array_concat/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#![no_std]

/// Computes total size of all provided const arrays.
#[macro_export]
macro_rules! concat_arrays_size {
    ($( $array:expr ),*) => {{
        0 $(+ $array.len())*
    }};
}

/// Concatenates provided arrays.
#[macro_export]
macro_rules! concat_arrays {
    ($( $array:expr ),*) => ({
        #[repr(C)]
        struct ArrayConcatDecomposed<T, A, B>(core::mem::ManuallyDrop<[T; 0]>, core::mem::ManuallyDrop<A>, core::mem::ManuallyDrop<B>);

        impl<T> ArrayConcatDecomposed<T, [T; 0], [T; 0]> {
            #[inline(always)]
            const fn default() -> Self {
                Self::new(core::mem::ManuallyDrop::new([]), [])
            }
        }
        impl<T, A, B> ArrayConcatDecomposed<T, A, B> {
            #[inline(always)]
            const fn new(a: core::mem::ManuallyDrop<A>, b: B) -> Self {
                Self(core::mem::ManuallyDrop::new([]), a, core::mem::ManuallyDrop::new(b))
            }
            #[inline(always)]
            const fn concat<const N: usize>(self, v: [T; N]) -> ArrayConcatDecomposed<T, A, ArrayConcatDecomposed<T, B, [T; N]>> {
                ArrayConcatDecomposed::new(self.1, ArrayConcatDecomposed::new(self.2, v))
            }
        }

        #[repr(C)]
        union ArrayConcatComposed<T, A, B, const N: usize> {
            full: core::mem::ManuallyDrop<[T; N]>,
            decomposed: core::mem::ManuallyDrop<ArrayConcatDecomposed<T, A, B>>,
        }

        impl<T, A, B, const N: usize> ArrayConcatComposed<T, A, B, N> {
            const PANIC: bool = $crate::_const_assert_same_size::<[T; N], Self>();

            #[inline(always)]
            const fn have_same_size(&self) -> bool {
                Self::PANIC
            }
        }

        let composed = ArrayConcatComposed {
            decomposed: core::mem::ManuallyDrop::new(
                ArrayConcatDecomposed::default()$(.concat($array))*,
            )
        };

        // Sanity check that composed's two fields are the same size
        composed.have_same_size();

        // SAFETY: Sizes of both fields in composed are the same so this assignment should be sound
        core::mem::ManuallyDrop::into_inner(unsafe { composed.full })
    });
}

/// Flatten a nested tuple based on the number of nestings.
///
/// This is an implementation detail of the crate and should only be used by the
/// macros in this crate.
#[macro_export]
#[doc(hidden)]
macro_rules! flatten_split {
    (($($tail:tt)*), $head:expr, $pop:expr) => {
        ($head, $($tail)*)
    };
    // We can dramatically reduce macro recursion by adding an additional_case
    (($($tail:tt)*), $head:expr, $pop1:expr, $pop2:expr$(, $remaining:expr)+) => {
        $crate::flatten_split!(
            ($head.1.2, $head.2, $($tail)*),
            $head.1.1$(,
            $remaining)+
        )
    };
    (($($tail:tt)*), $head:expr, $pop:expr$(, $remaining:expr)+) => {
        $crate::flatten_split!(
            ($head.2, $($tail)*),
            $head.1$(,
            $remaining)+
        )
    };
}

/// Split the provided array into the specified sizes.
#[macro_export]
macro_rules! split_array {
    ($array:expr, $size:expr) => ($array);
    ($array:expr, $size0:expr, $($sizes:expr),+) => ({
        struct ArrayConcatDecomposedMarkerBase<T, A>(core::marker::PhantomData<(T, A)>);
        struct ArrayConcatDecomposedMarker<T, A, B>(core::marker::PhantomData<(T, A, B)>);

        #[repr(C)]
        struct ArrayConcatDecomposed<T, A, B>([T; 0], A, B);

        trait Storage {
            type Data;
        }
        impl<T, const A: usize> Storage for [T; A] {
            type Data = [T; A];
        }

        impl<T> ArrayConcatDecomposedMarkerBase<T, ()> {
            #[inline(always)]
            const fn default(_: &[T]) -> Self {
                Self(core::marker::PhantomData)
            }
            #[inline(always)]
            const fn concat<const N: usize>(self, _: [(); N]) -> ArrayConcatDecomposedMarkerBase<T, [T; N]> {
                ArrayConcatDecomposedMarkerBase(core::marker::PhantomData)
            }
        }
        impl<T, const A: usize> ArrayConcatDecomposedMarkerBase<T, [T; A]> {
            #[inline(always)]
            const fn concat<const B: usize>(self, _: [(); B]) -> ArrayConcatDecomposedMarker<T, [T; A], [T; B]> {
                ArrayConcatDecomposedMarker(core::marker::PhantomData)
            }
        }

        impl<T, A: Storage, B: Storage> Storage for ArrayConcatDecomposedMarker<T, A, B> {
            type Data = ArrayConcatDecomposed<T, A::Data, B::Data>;
        }

        impl<T, A: Storage, B: Storage> ArrayConcatDecomposedMarker<T, A, B> {
            #[inline(always)]
            const fn concat<const C: usize>(self, _: [(); C]) -> ArrayConcatDecomposedMarker<T, ArrayConcatDecomposedMarker<T, A, B>, [T; C]> {
                ArrayConcatDecomposedMarker(core::marker::PhantomData)
            }
            #[inline(always)]
            const fn make<const N: usize>(self, full: [T; N]) -> ArrayConcatDecomposed<T, A::Data, B::Data> {
                #[repr(C)]
                union ArrayConcatComposed<T, A, B, const N: usize> {
                    full: core::mem::ManuallyDrop<[T; N]>,
                    decomposed: core::mem::ManuallyDrop<ArrayConcatDecomposed<T, A, B>>,
                }

                impl<T, A, B, const N: usize> ArrayConcatComposed<T, A, B, N> {
                    const PANIC: bool = $crate::_const_assert_same_size::<[T; N], Self>();

                    #[inline(always)]
                    const fn have_same_size(&self) -> bool {
                        Self::PANIC
                    }
                }

                let composed = ArrayConcatComposed::<T, A::Data, B::Data, N> {
                    full: core::mem::ManuallyDrop::new(full)
                };

                // Sanity check that composed's two fields are the same size
                composed.have_same_size();

                // SAFETY: Sizes of both fields in composed are the same so this assignment should be sound
                core::mem::ManuallyDrop::into_inner(unsafe { composed.decomposed })
            }
        }


        let array = $array;
        let decomposed = ArrayConcatDecomposedMarkerBase::default(&array)
            .concat([(); $size0])
            $(.concat([(); $sizes]))
            *.make(array);

        $crate::flatten_split!((), decomposed, $size0$(, $sizes)*)
    });
}

/// Assert at compile time that these types have the same size.
///
/// This is an implementation detail of the crate and should only be used by the
/// macros in this crate.
#[inline(always)]
#[doc(hidden)]
pub const fn _const_assert_same_size<A, B>() -> bool {
    let have_same_size = core::mem::size_of::<A>() == core::mem::size_of::<B>();

    #[cfg(feature = "const_panic")]
    {
        have_same_size || panic!("Size Mismatch")
    }

    #[cfg(not(feature = "const_panic"))]
    {
        !["Size mismatch"][!have_same_size as usize].is_empty()
    }
}

#[allow(dead_code)]
#[cfg(test)]
mod tests {
    use super::*;

    const A: [u32; 3] = [1, 2, 3];
    const B: [u32; 3] = [4, 5, 6];
    const C: [u32; 2] = [4, 5];

    #[test]
    fn test_simple_concat() {
        let d = concat_arrays!(A, B);
        const D: [u32; concat_arrays_size!(A, B)] = concat_arrays!(A, B);
        assert_eq!([1, 2, 3, 4, 5, 6], D);
        assert_eq!([1, 2, 3, 4, 5, 6], d);
    }

    #[test]
    fn test_simple_split() {
        let d: [u32; 6] = concat_arrays!(A, B);
        const D: [u32; 6] = concat_arrays!(A, B);

        const A_B: ([u32; 3], [u32; 3]) = split_array!(D, A.len(), B.len());

        assert_eq!((A, B), A_B);
        assert_eq!((A, B), split_array!(d, 3, 3));
        assert_eq!(([1], [2, 3, 4, 5, 6]), split_array!(d, 1, 5));
        assert_eq!(([1, 2, 3, 4, 5], [6]), split_array!(d, 5, 1));
        assert_eq!(([1], [2, 3, 4, 5], [6]), split_array!(d, 1, 4, 1));
        assert_eq!(([1], [2, 3], [4, 5, 6]), split_array!(d, 1, 2, 3));
        assert_eq!(
            ([1], [2], [3], [4], [5], [6]),
            split_array!(d, 1, 1, 1, 1, 1, 1)
        );
    }

    #[test]
    fn test_different_sizes() {
        let e = concat_arrays!(A, C);
        const E: [u32; concat_arrays_size!(A, C)] = concat_arrays!(A, C);
        assert_eq!([1, 2, 3, 4, 5], E);
        assert_eq!([1, 2, 3, 4, 5], e);
    }

    #[test]
    fn test_literal_arrays() {
        let f = concat_arrays!(A, C, [6, 7, 8]);
        const F: [u32; concat_arrays_size!(A, C, [6, 7, 8])] = concat_arrays!(A, C, [6, 7, 8]);
        assert_eq!([1, 2, 3, 4, 5, 6, 7, 8], F);
        assert_eq!([1, 2, 3, 4, 5, 6, 7, 8], f);
    }

    #[test]
    fn test_non_const_arrays() {
        let a = [1, 2, 3];
        let c = [4, 5];
        let f = concat_arrays!(a, c, [6, 7, 8]);
        assert_eq!([1, 2, 3, 4, 5, 6, 7, 8], f);
    }
}