parquet/encodings/encoding/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Contains all supported encoders for Parquet.

use std::{cmp, marker::PhantomData};

use crate::basic::*;
use crate::data_type::private::ParquetValueType;
use crate::data_type::*;
use crate::encodings::rle::RleEncoder;
use crate::errors::{ParquetError, Result};
use crate::schema::types::ColumnDescPtr;
use crate::util::bit_util::{num_required_bits, BitWriter};

use byte_stream_split_encoder::{ByteStreamSplitEncoder, VariableWidthByteStreamSplitEncoder};
use bytes::Bytes;
pub use dict_encoder::DictEncoder;

mod byte_stream_split_encoder;
mod dict_encoder;

// ----------------------------------------------------------------------
// Encoders

/// An Parquet encoder for the data type `T`.
///
/// Currently this allocates internal buffers for the encoded values. After done putting
/// values, caller should call `flush_buffer()` to get an immutable buffer pointer.
pub trait Encoder<T: DataType>: Send {
    /// Encodes data from `values`.
    fn put(&mut self, values: &[T::T]) -> Result<()>;

    /// Encodes data from `values`, which contains spaces for null values, that is
    /// identified by `valid_bits`.
    ///
    /// Returns the number of non-null values encoded.
    #[cfg(test)]
    fn put_spaced(&mut self, values: &[T::T], valid_bits: &[u8]) -> Result<usize> {
        let num_values = values.len();
        let mut buffer = Vec::with_capacity(num_values);
        // TODO: this is pretty inefficient. Revisit in future.
        for (i, item) in values.iter().enumerate().take(num_values) {
            if crate::util::bit_util::get_bit(valid_bits, i) {
                buffer.push(item.clone());
            }
        }
        self.put(&buffer[..])?;
        Ok(buffer.len())
    }

    /// Returns the encoding type of this encoder.
    fn encoding(&self) -> Encoding;

    /// Returns an estimate of the encoded data, in bytes.
    /// Method call must be O(1).
    fn estimated_data_encoded_size(&self) -> usize;

    /// Returns an estimate of the memory use of this encoder, in bytes
    fn estimated_memory_size(&self) -> usize;

    /// Flushes the underlying byte buffer that's being processed by this encoder, and
    /// return the immutable copy of it. This will also reset the internal state.
    fn flush_buffer(&mut self) -> Result<Bytes>;
}

/// Gets a encoder for the particular data type `T` and encoding `encoding`. Memory usage
/// for the encoder instance is tracked by `mem_tracker`.
pub fn get_encoder<T: DataType>(
    encoding: Encoding,
    descr: &ColumnDescPtr,
) -> Result<Box<dyn Encoder<T>>> {
    let encoder: Box<dyn Encoder<T>> = match encoding {
        Encoding::PLAIN => Box::new(PlainEncoder::new()),
        Encoding::RLE_DICTIONARY | Encoding::PLAIN_DICTIONARY => {
            return Err(general_err!(
                "Cannot initialize this encoding through this function"
            ));
        }
        Encoding::RLE => Box::new(RleValueEncoder::new()),
        Encoding::DELTA_BINARY_PACKED => Box::new(DeltaBitPackEncoder::new()),
        Encoding::DELTA_LENGTH_BYTE_ARRAY => Box::new(DeltaLengthByteArrayEncoder::new()),
        Encoding::DELTA_BYTE_ARRAY => Box::new(DeltaByteArrayEncoder::new()),
        Encoding::BYTE_STREAM_SPLIT => match T::get_physical_type() {
            Type::FIXED_LEN_BYTE_ARRAY => Box::new(VariableWidthByteStreamSplitEncoder::new(
                descr.type_length(),
            )),
            _ => Box::new(ByteStreamSplitEncoder::new()),
        },
        e => return Err(nyi_err!("Encoding {} is not supported", e)),
    };
    Ok(encoder)
}

// ----------------------------------------------------------------------
// Plain encoding

/// Plain encoding that supports all types.
/// Values are encoded back to back.
/// The plain encoding is used whenever a more efficient encoding can not be used.
/// It stores the data in the following format:
/// - BOOLEAN - 1 bit per value, 0 is false; 1 is true.
/// - INT32 - 4 bytes per value, stored as little-endian.
/// - INT64 - 8 bytes per value, stored as little-endian.
/// - FLOAT - 4 bytes per value, stored as IEEE little-endian.
/// - DOUBLE - 8 bytes per value, stored as IEEE little-endian.
/// - BYTE_ARRAY - 4 byte length stored as little endian, followed by bytes.
/// - FIXED_LEN_BYTE_ARRAY - just the bytes are stored.
pub struct PlainEncoder<T: DataType> {
    buffer: Vec<u8>,
    bit_writer: BitWriter,
    _phantom: PhantomData<T>,
}

impl<T: DataType> Default for PlainEncoder<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: DataType> PlainEncoder<T> {
    /// Creates new plain encoder.
    pub fn new() -> Self {
        Self {
            buffer: vec![],
            bit_writer: BitWriter::new(256),
            _phantom: PhantomData,
        }
    }
}

impl<T: DataType> Encoder<T> for PlainEncoder<T> {
    // Performance Note:
    // As far as can be seen these functions are rarely called and as such we can hint to the
    // compiler that they dont need to be folded into hot locations in the final output.
    #[cold]
    fn encoding(&self) -> Encoding {
        Encoding::PLAIN
    }

    fn estimated_data_encoded_size(&self) -> usize {
        self.buffer.len() + self.bit_writer.bytes_written()
    }

    #[inline]
    fn flush_buffer(&mut self) -> Result<Bytes> {
        self.buffer
            .extend_from_slice(self.bit_writer.flush_buffer());
        self.bit_writer.clear();
        Ok(std::mem::take(&mut self.buffer).into())
    }

    #[inline]
    fn put(&mut self, values: &[T::T]) -> Result<()> {
        T::T::encode(values, &mut self.buffer, &mut self.bit_writer)?;
        Ok(())
    }

    /// Return the estimated memory size of this encoder.
    fn estimated_memory_size(&self) -> usize {
        self.buffer.capacity() * std::mem::size_of::<u8>() + self.bit_writer.estimated_memory_size()
    }
}

// ----------------------------------------------------------------------
// RLE encoding

const DEFAULT_RLE_BUFFER_LEN: usize = 1024;

/// RLE/Bit-Packing hybrid encoding for values.
/// Currently is used only for data pages v2 and supports boolean types.
pub struct RleValueEncoder<T: DataType> {
    // Buffer with raw values that we collect,
    // when flushing buffer they are encoded using RLE encoder
    encoder: Option<RleEncoder>,
    _phantom: PhantomData<T>,
}

impl<T: DataType> Default for RleValueEncoder<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: DataType> RleValueEncoder<T> {
    /// Creates new rle value encoder.
    pub fn new() -> Self {
        Self {
            encoder: None,
            _phantom: PhantomData,
        }
    }
}

impl<T: DataType> Encoder<T> for RleValueEncoder<T> {
    #[inline]
    fn put(&mut self, values: &[T::T]) -> Result<()> {
        ensure_phys_ty!(Type::BOOLEAN, "RleValueEncoder only supports BoolType");

        let rle_encoder = self.encoder.get_or_insert_with(|| {
            let mut buffer = Vec::with_capacity(DEFAULT_RLE_BUFFER_LEN);
            // Reserve space for length
            buffer.extend_from_slice(&[0; 4]);
            RleEncoder::new_from_buf(1, buffer)
        });

        for value in values {
            let value = value.as_u64()?;
            rle_encoder.put(value)
        }
        Ok(())
    }

    // Performance Note:
    // As far as can be seen these functions are rarely called and as such we can hint to the
    // compiler that they dont need to be folded into hot locations in the final output.
    #[cold]
    fn encoding(&self) -> Encoding {
        Encoding::RLE
    }

    #[inline]
    fn estimated_data_encoded_size(&self) -> usize {
        match self.encoder {
            Some(ref enc) => enc.len(),
            None => 0,
        }
    }

    #[inline]
    fn flush_buffer(&mut self) -> Result<Bytes> {
        ensure_phys_ty!(Type::BOOLEAN, "RleValueEncoder only supports BoolType");
        let rle_encoder = self
            .encoder
            .take()
            .expect("RLE value encoder is not initialized");

        // Flush all encoder buffers and raw values
        let mut buf = rle_encoder.consume();
        assert!(buf.len() >= 4, "should have had padding inserted");

        // Note that buf does not have any offset, all data is encoded bytes
        let len = (buf.len() - 4) as i32;
        buf[..4].copy_from_slice(&len.to_le_bytes());

        Ok(buf.into())
    }

    /// return the estimated memory size of this encoder.
    fn estimated_memory_size(&self) -> usize {
        self.encoder
            .as_ref()
            .map_or(0, |enc| enc.estimated_memory_size())
    }
}

// ----------------------------------------------------------------------
// DELTA_BINARY_PACKED encoding

const MAX_PAGE_HEADER_WRITER_SIZE: usize = 32;
const DEFAULT_BIT_WRITER_SIZE: usize = 1024 * 1024;
const DEFAULT_NUM_MINI_BLOCKS: usize = 4;

/// Delta bit packed encoder.
/// Consists of a header followed by blocks of delta encoded values binary packed.
///
/// Delta-binary-packing:
/// ```shell
///   [page-header] [block 1], [block 2], ... [block N]
/// ```
///
/// Each page header consists of:
/// ```shell
///   [block size] [number of miniblocks in a block] [total value count] [first value]
/// ```
///
/// Each block consists of:
/// ```shell
///   [min delta] [list of bitwidths of miniblocks] [miniblocks]
/// ```
///
/// Current implementation writes values in `put` method, multiple calls to `put` to
/// existing block or start new block if block size is exceeded. Calling `flush_buffer`
/// writes out all data and resets internal state, including page header.
///
/// Supports only INT32 and INT64.
pub struct DeltaBitPackEncoder<T: DataType> {
    page_header_writer: BitWriter,
    bit_writer: BitWriter,
    total_values: usize,
    first_value: i64,
    current_value: i64,
    block_size: usize,
    mini_block_size: usize,
    num_mini_blocks: usize,
    values_in_block: usize,
    deltas: Vec<i64>,
    _phantom: PhantomData<T>,
}

impl<T: DataType> Default for DeltaBitPackEncoder<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: DataType> DeltaBitPackEncoder<T> {
    /// Creates new delta bit packed encoder.
    pub fn new() -> Self {
        Self::assert_supported_type();

        // Size miniblocks so that they can be efficiently decoded
        let mini_block_size = match T::T::PHYSICAL_TYPE {
            Type::INT32 => 32,
            Type::INT64 => 64,
            _ => unreachable!(),
        };

        let num_mini_blocks = DEFAULT_NUM_MINI_BLOCKS;
        let block_size = mini_block_size * num_mini_blocks;
        assert_eq!(block_size % 128, 0);

        DeltaBitPackEncoder {
            page_header_writer: BitWriter::new(MAX_PAGE_HEADER_WRITER_SIZE),
            bit_writer: BitWriter::new(DEFAULT_BIT_WRITER_SIZE),
            total_values: 0,
            first_value: 0,
            current_value: 0, // current value to keep adding deltas
            block_size,       // can write fewer values than block size for last block
            mini_block_size,
            num_mini_blocks,
            values_in_block: 0, // will be at most block_size
            deltas: vec![0; block_size],
            _phantom: PhantomData,
        }
    }

    /// Writes page header for blocks, this method is invoked when we are done encoding
    /// values. It is also okay to encode when no values have been provided
    fn write_page_header(&mut self) {
        // We ignore the result of each 'put' operation, because
        // MAX_PAGE_HEADER_WRITER_SIZE is chosen to fit all header values and
        // guarantees that writes will not fail.

        // Write the size of each block
        self.page_header_writer.put_vlq_int(self.block_size as u64);
        // Write the number of mini blocks
        self.page_header_writer
            .put_vlq_int(self.num_mini_blocks as u64);
        // Write the number of all values (including non-encoded first value)
        self.page_header_writer
            .put_vlq_int(self.total_values as u64);
        // Write first value
        self.page_header_writer.put_zigzag_vlq_int(self.first_value);
    }

    // Write current delta buffer (<= 'block size' values) into bit writer
    #[inline(never)]
    fn flush_block_values(&mut self) -> Result<()> {
        if self.values_in_block == 0 {
            return Ok(());
        }

        let mut min_delta = i64::MAX;
        for i in 0..self.values_in_block {
            min_delta = cmp::min(min_delta, self.deltas[i]);
        }

        // Write min delta
        self.bit_writer.put_zigzag_vlq_int(min_delta);

        // Slice to store bit width for each mini block
        let offset = self.bit_writer.skip(self.num_mini_blocks);

        for i in 0..self.num_mini_blocks {
            // Find how many values we need to encode - either block size or whatever
            // values left
            let n = cmp::min(self.mini_block_size, self.values_in_block);
            if n == 0 {
                // Decoders should be agnostic to the padding value, we therefore use 0xFF
                // when running tests. However, not all implementations may handle this correctly
                // so pad with 0 when not running tests
                let pad_value = cfg!(test).then(|| 0xFF).unwrap_or(0);
                for j in i..self.num_mini_blocks {
                    self.bit_writer.write_at(offset + j, pad_value);
                }
                break;
            }

            // Compute the max delta in current mini block
            let mut max_delta = i64::MIN;
            for j in 0..n {
                max_delta = cmp::max(max_delta, self.deltas[i * self.mini_block_size + j]);
            }

            // Compute bit width to store (max_delta - min_delta)
            let bit_width = num_required_bits(self.subtract_u64(max_delta, min_delta)) as usize;
            self.bit_writer.write_at(offset + i, bit_width as u8);

            // Encode values in current mini block using min_delta and bit_width
            for j in 0..n {
                let packed_value =
                    self.subtract_u64(self.deltas[i * self.mini_block_size + j], min_delta);
                self.bit_writer.put_value(packed_value, bit_width);
            }

            // Pad the last block (n < mini_block_size)
            for _ in n..self.mini_block_size {
                self.bit_writer.put_value(0, bit_width);
            }

            self.values_in_block -= n;
        }

        assert_eq!(
            self.values_in_block, 0,
            "Expected 0 values in block, found {}",
            self.values_in_block
        );
        Ok(())
    }
}

// Implementation is shared between Int32Type and Int64Type,
// see `DeltaBitPackEncoderConversion` below for specifics.
impl<T: DataType> Encoder<T> for DeltaBitPackEncoder<T> {
    fn put(&mut self, values: &[T::T]) -> Result<()> {
        if values.is_empty() {
            return Ok(());
        }

        // Define values to encode, initialize state
        let mut idx = if self.total_values == 0 {
            self.first_value = self.as_i64(values, 0);
            self.current_value = self.first_value;
            1
        } else {
            0
        };
        // Add all values (including first value)
        self.total_values += values.len();

        // Write block
        while idx < values.len() {
            let value = self.as_i64(values, idx);
            self.deltas[self.values_in_block] = self.subtract(value, self.current_value);
            self.current_value = value;
            idx += 1;
            self.values_in_block += 1;
            if self.values_in_block == self.block_size {
                self.flush_block_values()?;
            }
        }
        Ok(())
    }

    // Performance Note:
    // As far as can be seen these functions are rarely called and as such we can hint to the
    // compiler that they dont need to be folded into hot locations in the final output.
    #[cold]
    fn encoding(&self) -> Encoding {
        Encoding::DELTA_BINARY_PACKED
    }

    fn estimated_data_encoded_size(&self) -> usize {
        self.bit_writer.bytes_written()
    }

    fn flush_buffer(&mut self) -> Result<Bytes> {
        // Write remaining values
        self.flush_block_values()?;
        // Write page header with total values
        self.write_page_header();

        let mut buffer = Vec::new();
        buffer.extend_from_slice(self.page_header_writer.flush_buffer());
        buffer.extend_from_slice(self.bit_writer.flush_buffer());

        // Reset state
        self.page_header_writer.clear();
        self.bit_writer.clear();
        self.total_values = 0;
        self.first_value = 0;
        self.current_value = 0;
        self.values_in_block = 0;

        Ok(buffer.into())
    }

    /// return the estimated memory size of this encoder.
    fn estimated_memory_size(&self) -> usize {
        self.page_header_writer.estimated_memory_size()
            + self.bit_writer.estimated_memory_size()
            + self.deltas.capacity() * std::mem::size_of::<i64>()
            + std::mem::size_of::<Self>()
    }
}

/// Helper trait to define specific conversions and subtractions when computing deltas
trait DeltaBitPackEncoderConversion<T: DataType> {
    // Method should panic if type is not supported, otherwise no-op
    fn assert_supported_type();

    fn as_i64(&self, values: &[T::T], index: usize) -> i64;

    fn subtract(&self, left: i64, right: i64) -> i64;

    fn subtract_u64(&self, left: i64, right: i64) -> u64;
}

impl<T: DataType> DeltaBitPackEncoderConversion<T> for DeltaBitPackEncoder<T> {
    #[inline]
    fn assert_supported_type() {
        ensure_phys_ty!(
            Type::INT32 | Type::INT64,
            "DeltaBitPackDecoder only supports Int32Type and Int64Type"
        );
    }

    #[inline]
    fn as_i64(&self, values: &[T::T], index: usize) -> i64 {
        values[index]
            .as_i64()
            .expect("DeltaBitPackDecoder only supports Int32Type and Int64Type")
    }

    #[inline]
    fn subtract(&self, left: i64, right: i64) -> i64 {
        // It is okay for values to overflow, wrapping_sub wrapping around at the boundary
        match T::get_physical_type() {
            Type::INT32 => (left as i32).wrapping_sub(right as i32) as i64,
            Type::INT64 => left.wrapping_sub(right),
            _ => panic!("DeltaBitPackDecoder only supports Int32Type and Int64Type"),
        }
    }

    #[inline]
    fn subtract_u64(&self, left: i64, right: i64) -> u64 {
        match T::get_physical_type() {
            // Conversion of i32 -> u32 -> u64 is to avoid non-zero left most bytes in int repr
            Type::INT32 => (left as i32).wrapping_sub(right as i32) as u32 as u64,
            Type::INT64 => left.wrapping_sub(right) as u64,
            _ => panic!("DeltaBitPackDecoder only supports Int32Type and Int64Type"),
        }
    }
}

// ----------------------------------------------------------------------
// DELTA_LENGTH_BYTE_ARRAY encoding

/// Encoding for byte arrays to separate the length values and the data.
/// The lengths are encoded using DELTA_BINARY_PACKED encoding, data is
/// stored as raw bytes.
pub struct DeltaLengthByteArrayEncoder<T: DataType> {
    // length encoder
    len_encoder: DeltaBitPackEncoder<Int32Type>,
    // byte array data
    data: Vec<ByteArray>,
    // data size in bytes of encoded values
    encoded_size: usize,
    _phantom: PhantomData<T>,
}

impl<T: DataType> Default for DeltaLengthByteArrayEncoder<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: DataType> DeltaLengthByteArrayEncoder<T> {
    /// Creates new delta length byte array encoder.
    pub fn new() -> Self {
        Self {
            len_encoder: DeltaBitPackEncoder::new(),
            data: vec![],
            encoded_size: 0,
            _phantom: PhantomData,
        }
    }
}

impl<T: DataType> Encoder<T> for DeltaLengthByteArrayEncoder<T> {
    fn put(&mut self, values: &[T::T]) -> Result<()> {
        ensure_phys_ty!(
            Type::BYTE_ARRAY | Type::FIXED_LEN_BYTE_ARRAY,
            "DeltaLengthByteArrayEncoder only supports ByteArrayType"
        );

        let val_it = || {
            values
                .iter()
                .map(|x| x.as_any().downcast_ref::<ByteArray>().unwrap())
        };

        let lengths: Vec<i32> = val_it().map(|byte_array| byte_array.len() as i32).collect();
        self.len_encoder.put(&lengths)?;
        for byte_array in val_it() {
            self.encoded_size += byte_array.len();
            self.data.push(byte_array.clone());
        }

        Ok(())
    }

    // Performance Note:
    // As far as can be seen these functions are rarely called and as such we can hint to the
    // compiler that they dont need to be folded into hot locations in the final output.
    #[cold]
    fn encoding(&self) -> Encoding {
        Encoding::DELTA_LENGTH_BYTE_ARRAY
    }

    fn estimated_data_encoded_size(&self) -> usize {
        self.len_encoder.estimated_data_encoded_size() + self.encoded_size
    }

    fn flush_buffer(&mut self) -> Result<Bytes> {
        ensure_phys_ty!(
            Type::BYTE_ARRAY | Type::FIXED_LEN_BYTE_ARRAY,
            "DeltaLengthByteArrayEncoder only supports ByteArrayType"
        );

        let mut total_bytes = vec![];
        let lengths = self.len_encoder.flush_buffer()?;
        total_bytes.extend_from_slice(&lengths);
        self.data.iter().for_each(|byte_array| {
            total_bytes.extend_from_slice(byte_array.data());
        });
        self.data.clear();
        self.encoded_size = 0;

        Ok(total_bytes.into())
    }

    /// return the estimated memory size of this encoder.
    fn estimated_memory_size(&self) -> usize {
        self.len_encoder.estimated_memory_size() + self.data.len() + std::mem::size_of::<Self>()
    }
}

// ----------------------------------------------------------------------
// DELTA_BYTE_ARRAY encoding

/// Encoding for byte arrays, prefix lengths are encoded using DELTA_BINARY_PACKED
/// encoding, followed by suffixes with DELTA_LENGTH_BYTE_ARRAY encoding.
pub struct DeltaByteArrayEncoder<T: DataType> {
    prefix_len_encoder: DeltaBitPackEncoder<Int32Type>,
    suffix_writer: DeltaLengthByteArrayEncoder<ByteArrayType>,
    previous: Vec<u8>,
    _phantom: PhantomData<T>,
}

impl<T: DataType> Default for DeltaByteArrayEncoder<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: DataType> DeltaByteArrayEncoder<T> {
    /// Creates new delta byte array encoder.
    pub fn new() -> Self {
        Self {
            prefix_len_encoder: DeltaBitPackEncoder::new(),
            suffix_writer: DeltaLengthByteArrayEncoder::new(),
            previous: vec![],
            _phantom: PhantomData,
        }
    }
}

impl<T: DataType> Encoder<T> for DeltaByteArrayEncoder<T> {
    fn put(&mut self, values: &[T::T]) -> Result<()> {
        let mut prefix_lengths: Vec<i32> = vec![];
        let mut suffixes: Vec<ByteArray> = vec![];

        let values = values
            .iter()
            .map(|x| x.as_any())
            .map(|x| match T::get_physical_type() {
                Type::BYTE_ARRAY => x.downcast_ref::<ByteArray>().unwrap(),
                Type::FIXED_LEN_BYTE_ARRAY => x.downcast_ref::<FixedLenByteArray>().unwrap(),
                _ => panic!(
                    "DeltaByteArrayEncoder only supports ByteArrayType and FixedLenByteArrayType"
                ),
            });

        for byte_array in values {
            let current = byte_array.data();
            // Maximum prefix length that is shared between previous value and current
            // value
            let prefix_len = cmp::min(self.previous.len(), current.len());
            let mut match_len = 0;
            while match_len < prefix_len && self.previous[match_len] == current[match_len] {
                match_len += 1;
            }
            prefix_lengths.push(match_len as i32);
            suffixes.push(byte_array.slice(match_len, byte_array.len() - match_len));
            // Update previous for the next prefix
            self.previous.clear();
            self.previous.extend_from_slice(current);
        }
        self.prefix_len_encoder.put(&prefix_lengths)?;
        self.suffix_writer.put(&suffixes)?;

        Ok(())
    }

    // Performance Note:
    // As far as can be seen these functions are rarely called and as such we can hint to the
    // compiler that they dont need to be folded into hot locations in the final output.
    #[cold]
    fn encoding(&self) -> Encoding {
        Encoding::DELTA_BYTE_ARRAY
    }

    fn estimated_data_encoded_size(&self) -> usize {
        self.prefix_len_encoder.estimated_data_encoded_size()
            + self.suffix_writer.estimated_data_encoded_size()
    }

    fn flush_buffer(&mut self) -> Result<Bytes> {
        match T::get_physical_type() {
            Type::BYTE_ARRAY | Type::FIXED_LEN_BYTE_ARRAY => {
                // TODO: investigate if we can merge lengths and suffixes
                // without copying data into new vector.
                let mut total_bytes = vec![];
                // Insert lengths ...
                let lengths = self.prefix_len_encoder.flush_buffer()?;
                total_bytes.extend_from_slice(&lengths);
                // ... followed by suffixes
                let suffixes = self.suffix_writer.flush_buffer()?;
                total_bytes.extend_from_slice(&suffixes);

                self.previous.clear();
                Ok(total_bytes.into())
            }
            _ => panic!(
                "DeltaByteArrayEncoder only supports ByteArrayType and FixedLenByteArrayType"
            ),
        }
    }

    /// return the estimated memory size of this encoder.
    fn estimated_memory_size(&self) -> usize {
        self.prefix_len_encoder.estimated_memory_size()
            + self.suffix_writer.estimated_memory_size()
            + (self.previous.capacity() * std::mem::size_of::<u8>())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::sync::Arc;

    use crate::encodings::decoding::{get_decoder, Decoder, DictDecoder, PlainDecoder};
    use crate::schema::types::{ColumnDescPtr, ColumnDescriptor, ColumnPath, Type as SchemaType};
    use crate::util::bit_util;
    use crate::util::test_common::rand_gen::{random_bytes, RandGen};

    const TEST_SET_SIZE: usize = 1024;

    #[test]
    fn test_get_encoders() {
        // supported encodings
        create_and_check_encoder::<Int32Type>(0, Encoding::PLAIN, None);
        create_and_check_encoder::<Int32Type>(0, Encoding::DELTA_BINARY_PACKED, None);
        create_and_check_encoder::<Int32Type>(0, Encoding::DELTA_LENGTH_BYTE_ARRAY, None);
        create_and_check_encoder::<Int32Type>(0, Encoding::DELTA_BYTE_ARRAY, None);
        create_and_check_encoder::<BoolType>(0, Encoding::RLE, None);

        // error when initializing
        create_and_check_encoder::<Int32Type>(
            0,
            Encoding::RLE_DICTIONARY,
            Some(general_err!(
                "Cannot initialize this encoding through this function"
            )),
        );
        create_and_check_encoder::<Int32Type>(
            0,
            Encoding::PLAIN_DICTIONARY,
            Some(general_err!(
                "Cannot initialize this encoding through this function"
            )),
        );

        // unsupported
        #[allow(deprecated)]
        create_and_check_encoder::<Int32Type>(
            0,
            Encoding::BIT_PACKED,
            Some(nyi_err!("Encoding BIT_PACKED is not supported")),
        );
    }

    #[test]
    fn test_bool() {
        BoolType::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
        BoolType::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
        BoolType::test(Encoding::RLE, TEST_SET_SIZE, -1);
    }

    #[test]
    fn test_i32() {
        Int32Type::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
        Int32Type::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
        Int32Type::test(Encoding::DELTA_BINARY_PACKED, TEST_SET_SIZE, -1);
        Int32Type::test(Encoding::BYTE_STREAM_SPLIT, TEST_SET_SIZE, -1);
    }

    #[test]
    fn test_i64() {
        Int64Type::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
        Int64Type::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
        Int64Type::test(Encoding::DELTA_BINARY_PACKED, TEST_SET_SIZE, -1);
        Int64Type::test(Encoding::BYTE_STREAM_SPLIT, TEST_SET_SIZE, -1);
    }

    #[test]
    fn test_i96() {
        Int96Type::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
        Int96Type::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
    }

    #[test]
    fn test_float() {
        FloatType::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
        FloatType::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
        FloatType::test(Encoding::BYTE_STREAM_SPLIT, TEST_SET_SIZE, -1);
    }

    #[test]
    fn test_double() {
        DoubleType::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
        DoubleType::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
        DoubleType::test(Encoding::BYTE_STREAM_SPLIT, TEST_SET_SIZE, -1);
    }

    #[test]
    fn test_byte_array() {
        ByteArrayType::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
        ByteArrayType::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
        ByteArrayType::test(Encoding::DELTA_LENGTH_BYTE_ARRAY, TEST_SET_SIZE, -1);
        ByteArrayType::test(Encoding::DELTA_BYTE_ARRAY, TEST_SET_SIZE, -1);
    }

    #[test]
    fn test_fixed_len_byte_array() {
        FixedLenByteArrayType::test(Encoding::PLAIN, TEST_SET_SIZE, 100);
        FixedLenByteArrayType::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, 100);
        FixedLenByteArrayType::test(Encoding::DELTA_BYTE_ARRAY, TEST_SET_SIZE, 100);
        FixedLenByteArrayType::test(Encoding::BYTE_STREAM_SPLIT, TEST_SET_SIZE, 100);
    }

    #[test]
    fn test_dict_encoded_size() {
        fn run_test<T: DataType>(type_length: i32, values: &[T::T], expected_size: usize) {
            let mut encoder = create_test_dict_encoder::<T>(type_length);
            assert_eq!(encoder.dict_encoded_size(), 0);
            encoder.put(values).unwrap();
            assert_eq!(encoder.dict_encoded_size(), expected_size);
            // We do not reset encoded size of the dictionary keys after flush_buffer
            encoder.flush_buffer().unwrap();
            assert_eq!(encoder.dict_encoded_size(), expected_size);
        }

        // Only 2 variations of values 1 byte each
        run_test::<BoolType>(-1, &[true, false, true, false, true], 2);
        run_test::<Int32Type>(-1, &[1i32, 2i32, 3i32, 4i32, 5i32], 20);
        run_test::<Int64Type>(-1, &[1i64, 2i64, 3i64, 4i64, 5i64], 40);
        run_test::<FloatType>(-1, &[1f32, 2f32, 3f32, 4f32, 5f32], 20);
        run_test::<DoubleType>(-1, &[1f64, 2f64, 3f64, 4f64, 5f64], 40);
        // Int96: len + reference
        run_test::<Int96Type>(
            -1,
            &[Int96::from(vec![1, 2, 3]), Int96::from(vec![2, 3, 4])],
            24,
        );
        run_test::<ByteArrayType>(-1, &[ByteArray::from("abcd"), ByteArray::from("efj")], 15);
        run_test::<FixedLenByteArrayType>(
            2,
            &[ByteArray::from("ab").into(), ByteArray::from("bc").into()],
            4,
        );
    }

    #[test]
    fn test_estimated_data_encoded_size() {
        fn run_test<T: DataType>(
            encoding: Encoding,
            type_length: i32,
            values: &[T::T],
            initial_size: usize,
            max_size: usize,
            flush_size: usize,
        ) {
            let mut encoder = match encoding {
                Encoding::PLAIN_DICTIONARY | Encoding::RLE_DICTIONARY => {
                    Box::new(create_test_dict_encoder::<T>(type_length))
                }
                _ => create_test_encoder::<T>(type_length, encoding),
            };
            assert_eq!(encoder.estimated_data_encoded_size(), initial_size);

            encoder.put(values).unwrap();
            assert_eq!(encoder.estimated_data_encoded_size(), max_size);

            encoder.flush_buffer().unwrap();
            assert_eq!(encoder.estimated_data_encoded_size(), flush_size);
        }

        // PLAIN
        run_test::<Int32Type>(Encoding::PLAIN, -1, &[123; 1024], 0, 4096, 0);

        // DICTIONARY
        // NOTE: The final size is almost the same because the dictionary entries are
        // preserved after encoded values have been written.
        run_test::<Int32Type>(Encoding::RLE_DICTIONARY, -1, &[123, 1024], 0, 2, 0);

        // DELTA_BINARY_PACKED
        run_test::<Int32Type>(Encoding::DELTA_BINARY_PACKED, -1, &[123; 1024], 0, 35, 0);

        // RLE
        let mut values = vec![];
        values.extend_from_slice(&[true; 16]);
        values.extend_from_slice(&[false; 16]);
        run_test::<BoolType>(Encoding::RLE, -1, &values, 0, 6, 0);

        // DELTA_LENGTH_BYTE_ARRAY
        run_test::<ByteArrayType>(
            Encoding::DELTA_LENGTH_BYTE_ARRAY,
            -1,
            &[ByteArray::from("ab"), ByteArray::from("abc")],
            0,
            5, // only value bytes, length encoder is not flushed yet
            0,
        );

        // DELTA_BYTE_ARRAY
        run_test::<ByteArrayType>(
            Encoding::DELTA_BYTE_ARRAY,
            -1,
            &[ByteArray::from("ab"), ByteArray::from("abc")],
            0,
            3, // only suffix bytes, length encoder is not flushed yet
            0,
        );

        // BYTE_STREAM_SPLIT
        run_test::<FloatType>(Encoding::BYTE_STREAM_SPLIT, -1, &[0.1, 0.2], 0, 8, 0);
    }

    #[test]
    fn test_byte_stream_split_example_f32() {
        // Test data from https://github.com/apache/parquet-format/blob/2a481fe1aad64ff770e21734533bb7ef5a057dac/Encodings.md#byte-stream-split-byte_stream_split--9
        let mut encoder = create_test_encoder::<FloatType>(0, Encoding::BYTE_STREAM_SPLIT);
        let mut decoder = create_test_decoder::<FloatType>(0, Encoding::BYTE_STREAM_SPLIT);

        let input = vec![
            f32::from_le_bytes([0xAA, 0xBB, 0xCC, 0xDD]),
            f32::from_le_bytes([0x00, 0x11, 0x22, 0x33]),
            f32::from_le_bytes([0xA3, 0xB4, 0xC5, 0xD6]),
        ];

        encoder.put(&input).unwrap();
        let encoded = encoder.flush_buffer().unwrap();

        assert_eq!(
            encoded,
            Bytes::from(vec![
                0xAA_u8, 0x00, 0xA3, 0xBB, 0x11, 0xB4, 0xCC, 0x22, 0xC5, 0xDD, 0x33, 0xD6
            ])
        );

        let mut decoded = vec![0.0; input.len()];
        decoder.set_data(encoded, input.len()).unwrap();
        decoder.get(&mut decoded).unwrap();

        assert_eq!(decoded, input);
    }

    // See: https://github.com/sunchao/parquet-rs/issues/47
    #[test]
    fn test_issue_47() {
        let mut encoder = create_test_encoder::<ByteArrayType>(0, Encoding::DELTA_BYTE_ARRAY);
        let mut decoder = create_test_decoder::<ByteArrayType>(0, Encoding::DELTA_BYTE_ARRAY);

        let input = vec![
            ByteArray::from("aa"),
            ByteArray::from("aaa"),
            ByteArray::from("aa"),
            ByteArray::from("aaa"),
        ];

        let mut output = vec![ByteArray::default(); input.len()];

        let mut result = put_and_get(&mut encoder, &mut decoder, &input[..2], &mut output[..2]);
        assert!(
            result.is_ok(),
            "first put_and_get() failed with: {}",
            result.unwrap_err()
        );
        result = put_and_get(&mut encoder, &mut decoder, &input[2..], &mut output[2..]);
        assert!(
            result.is_ok(),
            "second put_and_get() failed with: {}",
            result.unwrap_err()
        );
        assert_eq!(output, input);
    }

    trait EncodingTester<T: DataType> {
        fn test(enc: Encoding, total: usize, type_length: i32) {
            let result = match enc {
                Encoding::PLAIN_DICTIONARY | Encoding::RLE_DICTIONARY => {
                    Self::test_dict_internal(total, type_length)
                }
                enc => Self::test_internal(enc, total, type_length),
            };

            assert!(
                result.is_ok(),
                "Expected result to be OK but got err:\n {}",
                result.unwrap_err()
            );
        }

        fn test_internal(enc: Encoding, total: usize, type_length: i32) -> Result<()>;

        fn test_dict_internal(total: usize, type_length: i32) -> Result<()>;
    }

    impl<T: DataType + RandGen<T>> EncodingTester<T> for T {
        fn test_internal(enc: Encoding, total: usize, type_length: i32) -> Result<()> {
            let mut encoder = create_test_encoder::<T>(type_length, enc);
            let mut decoder = create_test_decoder::<T>(type_length, enc);
            let mut values = <T as RandGen<T>>::gen_vec(type_length, total);
            let mut result_data = vec![T::T::default(); total];

            // Test put/get spaced.
            let num_bytes = bit_util::ceil(total as i64, 8);
            let valid_bits = random_bytes(num_bytes as usize);
            let values_written = encoder.put_spaced(&values[..], &valid_bits[..])?;
            let data = encoder.flush_buffer()?;
            decoder.set_data(data, values_written)?;
            let _ = decoder.get_spaced(
                &mut result_data[..],
                values.len() - values_written,
                &valid_bits[..],
            )?;

            // Check equality
            for i in 0..total {
                if bit_util::get_bit(&valid_bits[..], i) {
                    assert_eq!(result_data[i], values[i]);
                } else {
                    assert_eq!(result_data[i], T::T::default());
                }
            }

            let mut actual_total = put_and_get(
                &mut encoder,
                &mut decoder,
                &values[..],
                &mut result_data[..],
            )?;
            assert_eq!(actual_total, total);
            assert_eq!(result_data, values);

            // Encode more data after flush and test with decoder

            values = <T as RandGen<T>>::gen_vec(type_length, total);
            actual_total = put_and_get(
                &mut encoder,
                &mut decoder,
                &values[..],
                &mut result_data[..],
            )?;
            assert_eq!(actual_total, total);
            assert_eq!(result_data, values);

            Ok(())
        }

        fn test_dict_internal(total: usize, type_length: i32) -> Result<()> {
            let mut encoder = create_test_dict_encoder::<T>(type_length);
            let mut values = <T as RandGen<T>>::gen_vec(type_length, total);
            encoder.put(&values[..])?;

            let mut data = encoder.flush_buffer()?;
            let mut decoder = create_test_dict_decoder::<T>();
            let mut dict_decoder = PlainDecoder::<T>::new(type_length);
            dict_decoder.set_data(encoder.write_dict()?, encoder.num_entries())?;
            decoder.set_dict(Box::new(dict_decoder))?;
            let mut result_data = vec![T::T::default(); total];
            decoder.set_data(data, total)?;
            let mut actual_total = decoder.get(&mut result_data)?;

            assert_eq!(actual_total, total);
            assert_eq!(result_data, values);

            // Encode more data after flush and test with decoder

            values = <T as RandGen<T>>::gen_vec(type_length, total);
            encoder.put(&values[..])?;
            data = encoder.flush_buffer()?;

            let mut dict_decoder = PlainDecoder::<T>::new(type_length);
            dict_decoder.set_data(encoder.write_dict()?, encoder.num_entries())?;
            decoder.set_dict(Box::new(dict_decoder))?;
            decoder.set_data(data, total)?;
            actual_total = decoder.get(&mut result_data)?;

            assert_eq!(actual_total, total);
            assert_eq!(result_data, values);

            Ok(())
        }
    }

    fn put_and_get<T: DataType>(
        encoder: &mut Box<dyn Encoder<T>>,
        decoder: &mut Box<dyn Decoder<T>>,
        input: &[T::T],
        output: &mut [T::T],
    ) -> Result<usize> {
        encoder.put(input)?;
        let data = encoder.flush_buffer()?;
        decoder.set_data(data, input.len())?;
        decoder.get(output)
    }

    fn create_and_check_encoder<T: DataType>(
        type_length: i32,
        encoding: Encoding,
        err: Option<ParquetError>,
    ) {
        let desc = create_test_col_desc_ptr(type_length, T::get_physical_type());
        let encoder = get_encoder::<T>(encoding, &desc);
        match err {
            Some(parquet_error) => {
                assert_eq!(
                    encoder.err().unwrap().to_string(),
                    parquet_error.to_string()
                )
            }
            None => assert_eq!(encoder.unwrap().encoding(), encoding),
        }
    }

    // Creates test column descriptor.
    fn create_test_col_desc_ptr(type_len: i32, t: Type) -> ColumnDescPtr {
        let ty = SchemaType::primitive_type_builder("t", t)
            .with_length(type_len)
            .build()
            .unwrap();
        Arc::new(ColumnDescriptor::new(
            Arc::new(ty),
            0,
            0,
            ColumnPath::new(vec![]),
        ))
    }

    fn create_test_encoder<T: DataType>(type_len: i32, enc: Encoding) -> Box<dyn Encoder<T>> {
        let desc = create_test_col_desc_ptr(type_len, T::get_physical_type());
        get_encoder(enc, &desc).unwrap()
    }

    fn create_test_decoder<T: DataType>(type_len: i32, enc: Encoding) -> Box<dyn Decoder<T>> {
        let desc = create_test_col_desc_ptr(type_len, T::get_physical_type());
        get_decoder(desc, enc).unwrap()
    }

    fn create_test_dict_encoder<T: DataType>(type_len: i32) -> DictEncoder<T> {
        let desc = create_test_col_desc_ptr(type_len, T::get_physical_type());
        DictEncoder::<T>::new(desc)
    }

    fn create_test_dict_decoder<T: DataType>() -> DictDecoder<T> {
        DictDecoder::<T>::new()
    }
}