console/
ansi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
use std::{
    borrow::Cow,
    iter::{FusedIterator, Peekable},
    str::CharIndices,
};

#[derive(Debug, Clone, Copy)]
enum State {
    Start,
    S1,
    S2,
    S3,
    S4,
    S5,
    S6,
    S7,
    S8,
    S9,
    S10,
    S11,
    Trap,
}

impl Default for State {
    fn default() -> Self {
        Self::Start
    }
}

impl State {
    fn is_final(&self) -> bool {
        #[allow(clippy::match_like_matches_macro)]
        match self {
            Self::S3 | Self::S5 | Self::S6 | Self::S7 | Self::S8 | Self::S9 | Self::S11 => true,
            _ => false,
        }
    }

    fn is_trapped(&self) -> bool {
        #[allow(clippy::match_like_matches_macro)]
        match self {
            Self::Trap => true,
            _ => false,
        }
    }

    fn transition(&mut self, c: char) {
        *self = match c {
            '\u{1b}' | '\u{9b}' => match self {
                Self::Start => Self::S1,
                _ => Self::Trap,
            },
            '(' | ')' => match self {
                Self::S1 => Self::S2,
                Self::S2 | Self::S4 => Self::S4,
                _ => Self::Trap,
            },
            ';' => match self {
                Self::S1 | Self::S2 | Self::S4 => Self::S4,
                Self::S5 | Self::S6 | Self::S7 | Self::S8 | Self::S10 => Self::S10,
                _ => Self::Trap,
            },

            '[' | '#' | '?' => match self {
                Self::S1 | Self::S2 | Self::S4 => Self::S4,
                _ => Self::Trap,
            },
            '0'..='2' => match self {
                Self::S1 | Self::S4 => Self::S5,
                Self::S2 => Self::S3,
                Self::S5 => Self::S6,
                Self::S6 => Self::S7,
                Self::S7 => Self::S8,
                Self::S8 => Self::S9,
                Self::S10 => Self::S5,
                _ => Self::Trap,
            },
            '3'..='9' => match self {
                Self::S1 | Self::S4 => Self::S5,
                Self::S2 => Self::S5,
                Self::S5 => Self::S6,
                Self::S6 => Self::S7,
                Self::S7 => Self::S8,
                Self::S8 => Self::S9,
                Self::S10 => Self::S5,
                _ => Self::Trap,
            },
            'A'..='P' | 'R' | 'Z' | 'c' | 'f'..='n' | 'q' | 'r' | 'y' | '=' | '>' | '<' => {
                match self {
                    Self::S1
                    | Self::S2
                    | Self::S4
                    | Self::S5
                    | Self::S6
                    | Self::S7
                    | Self::S8
                    | Self::S10 => Self::S11,
                    _ => Self::Trap,
                }
            }
            _ => Self::Trap,
        };
    }
}

#[derive(Debug)]
struct Matches<'a> {
    s: &'a str,
    it: Peekable<CharIndices<'a>>,
}

impl<'a> Matches<'a> {
    fn new(s: &'a str) -> Self {
        let it = s.char_indices().peekable();
        Self { s, it }
    }
}

#[derive(Debug)]
struct Match<'a> {
    text: &'a str,
    start: usize,
    end: usize,
}

impl<'a> Match<'a> {
    #[inline]
    pub fn as_str(&self) -> &'a str {
        &self.text[self.start..self.end]
    }
}

impl<'a> Iterator for Matches<'a> {
    type Item = Match<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        find_ansi_code_exclusive(&mut self.it).map(|(start, end)| Match {
            text: self.s,
            start,
            end,
        })
    }
}

impl<'a> FusedIterator for Matches<'a> {}

fn find_ansi_code_exclusive(it: &mut Peekable<CharIndices>) -> Option<(usize, usize)> {
    'outer: loop {
        if let (start, '\u{1b}') | (start, '\u{9b}') = it.peek()? {
            let start = *start;
            let mut state = State::default();
            let mut maybe_end = None;

            loop {
                let item = it.peek();

                if let Some((idx, c)) = item {
                    state.transition(*c);

                    if state.is_final() {
                        maybe_end = Some(*idx);
                    }
                }

                // The match is greedy so run till we hit the trap state no matter what. A valid
                // match is just one that was final at some point
                if state.is_trapped() || item.is_none() {
                    match maybe_end {
                        Some(end) => {
                            // All possible final characters are a single byte so it's safe to make
                            // the end exclusive by just adding one
                            return Some((start, end + 1));
                        }
                        // The character we are peeking right now might be the start of a match so
                        // we want to continue the loop without popping off that char
                        None => continue 'outer,
                    }
                }

                it.next();
            }
        }

        it.next();
    }
}

/// Helper function to strip ansi codes.
pub fn strip_ansi_codes(s: &str) -> Cow<str> {
    let mut char_it = s.char_indices().peekable();
    match find_ansi_code_exclusive(&mut char_it) {
        Some(_) => {
            let stripped: String = AnsiCodeIterator::new(s)
                .filter_map(|(text, is_ansi)| if is_ansi { None } else { Some(text) })
                .collect();
            Cow::Owned(stripped)
        }
        None => Cow::Borrowed(s),
    }
}

/// An iterator over ansi codes in a string.
///
/// This type can be used to scan over ansi codes in a string.
/// It yields tuples in the form `(s, is_ansi)` where `s` is a slice of
/// the original string and `is_ansi` indicates if the slice contains
/// ansi codes or string values.
pub struct AnsiCodeIterator<'a> {
    s: &'a str,
    pending_item: Option<(&'a str, bool)>,
    last_idx: usize,
    cur_idx: usize,
    iter: Matches<'a>,
}

impl<'a> AnsiCodeIterator<'a> {
    /// Creates a new ansi code iterator.
    pub fn new(s: &'a str) -> AnsiCodeIterator<'a> {
        AnsiCodeIterator {
            s,
            pending_item: None,
            last_idx: 0,
            cur_idx: 0,
            iter: Matches::new(s),
        }
    }

    /// Returns the string slice up to the current match.
    pub fn current_slice(&self) -> &str {
        &self.s[..self.cur_idx]
    }

    /// Returns the string slice from the current match to the end.
    pub fn rest_slice(&self) -> &str {
        &self.s[self.cur_idx..]
    }
}

impl<'a> Iterator for AnsiCodeIterator<'a> {
    type Item = (&'a str, bool);

    fn next(&mut self) -> Option<(&'a str, bool)> {
        if let Some(pending_item) = self.pending_item.take() {
            self.cur_idx += pending_item.0.len();
            Some(pending_item)
        } else if let Some(m) = self.iter.next() {
            let s = &self.s[self.last_idx..m.start];
            self.last_idx = m.end;
            if s.is_empty() {
                self.cur_idx = m.end;
                Some((m.as_str(), true))
            } else {
                self.cur_idx = m.start;
                self.pending_item = Some((m.as_str(), true));
                Some((s, false))
            }
        } else if self.last_idx < self.s.len() {
            let rv = &self.s[self.last_idx..];
            self.cur_idx = self.s.len();
            self.last_idx = self.s.len();
            Some((rv, false))
        } else {
            None
        }
    }
}

impl<'a> FusedIterator for AnsiCodeIterator<'a> {}

#[cfg(test)]
mod tests {
    use super::*;

    use lazy_static::lazy_static;
    use proptest::prelude::*;
    use regex::Regex;

    // The manual dfa `State` is a handwritten translation from the previously used regex. That
    // regex is kept here and used to ensure that the new matches are the same as the old
    lazy_static! {
        static ref STRIP_ANSI_RE: Regex = Regex::new(
            r"[\x1b\x9b]([()][012AB]|[\[()#;?]*(?:[0-9]{1,4}(?:;[0-9]{0,4})*)?[0-9A-PRZcf-nqry=><])",
        )
        .unwrap();
    }

    impl<'a, 'b> PartialEq<Match<'a>> for regex::Match<'b> {
        fn eq(&self, other: &Match<'a>) -> bool {
            self.start() == other.start && self.end() == other.end
        }
    }

    proptest! {
        #[test]
        fn dfa_matches_old_regex(s in r"([\x1b\x9b]?.*){0,5}") {
            let old_matches: Vec<_> = STRIP_ANSI_RE.find_iter(&s).collect();
            let new_matches: Vec<_> = Matches::new(&s).collect();
            assert_eq!(old_matches, new_matches);
        }
    }

    #[test]
    fn dfa_matches_regex_on_small_strings() {
        // To make sure the test runs in a reasonable time this is a slimmed down list of
        // characters to reduce the groups that are only used with each other along with one
        // arbitrarily chosen character not used in the regex (' ')
        const POSSIBLE_BYTES: &[u8] = &[b' ', 0x1b, 0x9b, b'(', b'0', b'[', b';', b'3', b'C'];

        fn check_all_strings_of_len(len: usize) {
            _check_all_strings_of_len(len, &mut Vec::with_capacity(len));
        }

        fn _check_all_strings_of_len(len: usize, chunk: &mut Vec<u8>) {
            if len == 0 {
                if let Ok(s) = std::str::from_utf8(chunk) {
                    let old_matches: Vec<_> = STRIP_ANSI_RE.find_iter(s).collect();
                    let new_matches: Vec<_> = Matches::new(s).collect();
                    assert_eq!(old_matches, new_matches);
                }

                return;
            }

            for b in POSSIBLE_BYTES {
                chunk.push(*b);
                _check_all_strings_of_len(len - 1, chunk);
                chunk.pop();
            }
        }

        for str_len in 0..=6 {
            check_all_strings_of_len(str_len);
        }
    }

    #[test]
    fn complex_data() {
        let s = std::fs::read_to_string(
            std::path::Path::new("tests")
                .join("data")
                .join("sample_zellij_session.log"),
        )
        .unwrap();

        let old_matches: Vec<_> = STRIP_ANSI_RE.find_iter(&s).collect();
        let new_matches: Vec<_> = Matches::new(&s).collect();
        assert_eq!(old_matches, new_matches);
    }

    #[test]
    fn state_machine() {
        let ansi_code = "\x1b)B";
        let mut state = State::default();
        assert!(!state.is_final());

        for c in ansi_code.chars() {
            state.transition(c);
        }
        assert!(state.is_final());

        state.transition('A');
        assert!(state.is_trapped());
    }

    #[test]
    fn back_to_back_entry_char() {
        let s = "\x1b\x1bf";
        let matches: Vec<_> = Matches::new(s).map(|m| m.as_str()).collect();
        assert_eq!(&["\x1bf"], matches.as_slice());
    }

    #[test]
    fn early_paren_can_use_many_chars() {
        let s = "\x1b(C";
        let matches: Vec<_> = Matches::new(s).map(|m| m.as_str()).collect();
        assert_eq!(&[s], matches.as_slice());
    }

    #[test]
    fn long_run_of_digits() {
        let s = "\u{1b}00000";
        let matches: Vec<_> = Matches::new(s).map(|m| m.as_str()).collect();
        assert_eq!(&[s], matches.as_slice());
    }

    #[test]
    fn test_ansi_iter_re_vt100() {
        let s = "\x1b(0lpq\x1b)Benglish";
        let mut iter = AnsiCodeIterator::new(s);
        assert_eq!(iter.next(), Some(("\x1b(0", true)));
        assert_eq!(iter.next(), Some(("lpq", false)));
        assert_eq!(iter.next(), Some(("\x1b)B", true)));
        assert_eq!(iter.next(), Some(("english", false)));
    }

    #[test]
    fn test_ansi_iter_re() {
        use crate::style;
        let s = format!("Hello {}!", style("World").red().force_styling(true));
        let mut iter = AnsiCodeIterator::new(&s);
        assert_eq!(iter.next(), Some(("Hello ", false)));
        assert_eq!(iter.current_slice(), "Hello ");
        assert_eq!(iter.rest_slice(), "\x1b[31mWorld\x1b[0m!");
        assert_eq!(iter.next(), Some(("\x1b[31m", true)));
        assert_eq!(iter.current_slice(), "Hello \x1b[31m");
        assert_eq!(iter.rest_slice(), "World\x1b[0m!");
        assert_eq!(iter.next(), Some(("World", false)));
        assert_eq!(iter.current_slice(), "Hello \x1b[31mWorld");
        assert_eq!(iter.rest_slice(), "\x1b[0m!");
        assert_eq!(iter.next(), Some(("\x1b[0m", true)));
        assert_eq!(iter.current_slice(), "Hello \x1b[31mWorld\x1b[0m");
        assert_eq!(iter.rest_slice(), "!");
        assert_eq!(iter.next(), Some(("!", false)));
        assert_eq!(iter.current_slice(), "Hello \x1b[31mWorld\x1b[0m!");
        assert_eq!(iter.rest_slice(), "");
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn test_ansi_iter_re_on_multi() {
        use crate::style;
        let s = format!("{}", style("a").red().bold().force_styling(true));
        let mut iter = AnsiCodeIterator::new(&s);
        assert_eq!(iter.next(), Some(("\x1b[31m", true)));
        assert_eq!(iter.current_slice(), "\x1b[31m");
        assert_eq!(iter.rest_slice(), "\x1b[1ma\x1b[0m");
        assert_eq!(iter.next(), Some(("\x1b[1m", true)));
        assert_eq!(iter.current_slice(), "\x1b[31m\x1b[1m");
        assert_eq!(iter.rest_slice(), "a\x1b[0m");
        assert_eq!(iter.next(), Some(("a", false)));
        assert_eq!(iter.current_slice(), "\x1b[31m\x1b[1ma");
        assert_eq!(iter.rest_slice(), "\x1b[0m");
        assert_eq!(iter.next(), Some(("\x1b[0m", true)));
        assert_eq!(iter.current_slice(), "\x1b[31m\x1b[1ma\x1b[0m");
        assert_eq!(iter.rest_slice(), "");
        assert_eq!(iter.next(), None);
    }
}