parquet/util/
bit_util.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::{cmp, mem::size_of};

use bytes::Bytes;

use crate::data_type::{AsBytes, ByteArray, FixedLenByteArray, Int96};
use crate::errors::{ParquetError, Result};
use crate::util::bit_pack::{unpack16, unpack32, unpack64, unpack8};

#[inline]
fn array_from_slice<const N: usize>(bs: &[u8]) -> Result<[u8; N]> {
    // Need to slice as may be called with zero-padded values
    match bs.get(..N) {
        Some(b) => Ok(b.try_into().unwrap()),
        None => Err(general_err!(
            "error converting value, expected {} bytes got {}",
            N,
            bs.len()
        )),
    }
}

/// # Safety
/// All bit patterns 00000xxxx, where there are `BIT_CAPACITY` `x`s,
/// must be valid, unless BIT_CAPACITY is 0.
pub unsafe trait FromBytes: Sized {
    const BIT_CAPACITY: usize;
    type Buffer: AsMut<[u8]> + Default;
    fn try_from_le_slice(b: &[u8]) -> Result<Self>;
    fn from_le_bytes(bs: Self::Buffer) -> Self;
}

macro_rules! from_le_bytes {
    ($($ty: ty),*) => {
        $(
        // SAFETY: this macro is used for types for which all bit patterns are valid.
        unsafe impl FromBytes for $ty {
            const BIT_CAPACITY: usize = std::mem::size_of::<$ty>() * 8;
            type Buffer = [u8; size_of::<Self>()];
            fn try_from_le_slice(b: &[u8]) -> Result<Self> {
                Ok(Self::from_le_bytes(array_from_slice(b)?))
            }
            fn from_le_bytes(bs: Self::Buffer) -> Self {
                <$ty>::from_le_bytes(bs)
            }
        }
        )*
    };
}

from_le_bytes! { u8, u16, u32, u64, i8, i16, i32, i64, f32, f64 }

// SAFETY: the 0000000x bit pattern is always valid for `bool`.
unsafe impl FromBytes for bool {
    const BIT_CAPACITY: usize = 1;
    type Buffer = [u8; 1];

    fn try_from_le_slice(b: &[u8]) -> Result<Self> {
        Ok(Self::from_le_bytes(array_from_slice(b)?))
    }
    fn from_le_bytes(bs: Self::Buffer) -> Self {
        bs[0] != 0
    }
}

// SAFETY: BIT_CAPACITY is 0.
unsafe impl FromBytes for Int96 {
    const BIT_CAPACITY: usize = 0;
    type Buffer = [u8; 12];

    fn try_from_le_slice(b: &[u8]) -> Result<Self> {
        let bs: [u8; 12] = array_from_slice(b)?;
        let mut i = Int96::new();
        i.set_data(
            u32::try_from_le_slice(&bs[0..4])?,
            u32::try_from_le_slice(&bs[4..8])?,
            u32::try_from_le_slice(&bs[8..12])?,
        );
        Ok(i)
    }

    fn from_le_bytes(bs: Self::Buffer) -> Self {
        let mut i = Int96::new();
        i.set_data(
            u32::try_from_le_slice(&bs[0..4]).unwrap(),
            u32::try_from_le_slice(&bs[4..8]).unwrap(),
            u32::try_from_le_slice(&bs[8..12]).unwrap(),
        );
        i
    }
}

// SAFETY: BIT_CAPACITY is 0.
unsafe impl FromBytes for ByteArray {
    const BIT_CAPACITY: usize = 0;
    type Buffer = Vec<u8>;

    fn try_from_le_slice(b: &[u8]) -> Result<Self> {
        Ok(b.to_vec().into())
    }
    fn from_le_bytes(bs: Self::Buffer) -> Self {
        bs.into()
    }
}

// SAFETY: BIT_CAPACITY is 0.
unsafe impl FromBytes for FixedLenByteArray {
    const BIT_CAPACITY: usize = 0;
    type Buffer = Vec<u8>;

    fn try_from_le_slice(b: &[u8]) -> Result<Self> {
        Ok(b.to_vec().into())
    }
    fn from_le_bytes(bs: Self::Buffer) -> Self {
        bs.into()
    }
}

/// Reads `size` of bytes from `src`, and reinterprets them as type `ty`, in
/// little-endian order.
/// This is copied and modified from byteorder crate.
pub(crate) fn read_num_bytes<T>(size: usize, src: &[u8]) -> T
where
    T: FromBytes,
{
    assert!(size <= src.len());
    let mut buffer = <T as FromBytes>::Buffer::default();
    buffer.as_mut()[..size].copy_from_slice(&src[..size]);
    <T>::from_le_bytes(buffer)
}

/// Returns the ceil of value/divisor.
///
/// This function should be removed after
/// [`int_roundings`](https://github.com/rust-lang/rust/issues/88581) is stable.
#[inline]
pub fn ceil<T: num::Integer>(value: T, divisor: T) -> T {
    num::Integer::div_ceil(&value, &divisor)
}

/// Returns the `num_bits` least-significant bits of `v`
#[inline]
pub fn trailing_bits(v: u64, num_bits: usize) -> u64 {
    if num_bits >= 64 {
        v
    } else {
        v & ((1 << num_bits) - 1)
    }
}

/// Returns the minimum number of bits needed to represent the value 'x'
#[inline]
pub fn num_required_bits(x: u64) -> u8 {
    64 - x.leading_zeros() as u8
}

static BIT_MASK: [u8; 8] = [1, 2, 4, 8, 16, 32, 64, 128];

/// Returns whether bit at position `i` in `data` is set or not
#[inline]
pub fn get_bit(data: &[u8], i: usize) -> bool {
    (data[i >> 3] & BIT_MASK[i & 7]) != 0
}

/// Utility class for writing bit/byte streams. This class can write data in either
/// bit packed or byte aligned fashion.
pub struct BitWriter {
    buffer: Vec<u8>,
    buffered_values: u64,
    bit_offset: u8,
}

impl BitWriter {
    pub fn new(initial_capacity: usize) -> Self {
        Self {
            buffer: Vec::with_capacity(initial_capacity),
            buffered_values: 0,
            bit_offset: 0,
        }
    }

    /// Initializes the writer appending to the existing buffer `buffer`
    pub fn new_from_buf(buffer: Vec<u8>) -> Self {
        Self {
            buffer,
            buffered_values: 0,
            bit_offset: 0,
        }
    }

    /// Consumes and returns the current buffer.
    #[inline]
    pub fn consume(mut self) -> Vec<u8> {
        self.flush();
        self.buffer
    }

    /// Flushes the internal buffered bits and returns the buffer's content.
    /// This is a borrow equivalent of `consume` method.
    #[inline]
    pub fn flush_buffer(&mut self) -> &[u8] {
        self.flush();
        self.buffer()
    }

    /// Clears the internal state so the buffer can be reused.
    #[inline]
    pub fn clear(&mut self) {
        self.buffer.clear();
        self.buffered_values = 0;
        self.bit_offset = 0;
    }

    /// Flushes the internal buffered bits and the align the buffer to the next byte.
    #[inline]
    pub fn flush(&mut self) {
        let num_bytes = ceil(self.bit_offset, 8);
        let slice = &self.buffered_values.to_le_bytes()[..num_bytes as usize];
        self.buffer.extend_from_slice(slice);
        self.buffered_values = 0;
        self.bit_offset = 0;
    }

    /// Advances the current offset by skipping `num_bytes`, flushing the internal bit
    /// buffer first.
    /// This is useful when you want to jump over `num_bytes` bytes and come back later
    /// to fill these bytes.
    #[inline]
    pub fn skip(&mut self, num_bytes: usize) -> usize {
        self.flush();
        let result = self.buffer.len();
        self.buffer.extend(std::iter::repeat(0).take(num_bytes));
        result
    }

    /// Returns a slice containing the next `num_bytes` bytes starting from the current
    /// offset, and advances the underlying buffer by `num_bytes`.
    /// This is useful when you want to jump over `num_bytes` bytes and come back later
    /// to fill these bytes.
    #[inline]
    pub fn get_next_byte_ptr(&mut self, num_bytes: usize) -> &mut [u8] {
        let offset = self.skip(num_bytes);
        &mut self.buffer[offset..offset + num_bytes]
    }

    #[inline]
    pub fn bytes_written(&self) -> usize {
        self.buffer.len() + ceil(self.bit_offset, 8) as usize
    }

    #[inline]
    pub fn buffer(&self) -> &[u8] {
        &self.buffer
    }

    #[inline]
    pub fn byte_offset(&self) -> usize {
        self.buffer.len()
    }

    /// Writes the entire byte `value` at the byte `offset`
    pub fn write_at(&mut self, offset: usize, value: u8) {
        self.buffer[offset] = value;
    }

    /// Writes the `num_bits` LSB of value `v` to the internal buffer of this writer.
    /// The `num_bits` must not be greater than 64. This is bit packed.
    #[inline]
    pub fn put_value(&mut self, v: u64, num_bits: usize) {
        assert!(num_bits <= 64);
        let num_bits = num_bits as u8;
        assert_eq!(v.checked_shr(num_bits as u32).unwrap_or(0), 0); // covers case v >> 64

        // Add value to buffered_values
        self.buffered_values |= v << self.bit_offset;
        self.bit_offset += num_bits;
        if let Some(remaining) = self.bit_offset.checked_sub(64) {
            self.buffer
                .extend_from_slice(&self.buffered_values.to_le_bytes());
            self.bit_offset = remaining;

            // Perform checked right shift: v >> offset, where offset < 64, otherwise we
            // shift all bits
            self.buffered_values = v
                .checked_shr((num_bits - self.bit_offset) as u32)
                .unwrap_or(0);
        }
    }

    /// Writes `val` of `num_bytes` bytes to the next aligned byte. If size of `T` is
    /// larger than `num_bytes`, extra higher ordered bytes will be ignored.
    #[inline]
    pub fn put_aligned<T: AsBytes>(&mut self, val: T, num_bytes: usize) {
        self.flush();
        let slice = val.as_bytes();
        let len = num_bytes.min(slice.len());
        self.buffer.extend_from_slice(&slice[..len]);
    }

    /// Writes `val` of `num_bytes` bytes at the designated `offset`. The `offset` is the
    /// offset starting from the beginning of the internal buffer that this writer
    /// maintains. Note that this will overwrite any existing data between `offset` and
    /// `offset + num_bytes`. Also that if size of `T` is larger than `num_bytes`, extra
    /// higher ordered bytes will be ignored.
    #[inline]
    pub fn put_aligned_offset<T: AsBytes>(&mut self, val: T, num_bytes: usize, offset: usize) {
        let slice = val.as_bytes();
        let len = num_bytes.min(slice.len());
        self.buffer[offset..offset + len].copy_from_slice(&slice[..len])
    }

    /// Writes a VLQ encoded integer `v` to this buffer. The value is byte aligned.
    #[inline]
    pub fn put_vlq_int(&mut self, mut v: u64) {
        while v & 0xFFFFFFFFFFFFFF80 != 0 {
            self.put_aligned::<u8>(((v & 0x7F) | 0x80) as u8, 1);
            v >>= 7;
        }
        self.put_aligned::<u8>((v & 0x7F) as u8, 1);
    }

    /// Writes a zigzag-VLQ encoded (in little endian order) int `v` to this buffer.
    /// Zigzag-VLQ is a variant of VLQ encoding where negative and positive
    /// numbers are encoded in a zigzag fashion.
    /// See: https://developers.google.com/protocol-buffers/docs/encoding
    #[inline]
    pub fn put_zigzag_vlq_int(&mut self, v: i64) {
        let u: u64 = ((v << 1) ^ (v >> 63)) as u64;
        self.put_vlq_int(u)
    }

    /// Returns an estimate of the memory used, in bytes
    pub fn estimated_memory_size(&self) -> usize {
        self.buffer.capacity() * size_of::<u8>()
    }
}

/// Maximum byte length for a VLQ encoded integer
/// MAX_VLQ_BYTE_LEN = 5 for i32, and MAX_VLQ_BYTE_LEN = 10 for i64
pub const MAX_VLQ_BYTE_LEN: usize = 10;

pub struct BitReader {
    /// The byte buffer to read from, passed in by client
    buffer: Bytes,

    /// Bytes are memcpy'd from `buffer` and values are read from this variable.
    /// This is faster than reading values byte by byte directly from `buffer`
    ///
    /// This is only populated when `self.bit_offset != 0`
    buffered_values: u64,

    ///
    /// End                                         Start
    /// |............|B|B|B|B|B|B|B|B|..............|
    ///                   ^          ^
    ///                 bit_offset   byte_offset
    ///
    /// Current byte offset in `buffer`
    byte_offset: usize,

    /// Current bit offset in `buffered_values`
    bit_offset: usize,
}

/// Utility class to read bit/byte stream. This class can read bits or bytes that are
/// either byte aligned or not.
impl BitReader {
    pub fn new(buffer: Bytes) -> Self {
        BitReader {
            buffer,
            buffered_values: 0,
            byte_offset: 0,
            bit_offset: 0,
        }
    }

    pub fn reset(&mut self, buffer: Bytes) {
        self.buffer = buffer;
        self.buffered_values = 0;
        self.byte_offset = 0;
        self.bit_offset = 0;
    }

    /// Gets the current byte offset
    #[inline]
    pub fn get_byte_offset(&self) -> usize {
        self.byte_offset + ceil(self.bit_offset, 8)
    }

    /// Reads a value of type `T` and of size `num_bits`.
    ///
    /// Returns `None` if there's not enough data available. `Some` otherwise.
    pub fn get_value<T: FromBytes>(&mut self, num_bits: usize) -> Option<T> {
        assert!(num_bits <= 64);
        assert!(num_bits <= size_of::<T>() * 8);

        if self.byte_offset * 8 + self.bit_offset + num_bits > self.buffer.len() * 8 {
            return None;
        }

        // If buffer is not byte aligned, `self.buffered_values` will
        // have already been populated
        if self.bit_offset == 0 {
            self.load_buffered_values()
        }

        let mut v =
            trailing_bits(self.buffered_values, self.bit_offset + num_bits) >> self.bit_offset;
        self.bit_offset += num_bits;

        if self.bit_offset >= 64 {
            self.byte_offset += 8;
            self.bit_offset -= 64;

            // If the new bit_offset is not 0, we need to read the next 64-bit chunk
            // to buffered_values and update `v`
            if self.bit_offset != 0 {
                self.load_buffered_values();

                v |= trailing_bits(self.buffered_values, self.bit_offset)
                    .wrapping_shl((num_bits - self.bit_offset) as u32);
            }
        }

        // TODO: better to avoid copying here
        T::try_from_le_slice(v.as_bytes()).ok()
    }

    /// Read multiple values from their packed representation where each element is represented
    /// by `num_bits` bits.
    ///
    /// # Panics
    ///
    /// This function panics if
    /// - `num_bits` is larger than the bit-capacity of `T`
    ///
    pub fn get_batch<T: FromBytes>(&mut self, batch: &mut [T], num_bits: usize) -> usize {
        assert!(num_bits <= size_of::<T>() * 8);

        let mut values_to_read = batch.len();
        let needed_bits = num_bits * values_to_read;
        let remaining_bits = (self.buffer.len() - self.byte_offset) * 8 - self.bit_offset;
        if remaining_bits < needed_bits {
            values_to_read = remaining_bits / num_bits;
        }

        let mut i = 0;

        // First align bit offset to byte offset
        if self.bit_offset != 0 {
            while i < values_to_read && self.bit_offset != 0 {
                batch[i] = self
                    .get_value(num_bits)
                    .expect("expected to have more data");
                i += 1;
            }
        }

        assert_ne!(T::BIT_CAPACITY, 0);
        assert!(num_bits <= T::BIT_CAPACITY);

        // Read directly into output buffer
        match size_of::<T>() {
            1 => {
                let ptr = batch.as_mut_ptr() as *mut u8;
                // SAFETY: batch is properly aligned and sized. Caller guarantees that all bit patterns
                // in which only the lowest T::BIT_CAPACITY bits of T are set are valid,
                // unpack{8,16,32,64} only set to non0 the lowest num_bits bits, and we
                // checked that num_bits <= T::BIT_CAPACITY.
                let out = unsafe { std::slice::from_raw_parts_mut(ptr, batch.len()) };
                while values_to_read - i >= 8 {
                    let out_slice = (&mut out[i..i + 8]).try_into().unwrap();
                    unpack8(&self.buffer[self.byte_offset..], out_slice, num_bits);
                    self.byte_offset += num_bits;
                    i += 8;
                }
            }
            2 => {
                let ptr = batch.as_mut_ptr() as *mut u16;
                // SAFETY: batch is properly aligned and sized. Caller guarantees that all bit patterns
                // in which only the lowest T::BIT_CAPACITY bits of T are set are valid,
                // unpack{8,16,32,64} only set to non0 the lowest num_bits bits, and we
                // checked that num_bits <= T::BIT_CAPACITY.
                let out = unsafe { std::slice::from_raw_parts_mut(ptr, batch.len()) };
                while values_to_read - i >= 16 {
                    let out_slice = (&mut out[i..i + 16]).try_into().unwrap();
                    unpack16(&self.buffer[self.byte_offset..], out_slice, num_bits);
                    self.byte_offset += 2 * num_bits;
                    i += 16;
                }
            }
            4 => {
                let ptr = batch.as_mut_ptr() as *mut u32;
                // SAFETY: batch is properly aligned and sized. Caller guarantees that all bit patterns
                // in which only the lowest T::BIT_CAPACITY bits of T are set are valid,
                // unpack{8,16,32,64} only set to non0 the lowest num_bits bits, and we
                // checked that num_bits <= T::BIT_CAPACITY.
                let out = unsafe { std::slice::from_raw_parts_mut(ptr, batch.len()) };
                while values_to_read - i >= 32 {
                    let out_slice = (&mut out[i..i + 32]).try_into().unwrap();
                    unpack32(&self.buffer[self.byte_offset..], out_slice, num_bits);
                    self.byte_offset += 4 * num_bits;
                    i += 32;
                }
            }
            8 => {
                let ptr = batch.as_mut_ptr() as *mut u64;
                // SAFETY: batch is properly aligned and sized. Caller guarantees that all bit patterns
                // in which only the lowest T::BIT_CAPACITY bits of T are set are valid,
                // unpack{8,16,32,64} only set to non0 the lowest num_bits bits, and we
                // checked that num_bits <= T::BIT_CAPACITY.
                let out = unsafe { std::slice::from_raw_parts_mut(ptr, batch.len()) };
                while values_to_read - i >= 64 {
                    let out_slice = (&mut out[i..i + 64]).try_into().unwrap();
                    unpack64(&self.buffer[self.byte_offset..], out_slice, num_bits);
                    self.byte_offset += 8 * num_bits;
                    i += 64;
                }
            }
            _ => unreachable!(),
        }

        // Try to read smaller batches if possible
        if size_of::<T>() > 4 && values_to_read - i >= 32 && num_bits <= 32 {
            let mut out_buf = [0_u32; 32];
            unpack32(&self.buffer[self.byte_offset..], &mut out_buf, num_bits);
            self.byte_offset += 4 * num_bits;

            for out in out_buf {
                // Zero-allocate buffer
                let mut out_bytes = T::Buffer::default();
                out_bytes.as_mut()[..4].copy_from_slice(&out.to_le_bytes());
                batch[i] = T::from_le_bytes(out_bytes);
                i += 1;
            }
        }

        if size_of::<T>() > 2 && values_to_read - i >= 16 && num_bits <= 16 {
            let mut out_buf = [0_u16; 16];
            unpack16(&self.buffer[self.byte_offset..], &mut out_buf, num_bits);
            self.byte_offset += 2 * num_bits;

            for out in out_buf {
                // Zero-allocate buffer
                let mut out_bytes = T::Buffer::default();
                out_bytes.as_mut()[..2].copy_from_slice(&out.to_le_bytes());
                batch[i] = T::from_le_bytes(out_bytes);
                i += 1;
            }
        }

        if size_of::<T>() > 1 && values_to_read - i >= 8 && num_bits <= 8 {
            let mut out_buf = [0_u8; 8];
            unpack8(&self.buffer[self.byte_offset..], &mut out_buf, num_bits);
            self.byte_offset += num_bits;

            for out in out_buf {
                // Zero-allocate buffer
                let mut out_bytes = T::Buffer::default();
                out_bytes.as_mut()[..1].copy_from_slice(&out.to_le_bytes());
                batch[i] = T::from_le_bytes(out_bytes);
                i += 1;
            }
        }

        // Read any trailing values
        while i < values_to_read {
            let value = self
                .get_value(num_bits)
                .expect("expected to have more data");
            batch[i] = value;
            i += 1;
        }

        values_to_read
    }

    /// Skip num_value values with num_bits bit width
    ///
    /// Return the number of values skipped (up to num_values)
    pub fn skip(&mut self, num_values: usize, num_bits: usize) -> usize {
        assert!(num_bits <= 64);

        let needed_bits = num_bits * num_values;
        let remaining_bits = (self.buffer.len() - self.byte_offset) * 8 - self.bit_offset;

        let values_to_read = match remaining_bits < needed_bits {
            true => remaining_bits / num_bits,
            false => num_values,
        };

        let end_bit_offset = self.byte_offset * 8 + values_to_read * num_bits + self.bit_offset;

        self.byte_offset = end_bit_offset / 8;
        self.bit_offset = end_bit_offset % 8;

        if self.bit_offset != 0 {
            self.load_buffered_values()
        }

        values_to_read
    }

    /// Reads up to `num_bytes` to `buf` returning the number of bytes read
    pub(crate) fn get_aligned_bytes(&mut self, buf: &mut Vec<u8>, num_bytes: usize) -> usize {
        // Align to byte offset
        self.byte_offset = self.get_byte_offset();
        self.bit_offset = 0;

        let src = &self.buffer[self.byte_offset..];
        let to_read = num_bytes.min(src.len());
        buf.extend_from_slice(&src[..to_read]);

        self.byte_offset += to_read;

        to_read
    }

    /// Reads a `num_bytes`-sized value from this buffer and return it.
    /// `T` needs to be a little-endian native type. The value is assumed to be byte
    /// aligned so the bit reader will be advanced to the start of the next byte before
    /// reading the value.
    ///
    /// Returns `Some` if there's enough bytes left to form a value of `T`.
    /// Otherwise `None`.
    pub fn get_aligned<T: FromBytes>(&mut self, num_bytes: usize) -> Option<T> {
        self.byte_offset = self.get_byte_offset();
        self.bit_offset = 0;

        if self.byte_offset + num_bytes > self.buffer.len() {
            return None;
        }

        // Advance byte_offset to next unread byte and read num_bytes
        let v = read_num_bytes::<T>(num_bytes, &self.buffer[self.byte_offset..]);
        self.byte_offset += num_bytes;

        Some(v)
    }

    /// Reads a VLQ encoded (in little endian order) int from the stream.
    /// The encoded int must start at the beginning of a byte.
    ///
    /// Returns `None` if there's not enough bytes in the stream. `Some` otherwise.
    pub fn get_vlq_int(&mut self) -> Option<i64> {
        let mut shift = 0;
        let mut v: i64 = 0;
        while let Some(byte) = self.get_aligned::<u8>(1) {
            v |= ((byte & 0x7F) as i64) << shift;
            shift += 7;
            assert!(
                shift <= MAX_VLQ_BYTE_LEN * 7,
                "Num of bytes exceed MAX_VLQ_BYTE_LEN ({MAX_VLQ_BYTE_LEN})"
            );
            if byte & 0x80 == 0 {
                return Some(v);
            }
        }
        None
    }

    /// Reads a zigzag-VLQ encoded (in little endian order) int from the stream
    /// Zigzag-VLQ is a variant of VLQ encoding where negative and positive numbers are
    /// encoded in a zigzag fashion.
    /// See: https://developers.google.com/protocol-buffers/docs/encoding
    ///
    /// Note: the encoded int must start at the beginning of a byte.
    ///
    /// Returns `None` if the number of bytes there's not enough bytes in the stream.
    /// `Some` otherwise.
    #[inline]
    pub fn get_zigzag_vlq_int(&mut self) -> Option<i64> {
        self.get_vlq_int().map(|v| {
            let u = v as u64;
            (u >> 1) as i64 ^ -((u & 1) as i64)
        })
    }

    /// Loads up to the the next 8 bytes from `self.buffer` at `self.byte_offset`
    /// into `self.buffered_values`.
    ///
    /// Reads fewer than 8 bytes if there are fewer than 8 bytes left
    #[inline]
    fn load_buffered_values(&mut self) {
        let bytes_to_read = cmp::min(self.buffer.len() - self.byte_offset, 8);
        self.buffered_values =
            read_num_bytes::<u64>(bytes_to_read, &self.buffer[self.byte_offset..]);
    }
}

impl From<Vec<u8>> for BitReader {
    #[inline]
    fn from(buffer: Vec<u8>) -> Self {
        BitReader::new(buffer.into())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::util::test_common::rand_gen::random_numbers;
    use rand::distributions::{Distribution, Standard};
    use std::fmt::Debug;

    #[test]
    fn test_ceil() {
        assert_eq!(ceil(0, 1), 0);
        assert_eq!(ceil(1, 1), 1);
        assert_eq!(ceil(1, 2), 1);
        assert_eq!(ceil(1, 8), 1);
        assert_eq!(ceil(7, 8), 1);
        assert_eq!(ceil(8, 8), 1);
        assert_eq!(ceil(9, 8), 2);
        assert_eq!(ceil(9, 9), 1);
        assert_eq!(ceil(10000000000_u64, 10), 1000000000);
        assert_eq!(ceil(10_u64, 10000000000), 1);
        assert_eq!(ceil(10000000000_u64, 1000000000), 10);
    }

    #[test]
    fn test_bit_reader_get_byte_offset() {
        let buffer = vec![255; 10];
        let mut bit_reader = BitReader::from(buffer);
        assert_eq!(bit_reader.get_byte_offset(), 0); // offset (0 bytes, 0 bits)
        bit_reader.get_value::<i32>(6);
        assert_eq!(bit_reader.get_byte_offset(), 1); // offset (0 bytes, 6 bits)
        bit_reader.get_value::<i32>(10);
        assert_eq!(bit_reader.get_byte_offset(), 2); // offset (0 bytes, 16 bits)
        bit_reader.get_value::<i32>(20);
        assert_eq!(bit_reader.get_byte_offset(), 5); // offset (0 bytes, 36 bits)
        bit_reader.get_value::<i32>(30);
        assert_eq!(bit_reader.get_byte_offset(), 9); // offset (8 bytes, 2 bits)
    }

    #[test]
    fn test_bit_reader_get_value() {
        let buffer = vec![255, 0];
        let mut bit_reader = BitReader::from(buffer);
        assert_eq!(bit_reader.get_value::<i32>(1), Some(1));
        assert_eq!(bit_reader.get_value::<i32>(2), Some(3));
        assert_eq!(bit_reader.get_value::<i32>(3), Some(7));
        assert_eq!(bit_reader.get_value::<i32>(4), Some(3));
    }

    #[test]
    fn test_bit_reader_skip() {
        let buffer = vec![255, 0];
        let mut bit_reader = BitReader::from(buffer);
        let skipped = bit_reader.skip(1, 1);
        assert_eq!(skipped, 1);
        assert_eq!(bit_reader.get_value::<i32>(1), Some(1));
        let skipped = bit_reader.skip(2, 2);
        assert_eq!(skipped, 2);
        assert_eq!(bit_reader.get_value::<i32>(2), Some(3));
        let skipped = bit_reader.skip(4, 1);
        assert_eq!(skipped, 4);
        assert_eq!(bit_reader.get_value::<i32>(4), Some(0));
        let skipped = bit_reader.skip(1, 1);
        assert_eq!(skipped, 0);
    }

    #[test]
    fn test_bit_reader_get_value_boundary() {
        let buffer = vec![10, 0, 0, 0, 20, 0, 30, 0, 0, 0, 40, 0];
        let mut bit_reader = BitReader::from(buffer);
        assert_eq!(bit_reader.get_value::<i64>(32), Some(10));
        assert_eq!(bit_reader.get_value::<i64>(16), Some(20));
        assert_eq!(bit_reader.get_value::<i64>(32), Some(30));
        assert_eq!(bit_reader.get_value::<i64>(16), Some(40));
    }

    #[test]
    fn test_bit_reader_skip_boundary() {
        let buffer = vec![10, 0, 0, 0, 20, 0, 30, 0, 0, 0, 40, 0];
        let mut bit_reader = BitReader::from(buffer);
        assert_eq!(bit_reader.get_value::<i64>(32), Some(10));
        assert_eq!(bit_reader.skip(1, 16), 1);
        assert_eq!(bit_reader.get_value::<i64>(32), Some(30));
        assert_eq!(bit_reader.get_value::<i64>(16), Some(40));
    }

    #[test]
    fn test_bit_reader_get_aligned() {
        // 01110101 11001011
        let buffer = Bytes::from(vec![0x75, 0xCB]);
        let mut bit_reader = BitReader::new(buffer.clone());
        assert_eq!(bit_reader.get_value::<i32>(3), Some(5));
        assert_eq!(bit_reader.get_aligned::<i32>(1), Some(203));
        assert_eq!(bit_reader.get_value::<i32>(1), None);
        bit_reader.reset(buffer.clone());
        assert_eq!(bit_reader.get_aligned::<i32>(3), None);
    }

    #[test]
    fn test_bit_reader_get_vlq_int() {
        // 10001001 00000001 11110010 10110101 00000110
        let buffer: Vec<u8> = vec![0x89, 0x01, 0xF2, 0xB5, 0x06];
        let mut bit_reader = BitReader::from(buffer);
        assert_eq!(bit_reader.get_vlq_int(), Some(137));
        assert_eq!(bit_reader.get_vlq_int(), Some(105202));
    }

    #[test]
    fn test_bit_reader_get_zigzag_vlq_int() {
        let buffer: Vec<u8> = vec![0, 1, 2, 3];
        let mut bit_reader = BitReader::from(buffer);
        assert_eq!(bit_reader.get_zigzag_vlq_int(), Some(0));
        assert_eq!(bit_reader.get_zigzag_vlq_int(), Some(-1));
        assert_eq!(bit_reader.get_zigzag_vlq_int(), Some(1));
        assert_eq!(bit_reader.get_zigzag_vlq_int(), Some(-2));
    }

    #[test]
    fn test_num_required_bits() {
        assert_eq!(num_required_bits(0), 0);
        assert_eq!(num_required_bits(1), 1);
        assert_eq!(num_required_bits(2), 2);
        assert_eq!(num_required_bits(4), 3);
        assert_eq!(num_required_bits(8), 4);
        assert_eq!(num_required_bits(10), 4);
        assert_eq!(num_required_bits(12), 4);
        assert_eq!(num_required_bits(16), 5);
        assert_eq!(num_required_bits(u64::MAX), 64);
    }

    #[test]
    fn test_get_bit() {
        // 00001101
        assert!(get_bit(&[0b00001101], 0));
        assert!(!get_bit(&[0b00001101], 1));
        assert!(get_bit(&[0b00001101], 2));
        assert!(get_bit(&[0b00001101], 3));

        // 01001001 01010010
        assert!(get_bit(&[0b01001001, 0b01010010], 0));
        assert!(!get_bit(&[0b01001001, 0b01010010], 1));
        assert!(!get_bit(&[0b01001001, 0b01010010], 2));
        assert!(get_bit(&[0b01001001, 0b01010010], 3));
        assert!(!get_bit(&[0b01001001, 0b01010010], 4));
        assert!(!get_bit(&[0b01001001, 0b01010010], 5));
        assert!(get_bit(&[0b01001001, 0b01010010], 6));
        assert!(!get_bit(&[0b01001001, 0b01010010], 7));
        assert!(!get_bit(&[0b01001001, 0b01010010], 8));
        assert!(get_bit(&[0b01001001, 0b01010010], 9));
        assert!(!get_bit(&[0b01001001, 0b01010010], 10));
        assert!(!get_bit(&[0b01001001, 0b01010010], 11));
        assert!(get_bit(&[0b01001001, 0b01010010], 12));
        assert!(!get_bit(&[0b01001001, 0b01010010], 13));
        assert!(get_bit(&[0b01001001, 0b01010010], 14));
        assert!(!get_bit(&[0b01001001, 0b01010010], 15));
    }

    #[test]
    fn test_skip() {
        let mut writer = BitWriter::new(5);
        let old_offset = writer.skip(1);
        writer.put_aligned(42, 4);
        writer.put_aligned_offset(0x10, 1, old_offset);
        let result = writer.consume();
        assert_eq!(result.as_ref(), [0x10, 42, 0, 0, 0]);

        writer = BitWriter::new(4);
        let result = writer.skip(5);
        assert_eq!(result, 0);
        assert_eq!(writer.buffer(), &[0; 5])
    }

    #[test]
    fn test_get_next_byte_ptr() {
        let mut writer = BitWriter::new(5);
        {
            let first_byte = writer.get_next_byte_ptr(1);
            first_byte[0] = 0x10;
        }
        writer.put_aligned(42, 4);
        let result = writer.consume();
        assert_eq!(result.as_ref(), [0x10, 42, 0, 0, 0]);
    }

    #[test]
    fn test_consume_flush_buffer() {
        let mut writer1 = BitWriter::new(3);
        let mut writer2 = BitWriter::new(3);
        for i in 1..10 {
            writer1.put_value(i, 4);
            writer2.put_value(i, 4);
        }
        let res1 = writer1.flush_buffer();
        let res2 = writer2.consume();
        assert_eq!(res1, &res2[..]);
    }

    #[test]
    fn test_put_get_bool() {
        let len = 8;
        let mut writer = BitWriter::new(len);

        for i in 0..8 {
            writer.put_value(i % 2, 1);
        }

        writer.flush();
        {
            let buffer = writer.buffer();
            assert_eq!(buffer[0], 0b10101010);
        }

        // Write 00110011
        for i in 0..8 {
            match i {
                0 | 1 | 4 | 5 => writer.put_value(false as u64, 1),
                _ => writer.put_value(true as u64, 1),
            }
        }
        writer.flush();
        {
            let buffer = writer.buffer();
            assert_eq!(buffer[0], 0b10101010);
            assert_eq!(buffer[1], 0b11001100);
        }

        let mut reader = BitReader::from(writer.consume());

        for i in 0..8 {
            let val = reader
                .get_value::<u8>(1)
                .expect("get_value() should return OK");
            assert_eq!(val, i % 2);
        }

        for i in 0..8 {
            let val = reader
                .get_value::<bool>(1)
                .expect("get_value() should return OK");
            match i {
                0 | 1 | 4 | 5 => assert!(!val),
                _ => assert!(val),
            }
        }
    }

    #[test]
    fn test_put_value_roundtrip() {
        test_put_value_rand_numbers(32, 2);
        test_put_value_rand_numbers(32, 3);
        test_put_value_rand_numbers(32, 4);
        test_put_value_rand_numbers(32, 5);
        test_put_value_rand_numbers(32, 6);
        test_put_value_rand_numbers(32, 7);
        test_put_value_rand_numbers(32, 8);
        test_put_value_rand_numbers(64, 16);
        test_put_value_rand_numbers(64, 24);
        test_put_value_rand_numbers(64, 32);
    }

    fn test_put_value_rand_numbers(total: usize, num_bits: usize) {
        assert!(num_bits < 64);
        let num_bytes = ceil(num_bits, 8);
        let mut writer = BitWriter::new(num_bytes * total);
        let values: Vec<u64> = random_numbers::<u64>(total)
            .iter()
            .map(|v| v & ((1 << num_bits) - 1))
            .collect();
        (0..total).for_each(|i| writer.put_value(values[i], num_bits));

        let mut reader = BitReader::from(writer.consume());
        (0..total).for_each(|i| {
            let v = reader
                .get_value::<u64>(num_bits)
                .expect("get_value() should return OK");
            assert_eq!(
                v, values[i],
                "[{}]: expected {} but got {}",
                i, values[i], v
            );
        });
    }

    #[test]
    fn test_get_batch() {
        const SIZE: &[usize] = &[1, 31, 32, 33, 128, 129];
        for s in SIZE {
            for i in 0..=64 {
                match i {
                    0..=8 => test_get_batch_helper::<u8>(*s, i),
                    9..=16 => test_get_batch_helper::<u16>(*s, i),
                    17..=32 => test_get_batch_helper::<u32>(*s, i),
                    _ => test_get_batch_helper::<u64>(*s, i),
                }
            }
        }
    }

    fn test_get_batch_helper<T>(total: usize, num_bits: usize)
    where
        T: FromBytes + Default + Clone + Debug + Eq,
    {
        assert!(num_bits <= 64);
        let num_bytes = ceil(num_bits, 8);
        let mut writer = BitWriter::new(num_bytes * total);

        let mask = match num_bits {
            64 => u64::MAX,
            _ => (1 << num_bits) - 1,
        };

        let values: Vec<u64> = random_numbers::<u64>(total)
            .iter()
            .map(|v| v & mask)
            .collect();

        // Generic values used to check against actual values read from `get_batch`.
        let expected_values: Vec<T> = values
            .iter()
            .map(|v| T::try_from_le_slice(v.as_bytes()).unwrap())
            .collect();

        (0..total).for_each(|i| writer.put_value(values[i], num_bits));

        let buf = writer.consume();
        let mut reader = BitReader::from(buf);
        let mut batch = vec![T::default(); values.len()];
        let values_read = reader.get_batch::<T>(&mut batch, num_bits);
        assert_eq!(values_read, values.len());
        for i in 0..batch.len() {
            assert_eq!(
                batch[i],
                expected_values[i],
                "max_num_bits = {}, num_bits = {}, index = {}",
                size_of::<T>() * 8,
                num_bits,
                i
            );
        }
    }

    #[test]
    fn test_put_aligned_roundtrip() {
        test_put_aligned_rand_numbers::<u8>(4, 3);
        test_put_aligned_rand_numbers::<u8>(16, 5);
        test_put_aligned_rand_numbers::<i16>(32, 7);
        test_put_aligned_rand_numbers::<i16>(32, 9);
        test_put_aligned_rand_numbers::<i32>(32, 11);
        test_put_aligned_rand_numbers::<i32>(32, 13);
        test_put_aligned_rand_numbers::<i64>(32, 17);
        test_put_aligned_rand_numbers::<i64>(32, 23);
    }

    fn test_put_aligned_rand_numbers<T>(total: usize, num_bits: usize)
    where
        T: Copy + FromBytes + AsBytes + Debug + PartialEq,
        Standard: Distribution<T>,
    {
        assert!(num_bits <= 32);
        assert!(total % 2 == 0);

        let aligned_value_byte_width = std::mem::size_of::<T>();
        let value_byte_width = ceil(num_bits, 8);
        let mut writer =
            BitWriter::new((total / 2) * (aligned_value_byte_width + value_byte_width));
        let values: Vec<u32> = random_numbers::<u32>(total / 2)
            .iter()
            .map(|v| v & ((1 << num_bits) - 1))
            .collect();
        let aligned_values = random_numbers::<T>(total / 2);

        for i in 0..total {
            let j = i / 2;
            if i % 2 == 0 {
                writer.put_value(values[j] as u64, num_bits);
            } else {
                writer.put_aligned::<T>(aligned_values[j], aligned_value_byte_width)
            }
        }

        let mut reader = BitReader::from(writer.consume());
        for i in 0..total {
            let j = i / 2;
            if i % 2 == 0 {
                let v = reader
                    .get_value::<u64>(num_bits)
                    .expect("get_value() should return OK");
                assert_eq!(
                    v, values[j] as u64,
                    "[{}]: expected {} but got {}",
                    i, values[j], v
                );
            } else {
                let v = reader
                    .get_aligned::<T>(aligned_value_byte_width)
                    .expect("get_aligned() should return OK");
                assert_eq!(
                    v, aligned_values[j],
                    "[{}]: expected {:?} but got {:?}",
                    i, aligned_values[j], v
                );
            }
        }
    }

    #[test]
    fn test_put_vlq_int() {
        let total = 64;
        let mut writer = BitWriter::new(total * 32);
        let values = random_numbers::<u32>(total);
        (0..total).for_each(|i| writer.put_vlq_int(values[i] as u64));

        let mut reader = BitReader::from(writer.consume());
        (0..total).for_each(|i| {
            let v = reader
                .get_vlq_int()
                .expect("get_vlq_int() should return OK");
            assert_eq!(
                v as u32, values[i],
                "[{}]: expected {} but got {}",
                i, values[i], v
            );
        });
    }

    #[test]
    fn test_put_zigzag_vlq_int() {
        let total = 64;
        let mut writer = BitWriter::new(total * 32);
        let values = random_numbers::<i32>(total);
        (0..total).for_each(|i| writer.put_zigzag_vlq_int(values[i] as i64));

        let mut reader = BitReader::from(writer.consume());
        (0..total).for_each(|i| {
            let v = reader
                .get_zigzag_vlq_int()
                .expect("get_zigzag_vlq_int() should return OK");
            assert_eq!(
                v as i32, values[i],
                "[{}]: expected {} but got {}",
                i, values[i], v
            );
        });
    }

    #[test]
    fn test_get_batch_zero_extend() {
        let to_read = vec![0xFF; 4];
        let mut reader = BitReader::from(to_read);

        // Create a non-zeroed output buffer
        let mut output = [u64::MAX; 32];
        reader.get_batch(&mut output, 1);

        for v in output {
            // Values should be read correctly
            assert_eq!(v, 1);
        }
    }
}