1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Utility functions to transform parts of a single `MirRelationExpr`
//! into canonical form.

use std::cmp::Ordering;
use std::collections::{BTreeMap, BTreeSet};

use mz_ore::soft_assert_or_log;
use mz_repr::{ColumnType, ScalarType};

use crate::visit::Visit;
use crate::{func, MirScalarExpr, UnaryFunc, VariadicFunc};

/// Canonicalize equivalence classes of a join and expressions contained in them.
///
/// `input_types` can be the [ColumnType]s of the join or the [ColumnType]s of
/// the individual inputs of the join in order.
///
/// This function:
/// * simplifies expressions to involve the least number of non-literal nodes.
///   This ensures that we only replace expressions by "even simpler"
///   expressions and that repeated substitutions reduce the complexity of
///   expressions and a fixed point is certain to be reached. Without this
///   rule, we might repeatedly replace a simple expression with an equivalent
///   complex expression containing that (or another replaceable) simple
///   expression, and repeat indefinitely.
/// * reduces all expressions contained in `equivalences`.
/// * Does everything that [canonicalize_equivalence_classes] does.
pub fn canonicalize_equivalences<'a, I>(
    equivalences: &mut Vec<Vec<MirScalarExpr>>,
    input_column_types: I,
) where
    I: Iterator<Item = &'a Vec<ColumnType>>,
{
    let column_types = input_column_types
        .flat_map(|f| f.clone())
        .collect::<Vec<_>>();
    // Calculate the number of non-leaves for each expression.
    let mut to_reduce = equivalences
        .drain(..)
        .filter_map(|mut cls| {
            let mut result = cls
                .drain(..)
                .map(|expr| (rank_complexity(&expr), expr))
                .collect::<Vec<_>>();
            result.sort();
            result.dedup();
            if result.len() > 1 {
                Some(result)
            } else {
                None
            }
        })
        .collect::<Vec<_>>();

    let mut expressions_rewritten = true;
    while expressions_rewritten {
        expressions_rewritten = false;
        for i in 0..to_reduce.len() {
            // `to_reduce` will be borrowed as immutable, so in order to modify
            // elements of `to_reduce[i]`, we are going to pop them out of
            // `to_reduce[i]` and put the modified version in `new_equivalence`,
            // which will then replace `to_reduce[i]`.
            let mut new_equivalence = Vec::with_capacity(to_reduce[i].len());
            while let Some((_, mut popped_expr)) = to_reduce[i].pop() {
                #[allow(deprecated)]
                popped_expr.visit_mut_post_nolimit(&mut |e: &mut MirScalarExpr| {
                    // If a simpler expression can be found that is equivalent
                    // to e,
                    if let Some(simpler_e) = to_reduce.iter().find_map(|cls| {
                        if cls.iter().skip(1).position(|(_, expr)| e == expr).is_some() {
                            Some(cls[0].1.clone())
                        } else {
                            None
                        }
                    }) {
                        // Replace e with the simpler expression.
                        *e = simpler_e;
                        expressions_rewritten = true;
                    }
                });
                popped_expr.reduce(&column_types);
                new_equivalence.push((rank_complexity(&popped_expr), popped_expr));
            }
            new_equivalence.sort();
            new_equivalence.dedup();
            to_reduce[i] = new_equivalence;
        }
    }

    // Map away the complexity rating.
    *equivalences = to_reduce
        .drain(..)
        .map(|mut cls| cls.drain(..).map(|(_, expr)| expr).collect::<Vec<_>>())
        .collect::<Vec<_>>();

    canonicalize_equivalence_classes(equivalences);
}

/// Canonicalize only the equivalence classes of a join.
///
/// This function:
/// * ensures the same expression appears in only one equivalence class.
/// * ensures the equivalence classes are sorted and dedupped.
/// ```rust
/// use mz_expr::MirScalarExpr;
/// use mz_expr::canonicalize::canonicalize_equivalence_classes;
///
/// let mut equivalences = vec![
///     vec![MirScalarExpr::Column(1), MirScalarExpr::Column(4)],
///     vec![MirScalarExpr::Column(3), MirScalarExpr::Column(5)],
///     vec![MirScalarExpr::Column(0), MirScalarExpr::Column(3)],
///     vec![MirScalarExpr::Column(2), MirScalarExpr::Column(2)],
/// ];
/// let expected = vec![
///     vec![MirScalarExpr::Column(0),
///         MirScalarExpr::Column(3),
///         MirScalarExpr::Column(5)],
///     vec![MirScalarExpr::Column(1), MirScalarExpr::Column(4)],
/// ];
/// canonicalize_equivalence_classes(&mut equivalences);
/// assert_eq!(expected, equivalences)
/// ````
pub fn canonicalize_equivalence_classes(equivalences: &mut Vec<Vec<MirScalarExpr>>) {
    // Fuse equivalence classes containing the same expression.
    for index in 1..equivalences.len() {
        for inner in 0..index {
            if equivalences[index]
                .iter()
                .any(|pair| equivalences[inner].contains(pair))
            {
                let to_extend = std::mem::replace(&mut equivalences[index], Vec::new());
                equivalences[inner].extend(to_extend);
            }
        }
    }
    for equivalence in equivalences.iter_mut() {
        equivalence.sort();
        equivalence.dedup();
    }
    equivalences.retain(|es| es.len() > 1);
    equivalences.sort();
}

/// Gives a relative complexity ranking for an expression. Higher numbers mean
/// greater complexity.
///
/// Currently, this method weighs literals as the least complex and weighs all
/// other expressions by the number of non-literals. In the future, we can
/// change how complexity is ranked so that repeated substitutions would result
/// in arriving at "better" fixed points. For example, we could try to improve
/// performance by ranking expressions by their estimated computation time.
///
/// To ensure we arrive at a fixed point after repeated substitutions, valid
/// complexity rankings must fulfill the following property:
/// For any expression `e`, there does not exist a SQL function `f` such
/// that `complexity(e) >= complexity(f(e))`.
///
/// For ease of intuiting the fixed point that we will arrive at after
/// repeated substitutions, it is nice but not required that complexity
/// rankings additionally fulfill the following property:
/// If expressions `e1` and `e2` are such that
/// `complexity(e1) < complexity(e2)` then for all SQL functions `f`,
/// `complexity(f(e1)) < complexity(f(e2))`.
fn rank_complexity(expr: &MirScalarExpr) -> usize {
    if expr.is_literal() {
        // literals are the least complex
        return 0;
    }
    let mut non_literal_count = 1;
    expr.visit_pre(|e| {
        if !e.is_literal() {
            non_literal_count += 1
        }
    });
    non_literal_count
}

/// Applies a flat_map on a Vec, and overwrites the vec with the result.
fn flat_map_modify<T, I, F>(v: &mut Vec<T>, f: F)
where
    F: FnMut(T) -> I,
    I: IntoIterator<Item = T>,
{
    let mut xx = v.drain(..).flat_map(f).collect();
    v.append(&mut xx);
}

/// Canonicalize predicates of a filter.
///
/// This function reduces and canonicalizes the structure of each individual
/// predicate. Then, it transforms predicates of the form "A and B" into two: "A"
/// and "B". Afterwards, it reduces predicates based on information from other
/// predicates in the set. Finally, it sorts and deduplicates the predicates.
///
/// Additionally, it also removes IS NOT NULL predicates if there is another
/// null rejecting predicate for the same sub-expression.
pub fn canonicalize_predicates(predicates: &mut Vec<MirScalarExpr>, column_types: &[ColumnType]) {
    soft_assert_or_log!(
        predicates
            .iter()
            .all(|p| p.typ(column_types).scalar_type == ScalarType::Bool),
        "cannot canonicalize predicates that are not of type bool"
    );

    // 1) Reduce each individual predicate.
    predicates.iter_mut().for_each(|p| p.reduce(column_types));

    // 2) Split "A and B" into two predicates: "A" and "B"
    // Relies on the `reduce` above having flattened nested ANDs.
    flat_map_modify(predicates, |p| {
        if let MirScalarExpr::CallVariadic {
            func: VariadicFunc::And,
            exprs,
        } = p
        {
            exprs
        } else {
            vec![p]
        }
    });

    // 3) Make non-null requirements explicit as predicates in order for
    // step 4) to be able to simplify AND/OR expressions with IS NULL
    // sub-predicates. This redundancy is removed later by step 5).
    let mut non_null_columns = BTreeSet::new();
    for p in predicates.iter() {
        p.non_null_requirements(&mut non_null_columns);
    }
    predicates.extend(non_null_columns.iter().map(|c| {
        MirScalarExpr::column(*c)
            .call_unary(UnaryFunc::IsNull(func::IsNull))
            .call_unary(UnaryFunc::Not(func::Not))
    }));

    // 4) Reduce across `predicates`.
    // If a predicate `p` cannot be null, and `f(p)` is a nullable bool
    // then the predicate `p & f(p)` is equal to `p & f(true)`, and
    // `!p & f(p)` is equal to `!p & f(false)`. For any index i, the `Vec` of
    // predicates `[p1, ... pi, ... pn]` is equivalent to the single predicate
    // `pi & (p1 & ... & p(i-1) & p(i+1) ... & pn)`. Thus, if `pi`
    // (resp. `!pi`) cannot be null, it is valid to replace with `true` (resp.
    // `false`) every subexpression in `(p1 & ... & p(i-1) & p(i+1) ... & pn)`
    // that is equal to `pi`.

    // If `p` is null and `q` is a nullable bool, then `p & q` can be either
    // `null` or `false` depending on what `q`. Our rendering pipeline treats
    // both as "remove this row." Thus, in the specific context of filter
    // predicates, it is acceptable to make the aforementioned substitution
    // even if `pi` can be null.

    // Note that this does some dedupping of predicates since if `p1 = p2`
    // then this reduction process will replace `p1` with true.

    // Maintain respectively:
    // 1) A list of predicates for which we have checked for matching
    // subexpressions
    // 2) A list of predicates for which we have yet to do so.
    let mut completed = Vec::new();
    let mut todo = Vec::new();
    // Seed `todo` with all predicates.
    std::mem::swap(&mut todo, predicates);

    while let Some(predicate_to_apply) = todo.pop() {
        // Helper method: for each predicate `p`, see if all other predicates
        // (a.k.a. the union of todo & completed) contains `p` as a
        // subexpression, and replace the subexpression accordingly.
        // This method lives inside the loop because in order to comply with
        // Rust rules that only one mutable reference to `todo` can be held at a
        // time.
        let mut replace_subexpr_other_predicates =
            |expr: &MirScalarExpr, constant_bool: &MirScalarExpr| {
                // Do not replace subexpressions equal to `expr` if `expr` is a
                // literal to avoid infinite looping.
                if !expr.is_literal() {
                    for other_predicate in todo.iter_mut() {
                        replace_subexpr_and_reduce(
                            other_predicate,
                            expr,
                            constant_bool,
                            column_types,
                        );
                    }
                    for other_idx in (0..completed.len()).rev() {
                        if replace_subexpr_and_reduce(
                            &mut completed[other_idx],
                            expr,
                            constant_bool,
                            column_types,
                        ) {
                            // If a predicate in the `completed` list has
                            // been simplified, stick it back into the `todo` list.
                            todo.push(completed.remove(other_idx));
                        }
                    }
                }
            };
        // Meat of loop starts here. If a predicate p is of the form `!q`, replace
        // every instance of `q` in every other predicate with `false.`
        // Otherwise, replace every instance of `p` in every other predicate
        // with `true`.
        if let MirScalarExpr::CallUnary {
            func: UnaryFunc::Not(func::Not),
            expr,
        } = &predicate_to_apply
        {
            replace_subexpr_other_predicates(expr, &MirScalarExpr::literal_false())
        } else {
            replace_subexpr_other_predicates(&predicate_to_apply, &MirScalarExpr::literal_true());
        }
        completed.push(predicate_to_apply);
    }

    // 5) Remove redundant !isnull/isnull predicates after performing the replacements
    // in the loop above.
    std::mem::swap(&mut todo, &mut completed);
    while let Some(predicate_to_apply) = todo.pop() {
        // Remove redundant !isnull(x) predicates if there is another predicate
        // that evaluates to NULL when `x` is NULL.
        if let Some(operand) = is_not_null(&predicate_to_apply) {
            if todo
                .iter_mut()
                .chain(completed.iter_mut())
                .any(|p| is_null_rejecting_predicate(p, &operand))
            {
                // skip this predicate
                continue;
            }
        } else if let MirScalarExpr::CallUnary {
            func: UnaryFunc::IsNull(func::IsNull),
            expr,
        } = &predicate_to_apply
        {
            if todo
                .iter_mut()
                .chain(completed.iter_mut())
                .any(|p| is_null_rejecting_predicate(p, expr))
            {
                completed.push(MirScalarExpr::literal_false());
                break;
            }
        }
        completed.push(predicate_to_apply);
    }

    if completed.iter().any(|p| {
        (p.is_literal_false() || p.is_literal_null()) &&
        // This extra check is only needed if we determine that the soft-assert
        // at the top of this function would ever fail for a good reason.
        p.typ(column_types).scalar_type == ScalarType::Bool
    }) {
        // all rows get filtered away if any predicate is null or false.
        *predicates = vec![MirScalarExpr::literal_false()]
    } else {
        // Remove any predicates that have been reduced to "true"
        completed.retain(|p| !p.is_literal_true());
        *predicates = completed;
    }

    // 6) Sort and dedup predicates.
    predicates.sort_by(compare_predicates);
    predicates.dedup();
}

/// Replace any matching subexpressions in `predicate`, and if `predicate` has
/// changed, reduce it. Return whether `predicate` has changed.
fn replace_subexpr_and_reduce(
    predicate: &mut MirScalarExpr,
    replace_if_equal_to: &MirScalarExpr,
    replace_with: &MirScalarExpr,
    column_types: &[ColumnType],
) -> bool {
    let mut changed = false;
    #[allow(deprecated)]
    predicate.visit_mut_pre_post_nolimit(
        &mut |e| {
            // The `cond` of an if statement is not visited to prevent `then`
            // or `els` from being evaluated before `cond`, resulting in a
            // correctness error.
            if let MirScalarExpr::If { then, els, .. } = e {
                return Some(vec![then, els]);
            }
            None
        },
        &mut |e| {
            if e == replace_if_equal_to {
                *e = replace_with.clone();
                changed = true;
            } else if let MirScalarExpr::CallBinary {
                func: r_func,
                expr1: r_expr1,
                expr2: r_expr2,
            } = replace_if_equal_to
            {
                if let Some(negation) = r_func.negate() {
                    if let MirScalarExpr::CallBinary {
                        func: l_func,
                        expr1: l_expr1,
                        expr2: l_expr2,
                    } = e
                    {
                        if negation == *l_func && l_expr1 == r_expr1 && l_expr2 == r_expr2 {
                            *e = MirScalarExpr::CallUnary {
                                func: UnaryFunc::Not(func::Not),
                                expr: Box::new(replace_with.clone()),
                            };
                            changed = true;
                        }
                    }
                }
            }
        },
    );
    if changed {
        predicate.reduce(column_types);
    }
    changed
}

/// Returns the inner operand if the given predicate is an IS NOT NULL expression.
fn is_not_null(predicate: &MirScalarExpr) -> Option<MirScalarExpr> {
    if let MirScalarExpr::CallUnary {
        func: UnaryFunc::Not(func::Not),
        expr,
    } = &predicate
    {
        if let MirScalarExpr::CallUnary {
            func: UnaryFunc::IsNull(func::IsNull),
            expr,
        } = &**expr
        {
            return Some((**expr).clone());
        }
    }
    None
}

/// Whether the given predicate evaluates to NULL when the given operand expression is NULL.
#[inline(always)]
fn is_null_rejecting_predicate(predicate: &MirScalarExpr, operand: &MirScalarExpr) -> bool {
    propagates_null_from_subexpression(predicate, operand)
}

fn propagates_null_from_subexpression(expr: &MirScalarExpr, operand: &MirScalarExpr) -> bool {
    if operand == expr {
        true
    } else if let MirScalarExpr::CallVariadic { func, exprs } = &expr {
        func.propagates_nulls()
            && (exprs
                .iter()
                .any(|e| propagates_null_from_subexpression(e, operand)))
    } else if let MirScalarExpr::CallBinary { func, expr1, expr2 } = &expr {
        func.propagates_nulls()
            && (propagates_null_from_subexpression(expr1, operand)
                || propagates_null_from_subexpression(expr2, operand))
    } else if let MirScalarExpr::CallUnary { func, expr } = &expr {
        func.propagates_nulls() && propagates_null_from_subexpression(expr, operand)
    } else {
        false
    }
}

/// Comparison method for sorting predicates by their complexity, measured by the total
/// number of non-literal expression nodes within the expression.
fn compare_predicates(x: &MirScalarExpr, y: &MirScalarExpr) -> Ordering {
    (rank_complexity(x), x).cmp(&(rank_complexity(y), y))
}

/// For each equivalence class, it finds the simplest expression, which will be the canonical one.
/// Returns a Map that maps from each expression in each equivalence class to the canonical
/// expression in the same equivalence class.
pub fn get_canonicalizer_map(
    equivalences: &Vec<Vec<MirScalarExpr>>,
) -> BTreeMap<MirScalarExpr, MirScalarExpr> {
    let mut canonicalizer_map = BTreeMap::new();
    for equivalence in equivalences {
        // The unwrap is ok, because a join equivalence class can't be empty.
        let canonical_expr = equivalence
            .iter()
            .min_by(|a, b| compare_predicates(*a, *b))
            .unwrap();
        for e in equivalence {
            if e != canonical_expr {
                canonicalizer_map.insert(e.clone(), canonical_expr.clone());
            }
        }
    }
    canonicalizer_map
}