl FnMut(usize, usize)) {
// Calculate heap size for local, stash, and stash entries
let size_of_t = std::mem::size_of::<T>();
callback(
self.local.len() * size_of_t,
self.local.capacity() * size_of_t,
);
callback(
self.stash.len() * std::mem::size_of::<Vec<T>>(),
self.stash.capacity() * std::mem::size_of::<Vec<T>>(),
);
for stash in &self.stash {
callback(stash.len() * size_of_t, stash.capacity() * size_of_t);
}
}
}
/// An abstraction over different kinds of allocated regions.
///
/// # WARNING
///
/// The implementation does not drop its elements, but forgets them instead. Do not use where
/// this is not intended, i.e., outside `Copy` types or columnation regions.
///
/// NOTE: We plan to deprecate this type soon. Users should switch to different types or the raw
/// `lgalloc` API instead.
#[derive(Debug)]
pub enum Region<T> {
/// A possibly empty heap-allocated region, represented as a vector.
Heap(Vec<T>),
/// A mmaped region, represented by a vector and its backing memory mapping.
MMap(MMapRegion<T>),
}
/// Type encapsulating private data for memory-mapped regions.
pub struct MMapRegion<T> {
/// Vector-representation of the underlying memory. Must not be dropped.
inner: ManuallyDrop<Vec<T>>,
/// Opaque handle to lgalloc.
handle: Option<lgalloc::Handle>,
}
impl<T> MMapRegion<T> {
/// Clear the contents of this region without dropping elements.
unsafe fn clear(&mut self) {
self.inner.set_len(0);
}
}
impl<T: Debug> Debug for MMapRegion<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("MMapRegion")
.field("inner", &self.inner)
.finish_non_exhaustive()
}
}
impl<T> Deref for MMapRegion<T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl<T> Default for Region<T> {
#[inline]
fn default() -> Self {
Self::new_empty()
}
}
impl<T> Region<T> {
/// Create a new empty region.
#[inline]
#[must_use]
pub fn new_empty() -> Region<T> {
Region::Heap(Vec::new())
}
/// Create a new heap-allocated region of a specific capacity.
#[inline]
#[must_use]
pub fn new_heap(capacity: usize) -> Region<T> {
Region::Heap(Vec::with_capacity(capacity))
}
/// Create a new file-based mapped region of a specific capacity. The capacity of the
/// returned region can be larger than requested to accommodate page sizes.
///
/// # Errors
///
/// Returns an error if the memory allocation fails.
#[inline(always)]
pub fn new_mmap(capacity: usize) -> Result<Region<T>, lgalloc::AllocError> {
lgalloc::allocate(capacity).map(|(ptr, capacity, handle)| {
// SAFETY: `ptr` points to suitable memory.
// It is UB to call `from_raw_parts` with a pointer not allocated from the global
// allocator, but we accept this here because we promise never to reallocate the vector.
let inner =
ManuallyDrop::new(unsafe { Vec::from_raw_parts(ptr.as_ptr(), 0, capacity) });
let handle = Some(handle);
Region::MMap(MMapRegion { inner, handle })
})
}
/// Create a region depending on the capacity.
///
/// The capacity of the returned region must be at least as large as the requested capacity,
/// but can be larger if the implementation requires it.
///
/// Returns a [`Region::MMap`] if possible, and falls back to [`Region::Heap`] otherwise.
#[must_use]
pub fn new_auto(capacity: usize) -> Region<T> {
match Region::new_mmap(capacity) {
Ok(r) => return r,
Err(lgalloc::AllocError::Disabled) | Err(lgalloc::AllocError::InvalidSizeClass(_)) => {}
Err(e) => {
eprintln!("lgalloc error: {e}, falling back to heap");
}
}
// Fall-through
Region::new_heap(capacity)
}
/// Clears the contents of the region, without dropping its elements.
///
/// # Safety
///
/// Discards all contends. Elements are not dropped.
#[inline]
pub unsafe fn clear(&mut self) {
match self {
Region::Heap(vec) => vec.set_len(0),
Region::MMap(inner) => inner.clear(),
}
}
/// Returns the capacity of the underlying allocation.
#[inline]
#[must_use]
pub fn capacity(&self) -> usize {
match self {
Region::Heap(vec) => vec.capacity(),
Region::MMap(inner) => inner.inner.capacity(),
}
}
/// Returns the number of elements in the allocation.
#[inline]
#[must_use]
pub fn len(&self) -> usize {
match self {
Region::Heap(vec) => vec.len(),
Region::MMap(inner) => inner.len(),
}
}
/// Returns true if the region does not contain any elements.
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
match self {
Region::Heap(vec) => vec.is_empty(),
Region::MMap(inner) => inner.is_empty(),
}
}
/// Dereference to the contained vector
#[inline]
#[must_use]
pub fn as_vec(&self) -> &Vec<T> {
match self {
Region::Heap(vec) => vec,
Region::MMap(inner) => &inner.inner,
}
}
/// Extend the underlying region from the iterator.
///
/// Care must be taken to not re-allocate the inner vector representation.
#[inline]
pub fn extend<I: IntoIterator<Item = T> + ExactSizeIterator>(&mut self, iter: I) {
assert!(self.capacity() - self.len() >= iter.len());
// SAFETY: We just asserted that we have sufficient capacity.
unsafe { self.as_mut_vec().extend(iter) };
}
/// Obtain a mutable reference to the inner vector representation.
///
/// Unsafe because the caller has to make sure that the vector will not reallocate.
/// Otherwise, the vector representation could try to reallocate the underlying memory
/// using the global allocator, which would cause problems because the memory might not
/// have originated from it. This is undefined behavior.
#[inline]
unsafe fn as_mut_vec(&mut self) -> &mut Vec<T> {
match self {
Region::Heap(vec) => vec,
Region::MMap(inner) => &mut inner.inner,
}
}
}
impl<T: Clone> Region<T> {
/// Extend the region from a slice.
///
/// Panics if the region does not have sufficient capacity.
#[inline]
pub fn extend_from_slice(&mut self, slice: &[T]) {
assert!(self.capacity() - self.len() >= slice.len());
// SAFETY: We just asserted that we have enough capacity.
unsafe { self.as_mut_vec() }.extend_from_slice(slice);
}
}
impl<T> Deref for Region<T> {
type Target = [T];
#[inline]
fn deref(&self) -> &Self::Target {
self.as_vec()
}
}
impl<T> DerefMut for Region<T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
// SAFETY: We're dereferencing to `&mut [T]`, which does not allow reallocating the
// underlying allocation, which makes it safe.
unsafe { self.as_mut_vec().as_mut_slice() }
}
}
impl<T> Drop for Region<T> {
#[inline]
fn drop(&mut self) {
match self {
Region::Heap(vec) => {
// SAFETY: Don't drop the elements, drop the vec, in line with the documentation
// of the `Region` type.
unsafe { vec.set_len(0) }
}
Region::MMap(_) => {}
}
}
}
impl<T> Drop for MMapRegion<T> {
fn drop(&mut self) {
// Similar to dropping Region: Drop the allocation, don't drop the `inner` vector.
lgalloc::deallocate(self.handle.take().unwrap());
}
}