allocator_api2/stable/
boxed.rs

1//! The `Box<T>` type for heap allocation.
2//!
3//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
4//! heap allocation in Rust. Boxes provide ownership for this allocation, and
5//! drop their contents when they go out of scope. Boxes also ensure that they
6//! never allocate more than `isize::MAX` bytes.
7//!
8//! # Examples
9//!
10//! Move a value from the stack to the heap by creating a [`Box`]:
11//!
12//! ```
13//! let val: u8 = 5;
14//! let boxed: Box<u8> = Box::new(val);
15//! ```
16//!
17//! Move a value from a [`Box`] back to the stack by [dereferencing]:
18//!
19//! ```
20//! let boxed: Box<u8> = Box::new(5);
21//! let val: u8 = *boxed;
22//! ```
23//!
24//! Creating a recursive data structure:
25//!
26//! ```
27//! #[derive(Debug)]
28//! enum List<T> {
29//!     Cons(T, Box<List<T>>),
30//!     Nil,
31//! }
32//!
33//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
34//! println!("{list:?}");
35//! ```
36//!
37//! This will print `Cons(1, Cons(2, Nil))`.
38//!
39//! Recursive structures must be boxed, because if the definition of `Cons`
40//! looked like this:
41//!
42//! ```compile_fail,E0072
43//! # enum List<T> {
44//! Cons(T, List<T>),
45//! # }
46//! ```
47//!
48//! It wouldn't work. This is because the size of a `List` depends on how many
49//! elements are in the list, and so we don't know how much memory to allocate
50//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
51//! big `Cons` needs to be.
52//!
53//! # Memory layout
54//!
55//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
56//! its allocation. It is valid to convert both ways between a [`Box`] and a
57//! raw pointer allocated with the [`Global`] allocator, given that the
58//! [`Layout`] used with the allocator is correct for the type. More precisely,
59//! a `value: *mut T` that has been allocated with the [`Global`] allocator
60//! with `Layout::for_value(&*value)` may be converted into a box using
61//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
62//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
63//! [`Global`] allocator with [`Layout::for_value(&*value)`].
64//!
65//! For zero-sized values, the `Box` pointer still has to be [valid] for reads
66//! and writes and sufficiently aligned. In particular, casting any aligned
67//! non-zero integer literal to a raw pointer produces a valid pointer, but a
68//! pointer pointing into previously allocated memory that since got freed is
69//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
70//! be used is to use [`ptr::NonNull::dangling`].
71//!
72//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
73//! as a single pointer and is also ABI-compatible with C pointers
74//! (i.e. the C type `T*`). This means that if you have extern "C"
75//! Rust functions that will be called from C, you can define those
76//! Rust functions using `Box<T>` types, and use `T*` as corresponding
77//! type on the C side. As an example, consider this C header which
78//! declares functions that create and destroy some kind of `Foo`
79//! value:
80//!
81//! ```c
82//! /* C header */
83//!
84//! /* Returns ownership to the caller */
85//! struct Foo* foo_new(void);
86//!
87//! /* Takes ownership from the caller; no-op when invoked with null */
88//! void foo_delete(struct Foo*);
89//! ```
90//!
91//! These two functions might be implemented in Rust as follows. Here, the
92//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
93//! the ownership constraints. Note also that the nullable argument to
94//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
95//! cannot be null.
96//!
97//! ```
98//! #[repr(C)]
99//! pub struct Foo;
100//!
101//! #[no_mangle]
102//! pub extern "C" fn foo_new() -> Box<Foo> {
103//!     Box::new(Foo)
104//! }
105//!
106//! #[no_mangle]
107//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
108//! ```
109//!
110//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
111//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
112//! and expect things to work. `Box<T>` values will always be fully aligned,
113//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
114//! free the value with the global allocator. In general, the best practice
115//! is to only use `Box<T>` for pointers that originated from the global
116//! allocator.
117//!
118//! **Important.** At least at present, you should avoid using
119//! `Box<T>` types for functions that are defined in C but invoked
120//! from Rust. In those cases, you should directly mirror the C types
121//! as closely as possible. Using types like `Box<T>` where the C
122//! definition is just using `T*` can lead to undefined behavior, as
123//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
124//!
125//! # Considerations for unsafe code
126//!
127//! **Warning: This section is not normative and is subject to change, possibly
128//! being relaxed in the future! It is a simplified summary of the rules
129//! currently implemented in the compiler.**
130//!
131//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
132//! asserts uniqueness over its content. Using raw pointers derived from a box
133//! after that box has been mutated through, moved or borrowed as `&mut T`
134//! is not allowed. For more guidance on working with box from unsafe code, see
135//! [rust-lang/unsafe-code-guidelines#326][ucg#326].
136//!
137//!
138//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
139//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
140//! [dereferencing]: core::ops::Deref
141//! [`Box::<T>::from_raw(value)`]: Box::from_raw
142//! [`Global`]: crate::alloc::Global
143//! [`Layout`]: crate::alloc::Layout
144//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
145//! [valid]: ptr#safety
146
147use core::any::Any;
148use core::borrow;
149use core::cmp::Ordering;
150use core::convert::{From, TryFrom};
151
152// use core::error::Error;
153use core::fmt;
154use core::future::Future;
155use core::hash::{Hash, Hasher};
156#[cfg(not(no_global_oom_handling))]
157use core::iter::FromIterator;
158use core::iter::{FusedIterator, Iterator};
159use core::marker::Unpin;
160use core::mem;
161use core::ops::{Deref, DerefMut};
162use core::pin::Pin;
163use core::ptr::{self, NonNull};
164use core::task::{Context, Poll};
165
166use super::alloc::{AllocError, Allocator, Global, Layout};
167use super::raw_vec::RawVec;
168#[cfg(not(no_global_oom_handling))]
169use super::vec::Vec;
170#[cfg(not(no_global_oom_handling))]
171use alloc_crate::alloc::handle_alloc_error;
172
173/// A pointer type for heap allocation.
174///
175/// See the [module-level documentation](../../std/boxed/index.html) for more.
176pub struct Box<T: ?Sized, A: Allocator = Global>(NonNull<T>, A);
177
178// Safety: Box owns both T and A, so sending is safe if
179// sending is safe for T and A.
180unsafe impl<T: ?Sized, A: Allocator> Send for Box<T, A>
181where
182    T: Send,
183    A: Send,
184{
185}
186
187// Safety: Box owns both T and A, so sharing is safe if
188// sharing is safe for T and A.
189unsafe impl<T: ?Sized, A: Allocator> Sync for Box<T, A>
190where
191    T: Sync,
192    A: Sync,
193{
194}
195
196impl<T> Box<T> {
197    /// Allocates memory on the heap and then places `x` into it.
198    ///
199    /// This doesn't actually allocate if `T` is zero-sized.
200    ///
201    /// # Examples
202    ///
203    /// ```
204    /// let five = Box::new(5);
205    /// ```
206    #[cfg(all(not(no_global_oom_handling)))]
207    #[inline(always)]
208    #[must_use]
209    pub fn new(x: T) -> Self {
210        Self::new_in(x, Global)
211    }
212
213    /// Constructs a new box with uninitialized contents.
214    ///
215    /// # Examples
216    ///
217    /// ```
218    /// #![feature(new_uninit)]
219    ///
220    /// let mut five = Box::<u32>::new_uninit();
221    ///
222    /// let five = unsafe {
223    ///     // Deferred initialization:
224    ///     five.as_mut_ptr().write(5);
225    ///
226    ///     five.assume_init()
227    /// };
228    ///
229    /// assert_eq!(*five, 5)
230    /// ```
231    #[cfg(not(no_global_oom_handling))]
232    #[must_use]
233    #[inline(always)]
234    pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
235        Self::new_uninit_in(Global)
236    }
237
238    /// Constructs a new `Box` with uninitialized contents, with the memory
239    /// being filled with `0` bytes.
240    ///
241    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
242    /// of this method.
243    ///
244    /// # Examples
245    ///
246    /// ```
247    /// #![feature(new_uninit)]
248    ///
249    /// let zero = Box::<u32>::new_zeroed();
250    /// let zero = unsafe { zero.assume_init() };
251    ///
252    /// assert_eq!(*zero, 0)
253    /// ```
254    ///
255    /// [zeroed]: mem::MaybeUninit::zeroed
256    #[cfg(not(no_global_oom_handling))]
257    #[must_use]
258    #[inline(always)]
259    pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
260        Self::new_zeroed_in(Global)
261    }
262
263    /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
264    /// `x` will be pinned in memory and unable to be moved.
265    ///
266    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
267    /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
268    /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
269    /// construct a (pinned) `Box` in a different way than with [`Box::new`].
270    #[cfg(not(no_global_oom_handling))]
271    #[must_use]
272    #[inline(always)]
273    pub fn pin(x: T) -> Pin<Box<T>> {
274        Box::new(x).into()
275    }
276
277    /// Allocates memory on the heap then places `x` into it,
278    /// returning an error if the allocation fails
279    ///
280    /// This doesn't actually allocate if `T` is zero-sized.
281    ///
282    /// # Examples
283    ///
284    /// ```
285    /// #![feature(allocator_api)]
286    ///
287    /// let five = Box::try_new(5)?;
288    /// # Ok::<(), std::alloc::AllocError>(())
289    /// ```
290    #[inline(always)]
291    pub fn try_new(x: T) -> Result<Self, AllocError> {
292        Self::try_new_in(x, Global)
293    }
294
295    /// Constructs a new box with uninitialized contents on the heap,
296    /// returning an error if the allocation fails
297    ///
298    /// # Examples
299    ///
300    /// ```
301    /// #![feature(allocator_api, new_uninit)]
302    ///
303    /// let mut five = Box::<u32>::try_new_uninit()?;
304    ///
305    /// let five = unsafe {
306    ///     // Deferred initialization:
307    ///     five.as_mut_ptr().write(5);
308    ///
309    ///     five.assume_init()
310    /// };
311    ///
312    /// assert_eq!(*five, 5);
313    /// # Ok::<(), std::alloc::AllocError>(())
314    /// ```
315    #[inline(always)]
316    pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
317        Box::try_new_uninit_in(Global)
318    }
319
320    /// Constructs a new `Box` with uninitialized contents, with the memory
321    /// being filled with `0` bytes on the heap
322    ///
323    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
324    /// of this method.
325    ///
326    /// # Examples
327    ///
328    /// ```
329    /// #![feature(allocator_api, new_uninit)]
330    ///
331    /// let zero = Box::<u32>::try_new_zeroed()?;
332    /// let zero = unsafe { zero.assume_init() };
333    ///
334    /// assert_eq!(*zero, 0);
335    /// # Ok::<(), std::alloc::AllocError>(())
336    /// ```
337    ///
338    /// [zeroed]: mem::MaybeUninit::zeroed
339    #[inline(always)]
340    pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
341        Box::try_new_zeroed_in(Global)
342    }
343}
344
345impl<T, A: Allocator> Box<T, A> {
346    /// Allocates memory in the given allocator then places `x` into it.
347    ///
348    /// This doesn't actually allocate if `T` is zero-sized.
349    ///
350    /// # Examples
351    ///
352    /// ```
353    /// #![feature(allocator_api)]
354    ///
355    /// use std::alloc::System;
356    ///
357    /// let five = Box::new_in(5, System);
358    /// ```
359    #[cfg(not(no_global_oom_handling))]
360    #[must_use]
361    #[inline(always)]
362    pub fn new_in(x: T, alloc: A) -> Self
363    where
364        A: Allocator,
365    {
366        let mut boxed = Self::new_uninit_in(alloc);
367        unsafe {
368            boxed.as_mut_ptr().write(x);
369            boxed.assume_init()
370        }
371    }
372
373    /// Allocates memory in the given allocator then places `x` into it,
374    /// returning an error if the allocation fails
375    ///
376    /// This doesn't actually allocate if `T` is zero-sized.
377    ///
378    /// # Examples
379    ///
380    /// ```
381    /// #![feature(allocator_api)]
382    ///
383    /// use std::alloc::System;
384    ///
385    /// let five = Box::try_new_in(5, System)?;
386    /// # Ok::<(), std::alloc::AllocError>(())
387    /// ```
388    #[inline(always)]
389    pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
390    where
391        A: Allocator,
392    {
393        let mut boxed = Self::try_new_uninit_in(alloc)?;
394        unsafe {
395            boxed.as_mut_ptr().write(x);
396            Ok(boxed.assume_init())
397        }
398    }
399
400    /// Constructs a new box with uninitialized contents in the provided allocator.
401    ///
402    /// # Examples
403    ///
404    /// ```
405    /// #![feature(allocator_api, new_uninit)]
406    ///
407    /// use std::alloc::System;
408    ///
409    /// let mut five = Box::<u32, _>::new_uninit_in(System);
410    ///
411    /// let five = unsafe {
412    ///     // Deferred initialization:
413    ///     five.as_mut_ptr().write(5);
414    ///
415    ///     five.assume_init()
416    /// };
417    ///
418    /// assert_eq!(*five, 5)
419    /// ```
420    #[cfg(not(no_global_oom_handling))]
421    #[must_use]
422    // #[unstable(feature = "new_uninit", issue = "63291")]
423    #[inline(always)]
424    pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
425    where
426        A: Allocator,
427    {
428        let layout = Layout::new::<mem::MaybeUninit<T>>();
429        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
430        // That would make code size bigger.
431        match Box::try_new_uninit_in(alloc) {
432            Ok(m) => m,
433            Err(_) => handle_alloc_error(layout),
434        }
435    }
436
437    /// Constructs a new box with uninitialized contents in the provided allocator,
438    /// returning an error if the allocation fails
439    ///
440    /// # Examples
441    ///
442    /// ```
443    /// #![feature(allocator_api, new_uninit)]
444    ///
445    /// use std::alloc::System;
446    ///
447    /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
448    ///
449    /// let five = unsafe {
450    ///     // Deferred initialization:
451    ///     five.as_mut_ptr().write(5);
452    ///
453    ///     five.assume_init()
454    /// };
455    ///
456    /// assert_eq!(*five, 5);
457    /// # Ok::<(), std::alloc::AllocError>(())
458    /// ```
459    #[inline(always)]
460    pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
461    where
462        A: Allocator,
463    {
464        let layout = Layout::new::<mem::MaybeUninit<T>>();
465        let ptr = alloc.allocate(layout)?.cast();
466        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
467    }
468
469    /// Constructs a new `Box` with uninitialized contents, with the memory
470    /// being filled with `0` bytes in the provided allocator.
471    ///
472    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
473    /// of this method.
474    ///
475    /// # Examples
476    ///
477    /// ```
478    /// #![feature(allocator_api, new_uninit)]
479    ///
480    /// use std::alloc::System;
481    ///
482    /// let zero = Box::<u32, _>::new_zeroed_in(System);
483    /// let zero = unsafe { zero.assume_init() };
484    ///
485    /// assert_eq!(*zero, 0)
486    /// ```
487    ///
488    /// [zeroed]: mem::MaybeUninit::zeroed
489    #[cfg(not(no_global_oom_handling))]
490    // #[unstable(feature = "new_uninit", issue = "63291")]
491    #[must_use]
492    #[inline(always)]
493    pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
494    where
495        A: Allocator,
496    {
497        let layout = Layout::new::<mem::MaybeUninit<T>>();
498        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
499        // That would make code size bigger.
500        match Box::try_new_zeroed_in(alloc) {
501            Ok(m) => m,
502            Err(_) => handle_alloc_error(layout),
503        }
504    }
505
506    /// Constructs a new `Box` with uninitialized contents, with the memory
507    /// being filled with `0` bytes in the provided allocator,
508    /// returning an error if the allocation fails,
509    ///
510    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
511    /// of this method.
512    ///
513    /// # Examples
514    ///
515    /// ```
516    /// #![feature(allocator_api, new_uninit)]
517    ///
518    /// use std::alloc::System;
519    ///
520    /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
521    /// let zero = unsafe { zero.assume_init() };
522    ///
523    /// assert_eq!(*zero, 0);
524    /// # Ok::<(), std::alloc::AllocError>(())
525    /// ```
526    ///
527    /// [zeroed]: mem::MaybeUninit::zeroed
528    #[inline(always)]
529    pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
530    where
531        A: Allocator,
532    {
533        let layout = Layout::new::<mem::MaybeUninit<T>>();
534        let ptr = alloc.allocate_zeroed(layout)?.cast();
535        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
536    }
537
538    /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
539    /// `x` will be pinned in memory and unable to be moved.
540    ///
541    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
542    /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
543    /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
544    /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
545    #[cfg(not(no_global_oom_handling))]
546    #[must_use]
547    #[inline(always)]
548    pub fn pin_in(x: T, alloc: A) -> Pin<Self>
549    where
550        A: 'static + Allocator,
551    {
552        Self::into_pin(Self::new_in(x, alloc))
553    }
554
555    /// Converts a `Box<T>` into a `Box<[T]>`
556    ///
557    /// This conversion does not allocate on the heap and happens in place.
558    #[inline(always)]
559    pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
560        let (raw, alloc) = Box::into_raw_with_allocator(boxed);
561        unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
562    }
563
564    /// Consumes the `Box`, returning the wrapped value.
565    ///
566    /// # Examples
567    ///
568    /// ```
569    /// #![feature(box_into_inner)]
570    ///
571    /// let c = Box::new(5);
572    ///
573    /// assert_eq!(Box::into_inner(c), 5);
574    /// ```
575    #[inline(always)]
576    pub fn into_inner(boxed: Self) -> T {
577        let ptr = boxed.0;
578        let unboxed = unsafe { ptr.as_ptr().read() };
579        unsafe { boxed.1.deallocate(ptr.cast(), Layout::new::<T>()) };
580        unboxed
581    }
582}
583
584impl<T> Box<[T]> {
585    /// Constructs a new boxed slice with uninitialized contents.
586    ///
587    /// # Examples
588    ///
589    /// ```
590    /// #![feature(new_uninit)]
591    ///
592    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
593    ///
594    /// let values = unsafe {
595    ///     // Deferred initialization:
596    ///     values[0].as_mut_ptr().write(1);
597    ///     values[1].as_mut_ptr().write(2);
598    ///     values[2].as_mut_ptr().write(3);
599    ///
600    ///     values.assume_init()
601    /// };
602    ///
603    /// assert_eq!(*values, [1, 2, 3])
604    /// ```
605    #[cfg(not(no_global_oom_handling))]
606    #[must_use]
607    #[inline(always)]
608    pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
609        unsafe { RawVec::with_capacity(len).into_box(len) }
610    }
611
612    /// Constructs a new boxed slice with uninitialized contents, with the memory
613    /// being filled with `0` bytes.
614    ///
615    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
616    /// of this method.
617    ///
618    /// # Examples
619    ///
620    /// ```
621    /// #![feature(new_uninit)]
622    ///
623    /// let values = Box::<[u32]>::new_zeroed_slice(3);
624    /// let values = unsafe { values.assume_init() };
625    ///
626    /// assert_eq!(*values, [0, 0, 0])
627    /// ```
628    ///
629    /// [zeroed]: mem::MaybeUninit::zeroed
630    #[cfg(not(no_global_oom_handling))]
631    #[must_use]
632    #[inline(always)]
633    pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
634        unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
635    }
636
637    /// Constructs a new boxed slice with uninitialized contents. Returns an error if
638    /// the allocation fails
639    ///
640    /// # Examples
641    ///
642    /// ```
643    /// #![feature(allocator_api, new_uninit)]
644    ///
645    /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
646    /// let values = unsafe {
647    ///     // Deferred initialization:
648    ///     values[0].as_mut_ptr().write(1);
649    ///     values[1].as_mut_ptr().write(2);
650    ///     values[2].as_mut_ptr().write(3);
651    ///     values.assume_init()
652    /// };
653    ///
654    /// assert_eq!(*values, [1, 2, 3]);
655    /// # Ok::<(), std::alloc::AllocError>(())
656    /// ```
657    #[inline(always)]
658    pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
659        unsafe {
660            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
661                Ok(l) => l,
662                Err(_) => return Err(AllocError),
663            };
664            let ptr = Global.allocate(layout)?;
665            Ok(RawVec::from_raw_parts_in(ptr.as_ptr() as *mut _, len, Global).into_box(len))
666        }
667    }
668
669    /// Constructs a new boxed slice with uninitialized contents, with the memory
670    /// being filled with `0` bytes. Returns an error if the allocation fails
671    ///
672    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
673    /// of this method.
674    ///
675    /// # Examples
676    ///
677    /// ```
678    /// #![feature(allocator_api, new_uninit)]
679    ///
680    /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
681    /// let values = unsafe { values.assume_init() };
682    ///
683    /// assert_eq!(*values, [0, 0, 0]);
684    /// # Ok::<(), std::alloc::AllocError>(())
685    /// ```
686    ///
687    /// [zeroed]: mem::MaybeUninit::zeroed
688    #[inline(always)]
689    pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
690        unsafe {
691            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
692                Ok(l) => l,
693                Err(_) => return Err(AllocError),
694            };
695            let ptr = Global.allocate_zeroed(layout)?;
696            Ok(RawVec::from_raw_parts_in(ptr.as_ptr() as *mut _, len, Global).into_box(len))
697        }
698    }
699}
700
701impl<T, A: Allocator> Box<[T], A> {
702    /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
703    ///
704    /// # Examples
705    ///
706    /// ```
707    /// #![feature(allocator_api, new_uninit)]
708    ///
709    /// use std::alloc::System;
710    ///
711    /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
712    ///
713    /// let values = unsafe {
714    ///     // Deferred initialization:
715    ///     values[0].as_mut_ptr().write(1);
716    ///     values[1].as_mut_ptr().write(2);
717    ///     values[2].as_mut_ptr().write(3);
718    ///
719    ///     values.assume_init()
720    /// };
721    ///
722    /// assert_eq!(*values, [1, 2, 3])
723    /// ```
724    #[cfg(not(no_global_oom_handling))]
725    #[must_use]
726    #[inline(always)]
727    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
728        unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
729    }
730
731    /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
732    /// with the memory being filled with `0` bytes.
733    ///
734    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
735    /// of this method.
736    ///
737    /// # Examples
738    ///
739    /// ```
740    /// #![feature(allocator_api, new_uninit)]
741    ///
742    /// use std::alloc::System;
743    ///
744    /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
745    /// let values = unsafe { values.assume_init() };
746    ///
747    /// assert_eq!(*values, [0, 0, 0])
748    /// ```
749    ///
750    /// [zeroed]: mem::MaybeUninit::zeroed
751    #[cfg(not(no_global_oom_handling))]
752    #[must_use]
753    #[inline(always)]
754    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
755        unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
756    }
757
758    pub fn into_vec(self) -> Vec<T, A>
759    where
760        A: Allocator,
761    {
762        unsafe {
763            let len = self.len();
764            let (b, alloc) = Box::into_raw_with_allocator(self);
765            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
766        }
767    }
768}
769
770impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
771    /// Converts to `Box<T, A>`.
772    ///
773    /// # Safety
774    ///
775    /// As with [`MaybeUninit::assume_init`],
776    /// it is up to the caller to guarantee that the value
777    /// really is in an initialized state.
778    /// Calling this when the content is not yet fully initialized
779    /// causes immediate undefined behavior.
780    ///
781    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
782    ///
783    /// # Examples
784    ///
785    /// ```
786    /// #![feature(new_uninit)]
787    ///
788    /// let mut five = Box::<u32>::new_uninit();
789    ///
790    /// let five: Box<u32> = unsafe {
791    ///     // Deferred initialization:
792    ///     five.as_mut_ptr().write(5);
793    ///
794    ///     five.assume_init()
795    /// };
796    ///
797    /// assert_eq!(*five, 5)
798    /// ```
799    #[inline(always)]
800    pub unsafe fn assume_init(self) -> Box<T, A> {
801        let (raw, alloc) = Box::into_raw_with_allocator(self);
802        unsafe { Box::from_raw_in(raw as *mut T, alloc) }
803    }
804
805    /// Writes the value and converts to `Box<T, A>`.
806    ///
807    /// This method converts the box similarly to [`Box::assume_init`] but
808    /// writes `value` into it before conversion thus guaranteeing safety.
809    /// In some scenarios use of this method may improve performance because
810    /// the compiler may be able to optimize copying from stack.
811    ///
812    /// # Examples
813    ///
814    /// ```
815    /// #![feature(new_uninit)]
816    ///
817    /// let big_box = Box::<[usize; 1024]>::new_uninit();
818    ///
819    /// let mut array = [0; 1024];
820    /// for (i, place) in array.iter_mut().enumerate() {
821    ///     *place = i;
822    /// }
823    ///
824    /// // The optimizer may be able to elide this copy, so previous code writes
825    /// // to heap directly.
826    /// let big_box = Box::write(big_box, array);
827    ///
828    /// for (i, x) in big_box.iter().enumerate() {
829    ///     assert_eq!(*x, i);
830    /// }
831    /// ```
832    #[inline(always)]
833    pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
834        unsafe {
835            (*boxed).write(value);
836            boxed.assume_init()
837        }
838    }
839}
840
841impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
842    /// Converts to `Box<[T], A>`.
843    ///
844    /// # Safety
845    ///
846    /// As with [`MaybeUninit::assume_init`],
847    /// it is up to the caller to guarantee that the values
848    /// really are in an initialized state.
849    /// Calling this when the content is not yet fully initialized
850    /// causes immediate undefined behavior.
851    ///
852    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
853    ///
854    /// # Examples
855    ///
856    /// ```
857    /// #![feature(new_uninit)]
858    ///
859    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
860    ///
861    /// let values = unsafe {
862    ///     // Deferred initialization:
863    ///     values[0].as_mut_ptr().write(1);
864    ///     values[1].as_mut_ptr().write(2);
865    ///     values[2].as_mut_ptr().write(3);
866    ///
867    ///     values.assume_init()
868    /// };
869    ///
870    /// assert_eq!(*values, [1, 2, 3])
871    /// ```
872    #[inline(always)]
873    pub unsafe fn assume_init(self) -> Box<[T], A> {
874        let (raw, alloc) = Box::into_raw_with_allocator(self);
875        unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
876    }
877}
878
879impl<T: ?Sized> Box<T> {
880    /// Constructs a box from a raw pointer.
881    ///
882    /// After calling this function, the raw pointer is owned by the
883    /// resulting `Box`. Specifically, the `Box` destructor will call
884    /// the destructor of `T` and free the allocated memory. For this
885    /// to be safe, the memory must have been allocated in accordance
886    /// with the [memory layout] used by `Box` .
887    ///
888    /// # Safety
889    ///
890    /// This function is unsafe because improper use may lead to
891    /// memory problems. For example, a double-free may occur if the
892    /// function is called twice on the same raw pointer.
893    ///
894    /// The safety conditions are described in the [memory layout] section.
895    ///
896    /// # Examples
897    ///
898    /// Recreate a `Box` which was previously converted to a raw pointer
899    /// using [`Box::into_raw`]:
900    /// ```
901    /// let x = Box::new(5);
902    /// let ptr = Box::into_raw(x);
903    /// let x = unsafe { Box::from_raw(ptr) };
904    /// ```
905    /// Manually create a `Box` from scratch by using the global allocator:
906    /// ```
907    /// use std::alloc::{alloc, Layout};
908    ///
909    /// unsafe {
910    ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
911    ///     // In general .write is required to avoid attempting to destruct
912    ///     // the (uninitialized) previous contents of `ptr`, though for this
913    ///     // simple example `*ptr = 5` would have worked as well.
914    ///     ptr.write(5);
915    ///     let x = Box::from_raw(ptr);
916    /// }
917    /// ```
918    ///
919    /// [memory layout]: self#memory-layout
920    /// [`Layout`]: crate::Layout
921    #[must_use = "call `drop(from_raw(ptr))` if you intend to drop the `Box`"]
922    #[inline(always)]
923    pub unsafe fn from_raw(raw: *mut T) -> Self {
924        unsafe { Self::from_raw_in(raw, Global) }
925    }
926}
927
928impl<T: ?Sized, A: Allocator> Box<T, A> {
929    /// Constructs a box from a raw pointer in the given allocator.
930    ///
931    /// After calling this function, the raw pointer is owned by the
932    /// resulting `Box`. Specifically, the `Box` destructor will call
933    /// the destructor of `T` and free the allocated memory. For this
934    /// to be safe, the memory must have been allocated in accordance
935    /// with the [memory layout] used by `Box` .
936    ///
937    /// # Safety
938    ///
939    /// This function is unsafe because improper use may lead to
940    /// memory problems. For example, a double-free may occur if the
941    /// function is called twice on the same raw pointer.
942    ///
943    ///
944    /// # Examples
945    ///
946    /// Recreate a `Box` which was previously converted to a raw pointer
947    /// using [`Box::into_raw_with_allocator`]:
948    /// ```
949    /// use std::alloc::System;
950    /// # use allocator_api2::boxed::Box;
951    ///
952    /// let x = Box::new_in(5, System);
953    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
954    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
955    /// ```
956    /// Manually create a `Box` from scratch by using the system allocator:
957    /// ```
958    /// use allocator_api2::alloc::{Allocator, Layout, System};
959    /// # use allocator_api2::boxed::Box;
960    ///
961    /// unsafe {
962    ///     let ptr = System.allocate(Layout::new::<i32>())?.as_ptr().cast::<i32>();
963    ///     // In general .write is required to avoid attempting to destruct
964    ///     // the (uninitialized) previous contents of `ptr`, though for this
965    ///     // simple example `*ptr = 5` would have worked as well.
966    ///     ptr.write(5);
967    ///     let x = Box::from_raw_in(ptr, System);
968    /// }
969    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
970    /// ```
971    ///
972    /// [memory layout]: self#memory-layout
973    /// [`Layout`]: crate::Layout
974    #[inline(always)]
975    pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
976        Box(unsafe { NonNull::new_unchecked(raw) }, alloc)
977    }
978
979    /// Consumes the `Box`, returning a wrapped raw pointer.
980    ///
981    /// The pointer will be properly aligned and non-null.
982    ///
983    /// After calling this function, the caller is responsible for the
984    /// memory previously managed by the `Box`. In particular, the
985    /// caller should properly destroy `T` and release the memory, taking
986    /// into account the [memory layout] used by `Box`. The easiest way to
987    /// do this is to convert the raw pointer back into a `Box` with the
988    /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
989    /// the cleanup.
990    ///
991    /// Note: this is an associated function, which means that you have
992    /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
993    /// is so that there is no conflict with a method on the inner type.
994    ///
995    /// # Examples
996    /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
997    /// for automatic cleanup:
998    /// ```
999    /// let x = Box::new(String::from("Hello"));
1000    /// let ptr = Box::into_raw(x);
1001    /// let x = unsafe { Box::from_raw(ptr) };
1002    /// ```
1003    /// Manual cleanup by explicitly running the destructor and deallocating
1004    /// the memory:
1005    /// ```
1006    /// use std::alloc::{dealloc, Layout};
1007    /// use std::ptr;
1008    ///
1009    /// let x = Box::new(String::from("Hello"));
1010    /// let p = Box::into_raw(x);
1011    /// unsafe {
1012    ///     ptr::drop_in_place(p);
1013    ///     dealloc(p as *mut u8, Layout::new::<String>());
1014    /// }
1015    /// ```
1016    ///
1017    /// [memory layout]: self#memory-layout
1018    #[inline(always)]
1019    pub fn into_raw(b: Self) -> *mut T {
1020        Self::into_raw_with_allocator(b).0
1021    }
1022
1023    /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
1024    ///
1025    /// The pointer will be properly aligned and non-null.
1026    ///
1027    /// After calling this function, the caller is responsible for the
1028    /// memory previously managed by the `Box`. In particular, the
1029    /// caller should properly destroy `T` and release the memory, taking
1030    /// into account the [memory layout] used by `Box`. The easiest way to
1031    /// do this is to convert the raw pointer back into a `Box` with the
1032    /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
1033    /// the cleanup.
1034    ///
1035    /// Note: this is an associated function, which means that you have
1036    /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
1037    /// is so that there is no conflict with a method on the inner type.
1038    ///
1039    /// # Examples
1040    /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
1041    /// for automatic cleanup:
1042    /// ```
1043    /// #![feature(allocator_api)]
1044    ///
1045    /// use std::alloc::System;
1046    ///
1047    /// let x = Box::new_in(String::from("Hello"), System);
1048    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1049    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1050    /// ```
1051    /// Manual cleanup by explicitly running the destructor and deallocating
1052    /// the memory:
1053    /// ```
1054    /// #![feature(allocator_api)]
1055    ///
1056    /// use std::alloc::{Allocator, Layout, System};
1057    /// use std::ptr::{self, NonNull};
1058    ///
1059    /// let x = Box::new_in(String::from("Hello"), System);
1060    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1061    /// unsafe {
1062    ///     ptr::drop_in_place(ptr);
1063    ///     let non_null = NonNull::new_unchecked(ptr);
1064    ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
1065    /// }
1066    /// ```
1067    ///
1068    /// [memory layout]: self#memory-layout
1069    #[inline(always)]
1070    pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
1071        let (leaked, alloc) = Box::into_non_null(b);
1072        (leaked.as_ptr(), alloc)
1073    }
1074
1075    #[inline(always)]
1076    pub fn into_non_null(b: Self) -> (NonNull<T>, A) {
1077        // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
1078        // raw pointer for the type system. Turning it directly into a raw pointer would not be
1079        // recognized as "releasing" the unique pointer to permit aliased raw accesses,
1080        // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
1081        // behaves correctly.
1082        let alloc = unsafe { ptr::read(&b.1) };
1083        (NonNull::from(Box::leak(b)), alloc)
1084    }
1085
1086    /// Returns a reference to the underlying allocator.
1087    ///
1088    /// Note: this is an associated function, which means that you have
1089    /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
1090    /// is so that there is no conflict with a method on the inner type.
1091    #[inline(always)]
1092    pub const fn allocator(b: &Self) -> &A {
1093        &b.1
1094    }
1095
1096    /// Consumes and leaks the `Box`, returning a mutable reference,
1097    /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
1098    /// `'a`. If the type has only static references, or none at all, then this
1099    /// may be chosen to be `'static`.
1100    ///
1101    /// This function is mainly useful for data that lives for the remainder of
1102    /// the program's life. Dropping the returned reference will cause a memory
1103    /// leak. If this is not acceptable, the reference should first be wrapped
1104    /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
1105    /// then be dropped which will properly destroy `T` and release the
1106    /// allocated memory.
1107    ///
1108    /// Note: this is an associated function, which means that you have
1109    /// to call it as `Box::leak(b)` instead of `b.leak()`. This
1110    /// is so that there is no conflict with a method on the inner type.
1111    ///
1112    /// # Examples
1113    ///
1114    /// Simple usage:
1115    ///
1116    /// ```
1117    /// let x = Box::new(41);
1118    /// let static_ref: &'static mut usize = Box::leak(x);
1119    /// *static_ref += 1;
1120    /// assert_eq!(*static_ref, 42);
1121    /// ```
1122    ///
1123    /// Unsized data:
1124    ///
1125    /// ```
1126    /// let x = vec![1, 2, 3].into_boxed_slice();
1127    /// let static_ref = Box::leak(x);
1128    /// static_ref[0] = 4;
1129    /// assert_eq!(*static_ref, [4, 2, 3]);
1130    /// ```
1131    #[inline(always)]
1132    fn leak<'a>(b: Self) -> &'a mut T
1133    where
1134        A: 'a,
1135    {
1136        unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
1137    }
1138
1139    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1140    /// `*boxed` will be pinned in memory and unable to be moved.
1141    ///
1142    /// This conversion does not allocate on the heap and happens in place.
1143    ///
1144    /// This is also available via [`From`].
1145    ///
1146    /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
1147    /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1148    /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
1149    /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1150    ///
1151    /// # Notes
1152    ///
1153    /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
1154    /// as it'll introduce an ambiguity when calling `Pin::from`.
1155    /// A demonstration of such a poor impl is shown below.
1156    ///
1157    /// ```compile_fail
1158    /// # use std::pin::Pin;
1159    /// struct Foo; // A type defined in this crate.
1160    /// impl From<Box<()>> for Pin<Foo> {
1161    ///     fn from(_: Box<()>) -> Pin<Foo> {
1162    ///         Pin::new(Foo)
1163    ///     }
1164    /// }
1165    ///
1166    /// let foo = Box::new(());
1167    /// let bar = Pin::from(foo);
1168    /// ```
1169    #[inline(always)]
1170    pub fn into_pin(boxed: Self) -> Pin<Self>
1171    where
1172        A: 'static,
1173    {
1174        // It's not possible to move or replace the insides of a `Pin<Box<T>>`
1175        // when `T: !Unpin`, so it's safe to pin it directly without any
1176        // additional requirements.
1177        unsafe { Pin::new_unchecked(boxed) }
1178    }
1179}
1180
1181impl<T: ?Sized, A: Allocator> Drop for Box<T, A> {
1182    #[inline(always)]
1183    fn drop(&mut self) {
1184        let layout = Layout::for_value::<T>(&**self);
1185        unsafe {
1186            ptr::drop_in_place(self.0.as_mut());
1187            self.1.deallocate(self.0.cast(), layout);
1188        }
1189    }
1190}
1191
1192#[cfg(not(no_global_oom_handling))]
1193impl<T: Default> Default for Box<T> {
1194    /// Creates a `Box<T>`, with the `Default` value for T.
1195    #[inline(always)]
1196    fn default() -> Self {
1197        Box::new(T::default())
1198    }
1199}
1200
1201impl<T, A: Allocator + Default> Default for Box<[T], A> {
1202    #[inline(always)]
1203    fn default() -> Self {
1204        let ptr: NonNull<[T]> = NonNull::<[T; 0]>::dangling();
1205        Box(ptr, A::default())
1206    }
1207}
1208
1209impl<A: Allocator + Default> Default for Box<str, A> {
1210    #[inline(always)]
1211    fn default() -> Self {
1212        // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
1213        let ptr: NonNull<str> = unsafe {
1214            let bytes: NonNull<[u8]> = NonNull::<[u8; 0]>::dangling();
1215            NonNull::new_unchecked(bytes.as_ptr() as *mut str)
1216        };
1217        Box(ptr, A::default())
1218    }
1219}
1220
1221#[cfg(not(no_global_oom_handling))]
1222impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
1223    /// Returns a new box with a `clone()` of this box's contents.
1224    ///
1225    /// # Examples
1226    ///
1227    /// ```
1228    /// let x = Box::new(5);
1229    /// let y = x.clone();
1230    ///
1231    /// // The value is the same
1232    /// assert_eq!(x, y);
1233    ///
1234    /// // But they are unique objects
1235    /// assert_ne!(&*x as *const i32, &*y as *const i32);
1236    /// ```
1237    #[inline(always)]
1238    fn clone(&self) -> Self {
1239        // Pre-allocate memory to allow writing the cloned value directly.
1240        let mut boxed = Self::new_uninit_in(self.1.clone());
1241        unsafe {
1242            boxed.write((**self).clone());
1243            boxed.assume_init()
1244        }
1245    }
1246
1247    /// Copies `source`'s contents into `self` without creating a new allocation.
1248    ///
1249    /// # Examples
1250    ///
1251    /// ```
1252    /// let x = Box::new(5);
1253    /// let mut y = Box::new(10);
1254    /// let yp: *const i32 = &*y;
1255    ///
1256    /// y.clone_from(&x);
1257    ///
1258    /// // The value is the same
1259    /// assert_eq!(x, y);
1260    ///
1261    /// // And no allocation occurred
1262    /// assert_eq!(yp, &*y);
1263    /// ```
1264    #[inline(always)]
1265    fn clone_from(&mut self, source: &Self) {
1266        (**self).clone_from(&(**source));
1267    }
1268}
1269
1270#[cfg(not(no_global_oom_handling))]
1271impl Clone for Box<str> {
1272    #[inline(always)]
1273    fn clone(&self) -> Self {
1274        // this makes a copy of the data
1275        let buf: Box<[u8]> = self.as_bytes().into();
1276        unsafe { Box::from_raw(Box::into_raw(buf) as *mut str) }
1277    }
1278}
1279
1280impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
1281    #[inline(always)]
1282    fn eq(&self, other: &Self) -> bool {
1283        PartialEq::eq(&**self, &**other)
1284    }
1285    #[inline(always)]
1286    fn ne(&self, other: &Self) -> bool {
1287        PartialEq::ne(&**self, &**other)
1288    }
1289}
1290
1291impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
1292    #[inline(always)]
1293    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1294        PartialOrd::partial_cmp(&**self, &**other)
1295    }
1296    #[inline(always)]
1297    fn lt(&self, other: &Self) -> bool {
1298        PartialOrd::lt(&**self, &**other)
1299    }
1300    #[inline(always)]
1301    fn le(&self, other: &Self) -> bool {
1302        PartialOrd::le(&**self, &**other)
1303    }
1304    #[inline(always)]
1305    fn ge(&self, other: &Self) -> bool {
1306        PartialOrd::ge(&**self, &**other)
1307    }
1308    #[inline(always)]
1309    fn gt(&self, other: &Self) -> bool {
1310        PartialOrd::gt(&**self, &**other)
1311    }
1312}
1313
1314impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
1315    #[inline(always)]
1316    fn cmp(&self, other: &Self) -> Ordering {
1317        Ord::cmp(&**self, &**other)
1318    }
1319}
1320
1321impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
1322
1323impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
1324    #[inline(always)]
1325    fn hash<H: Hasher>(&self, state: &mut H) {
1326        (**self).hash(state);
1327    }
1328}
1329
1330impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
1331    #[inline(always)]
1332    fn finish(&self) -> u64 {
1333        (**self).finish()
1334    }
1335    #[inline(always)]
1336    fn write(&mut self, bytes: &[u8]) {
1337        (**self).write(bytes)
1338    }
1339    #[inline(always)]
1340    fn write_u8(&mut self, i: u8) {
1341        (**self).write_u8(i)
1342    }
1343    #[inline(always)]
1344    fn write_u16(&mut self, i: u16) {
1345        (**self).write_u16(i)
1346    }
1347    #[inline(always)]
1348    fn write_u32(&mut self, i: u32) {
1349        (**self).write_u32(i)
1350    }
1351    #[inline(always)]
1352    fn write_u64(&mut self, i: u64) {
1353        (**self).write_u64(i)
1354    }
1355    #[inline(always)]
1356    fn write_u128(&mut self, i: u128) {
1357        (**self).write_u128(i)
1358    }
1359    #[inline(always)]
1360    fn write_usize(&mut self, i: usize) {
1361        (**self).write_usize(i)
1362    }
1363    #[inline(always)]
1364    fn write_i8(&mut self, i: i8) {
1365        (**self).write_i8(i)
1366    }
1367    #[inline(always)]
1368    fn write_i16(&mut self, i: i16) {
1369        (**self).write_i16(i)
1370    }
1371    #[inline(always)]
1372    fn write_i32(&mut self, i: i32) {
1373        (**self).write_i32(i)
1374    }
1375    #[inline(always)]
1376    fn write_i64(&mut self, i: i64) {
1377        (**self).write_i64(i)
1378    }
1379    #[inline(always)]
1380    fn write_i128(&mut self, i: i128) {
1381        (**self).write_i128(i)
1382    }
1383    #[inline(always)]
1384    fn write_isize(&mut self, i: isize) {
1385        (**self).write_isize(i)
1386    }
1387}
1388
1389#[cfg(not(no_global_oom_handling))]
1390impl<T> From<T> for Box<T> {
1391    /// Converts a `T` into a `Box<T>`
1392    ///
1393    /// The conversion allocates on the heap and moves `t`
1394    /// from the stack into it.
1395    ///
1396    /// # Examples
1397    ///
1398    /// ```rust
1399    /// let x = 5;
1400    /// let boxed = Box::new(5);
1401    ///
1402    /// assert_eq!(Box::from(x), boxed);
1403    /// ```
1404    #[inline(always)]
1405    fn from(t: T) -> Self {
1406        Box::new(t)
1407    }
1408}
1409
1410impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
1411where
1412    A: 'static,
1413{
1414    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1415    /// `*boxed` will be pinned in memory and unable to be moved.
1416    ///
1417    /// This conversion does not allocate on the heap and happens in place.
1418    ///
1419    /// This is also available via [`Box::into_pin`].
1420    ///
1421    /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
1422    /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1423    /// This `From` implementation is useful if you already have a `Box<T>`, or you are
1424    /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1425    #[inline(always)]
1426    fn from(boxed: Box<T, A>) -> Self {
1427        Box::into_pin(boxed)
1428    }
1429}
1430
1431#[cfg(not(no_global_oom_handling))]
1432impl<T: Copy, A: Allocator + Default> From<&[T]> for Box<[T], A> {
1433    /// Converts a `&[T]` into a `Box<[T]>`
1434    ///
1435    /// This conversion allocates on the heap
1436    /// and performs a copy of `slice` and its contents.
1437    ///
1438    /// # Examples
1439    /// ```rust
1440    /// // create a &[u8] which will be used to create a Box<[u8]>
1441    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1442    /// let boxed_slice: Box<[u8]> = Box::from(slice);
1443    ///
1444    /// println!("{boxed_slice:?}");
1445    /// ```
1446    #[inline(always)]
1447    fn from(slice: &[T]) -> Box<[T], A> {
1448        let len = slice.len();
1449        let buf = RawVec::with_capacity_in(len, A::default());
1450        unsafe {
1451            ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
1452            buf.into_box(slice.len()).assume_init()
1453        }
1454    }
1455}
1456
1457#[cfg(not(no_global_oom_handling))]
1458impl<A: Allocator + Default> From<&str> for Box<str, A> {
1459    /// Converts a `&str` into a `Box<str>`
1460    ///
1461    /// This conversion allocates on the heap
1462    /// and performs a copy of `s`.
1463    ///
1464    /// # Examples
1465    ///
1466    /// ```rust
1467    /// let boxed: Box<str> = Box::from("hello");
1468    /// println!("{boxed}");
1469    /// ```
1470    #[inline(always)]
1471    fn from(s: &str) -> Box<str, A> {
1472        let (raw, alloc) = Box::into_raw_with_allocator(Box::<[u8], A>::from(s.as_bytes()));
1473        unsafe { Box::from_raw_in(raw as *mut str, alloc) }
1474    }
1475}
1476
1477impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
1478    /// Converts a `Box<str>` into a `Box<[u8]>`
1479    ///
1480    /// This conversion does not allocate on the heap and happens in place.
1481    ///
1482    /// # Examples
1483    /// ```rust
1484    /// // create a Box<str> which will be used to create a Box<[u8]>
1485    /// let boxed: Box<str> = Box::from("hello");
1486    /// let boxed_str: Box<[u8]> = Box::from(boxed);
1487    ///
1488    /// // create a &[u8] which will be used to create a Box<[u8]>
1489    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1490    /// let boxed_slice = Box::from(slice);
1491    ///
1492    /// assert_eq!(boxed_slice, boxed_str);
1493    /// ```
1494    #[inline(always)]
1495    fn from(s: Box<str, A>) -> Self {
1496        let (raw, alloc) = Box::into_raw_with_allocator(s);
1497        unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
1498    }
1499}
1500
1501impl<T, A: Allocator, const N: usize> Box<[T; N], A> {
1502    #[inline(always)]
1503    pub fn slice(b: Self) -> Box<[T], A> {
1504        let (ptr, alloc) = Box::into_raw_with_allocator(b);
1505        unsafe { Box::from_raw_in(ptr, alloc) }
1506    }
1507
1508    pub fn into_vec(self) -> Vec<T, A>
1509    where
1510        A: Allocator,
1511    {
1512        unsafe {
1513            let (b, alloc) = Box::into_raw_with_allocator(self);
1514            Vec::from_raw_parts_in(b as *mut T, N, N, alloc)
1515        }
1516    }
1517}
1518
1519#[cfg(not(no_global_oom_handling))]
1520impl<T, const N: usize> From<[T; N]> for Box<[T]> {
1521    /// Converts a `[T; N]` into a `Box<[T]>`
1522    ///
1523    /// This conversion moves the array to newly heap-allocated memory.
1524    ///
1525    /// # Examples
1526    ///
1527    /// ```rust
1528    /// let boxed: Box<[u8]> = Box::from([4, 2]);
1529    /// println!("{boxed:?}");
1530    /// ```
1531    #[inline(always)]
1532    fn from(array: [T; N]) -> Box<[T]> {
1533        Box::slice(Box::new(array))
1534    }
1535}
1536
1537impl<T, A: Allocator, const N: usize> TryFrom<Box<[T], A>> for Box<[T; N], A> {
1538    type Error = Box<[T], A>;
1539
1540    /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
1541    ///
1542    /// The conversion occurs in-place and does not require a
1543    /// new memory allocation.
1544    ///
1545    /// # Errors
1546    ///
1547    /// Returns the old `Box<[T]>` in the `Err` variant if
1548    /// `boxed_slice.len()` does not equal `N`.
1549    #[inline(always)]
1550    fn try_from(boxed_slice: Box<[T], A>) -> Result<Self, Self::Error> {
1551        if boxed_slice.len() == N {
1552            let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice);
1553            Ok(unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) })
1554        } else {
1555            Err(boxed_slice)
1556        }
1557    }
1558}
1559
1560impl<A: Allocator> Box<dyn Any, A> {
1561    /// Attempt to downcast the box to a concrete type.
1562    ///
1563    /// # Examples
1564    ///
1565    /// ```
1566    /// use std::any::Any;
1567    ///
1568    /// fn print_if_string(value: Box<dyn Any>) {
1569    ///     if let Ok(string) = value.downcast::<String>() {
1570    ///         println!("String ({}): {}", string.len(), string);
1571    ///     }
1572    /// }
1573    ///
1574    /// let my_string = "Hello World".to_string();
1575    /// print_if_string(Box::new(my_string));
1576    /// print_if_string(Box::new(0i8));
1577    /// ```
1578    #[inline(always)]
1579    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1580        if self.is::<T>() {
1581            unsafe { Ok(self.downcast_unchecked::<T>()) }
1582        } else {
1583            Err(self)
1584        }
1585    }
1586
1587    /// Downcasts the box to a concrete type.
1588    ///
1589    /// For a safe alternative see [`downcast`].
1590    ///
1591    /// # Examples
1592    ///
1593    /// ```
1594    /// #![feature(downcast_unchecked)]
1595    ///
1596    /// use std::any::Any;
1597    ///
1598    /// let x: Box<dyn Any> = Box::new(1_usize);
1599    ///
1600    /// unsafe {
1601    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1602    /// }
1603    /// ```
1604    ///
1605    /// # Safety
1606    ///
1607    /// The contained value must be of type `T`. Calling this method
1608    /// with the incorrect type is *undefined behavior*.
1609    ///
1610    /// [`downcast`]: Self::downcast
1611    #[inline(always)]
1612    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1613        debug_assert!(self.is::<T>());
1614        unsafe {
1615            let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
1616            Box::from_raw_in(raw as *mut T, alloc)
1617        }
1618    }
1619}
1620
1621impl<A: Allocator> Box<dyn Any + Send, A> {
1622    /// Attempt to downcast the box to a concrete type.
1623    ///
1624    /// # Examples
1625    ///
1626    /// ```
1627    /// use std::any::Any;
1628    ///
1629    /// fn print_if_string(value: Box<dyn Any + Send>) {
1630    ///     if let Ok(string) = value.downcast::<String>() {
1631    ///         println!("String ({}): {}", string.len(), string);
1632    ///     }
1633    /// }
1634    ///
1635    /// let my_string = "Hello World".to_string();
1636    /// print_if_string(Box::new(my_string));
1637    /// print_if_string(Box::new(0i8));
1638    /// ```
1639    #[inline(always)]
1640    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1641        if self.is::<T>() {
1642            unsafe { Ok(self.downcast_unchecked::<T>()) }
1643        } else {
1644            Err(self)
1645        }
1646    }
1647
1648    /// Downcasts the box to a concrete type.
1649    ///
1650    /// For a safe alternative see [`downcast`].
1651    ///
1652    /// # Examples
1653    ///
1654    /// ```
1655    /// #![feature(downcast_unchecked)]
1656    ///
1657    /// use std::any::Any;
1658    ///
1659    /// let x: Box<dyn Any + Send> = Box::new(1_usize);
1660    ///
1661    /// unsafe {
1662    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1663    /// }
1664    /// ```
1665    ///
1666    /// # Safety
1667    ///
1668    /// The contained value must be of type `T`. Calling this method
1669    /// with the incorrect type is *undefined behavior*.
1670    ///
1671    /// [`downcast`]: Self::downcast
1672    #[inline(always)]
1673    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1674        debug_assert!(self.is::<T>());
1675        unsafe {
1676            let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
1677            Box::from_raw_in(raw as *mut T, alloc)
1678        }
1679    }
1680}
1681
1682impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
1683    /// Attempt to downcast the box to a concrete type.
1684    ///
1685    /// # Examples
1686    ///
1687    /// ```
1688    /// use std::any::Any;
1689    ///
1690    /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
1691    ///     if let Ok(string) = value.downcast::<String>() {
1692    ///         println!("String ({}): {}", string.len(), string);
1693    ///     }
1694    /// }
1695    ///
1696    /// let my_string = "Hello World".to_string();
1697    /// print_if_string(Box::new(my_string));
1698    /// print_if_string(Box::new(0i8));
1699    /// ```
1700    #[inline(always)]
1701    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1702        if self.is::<T>() {
1703            unsafe { Ok(self.downcast_unchecked::<T>()) }
1704        } else {
1705            Err(self)
1706        }
1707    }
1708
1709    /// Downcasts the box to a concrete type.
1710    ///
1711    /// For a safe alternative see [`downcast`].
1712    ///
1713    /// # Examples
1714    ///
1715    /// ```
1716    /// #![feature(downcast_unchecked)]
1717    ///
1718    /// use std::any::Any;
1719    ///
1720    /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
1721    ///
1722    /// unsafe {
1723    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1724    /// }
1725    /// ```
1726    ///
1727    /// # Safety
1728    ///
1729    /// The contained value must be of type `T`. Calling this method
1730    /// with the incorrect type is *undefined behavior*.
1731    ///
1732    /// [`downcast`]: Self::downcast
1733    #[inline(always)]
1734    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1735        debug_assert!(self.is::<T>());
1736        unsafe {
1737            let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
1738                Box::into_raw_with_allocator(self);
1739            Box::from_raw_in(raw as *mut T, alloc)
1740        }
1741    }
1742}
1743
1744impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
1745    #[inline(always)]
1746    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1747        fmt::Display::fmt(&**self, f)
1748    }
1749}
1750
1751impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
1752    #[inline(always)]
1753    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1754        fmt::Debug::fmt(&**self, f)
1755    }
1756}
1757
1758impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
1759    #[inline(always)]
1760    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1761        // It's not possible to extract the inner Uniq directly from the Box,
1762        // instead we cast it to a *const which aliases the Unique
1763        let ptr: *const T = &**self;
1764        fmt::Pointer::fmt(&ptr, f)
1765    }
1766}
1767
1768impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
1769    type Target = T;
1770
1771    #[inline(always)]
1772    fn deref(&self) -> &T {
1773        unsafe { self.0.as_ref() }
1774    }
1775}
1776
1777impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
1778    #[inline(always)]
1779    fn deref_mut(&mut self) -> &mut T {
1780        unsafe { self.0.as_mut() }
1781    }
1782}
1783
1784impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
1785    type Item = I::Item;
1786
1787    #[inline(always)]
1788    fn next(&mut self) -> Option<I::Item> {
1789        (**self).next()
1790    }
1791
1792    #[inline(always)]
1793    fn size_hint(&self) -> (usize, Option<usize>) {
1794        (**self).size_hint()
1795    }
1796
1797    #[inline(always)]
1798    fn nth(&mut self, n: usize) -> Option<I::Item> {
1799        (**self).nth(n)
1800    }
1801
1802    #[inline(always)]
1803    fn last(self) -> Option<I::Item> {
1804        BoxIter::last(self)
1805    }
1806}
1807
1808trait BoxIter {
1809    type Item;
1810    fn last(self) -> Option<Self::Item>;
1811}
1812
1813impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
1814    type Item = I::Item;
1815
1816    #[inline(always)]
1817    fn last(self) -> Option<I::Item> {
1818        #[inline(always)]
1819        fn some<T>(_: Option<T>, x: T) -> Option<T> {
1820            Some(x)
1821        }
1822
1823        self.fold(None, some)
1824    }
1825}
1826
1827impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
1828    #[inline(always)]
1829    fn next_back(&mut self) -> Option<I::Item> {
1830        (**self).next_back()
1831    }
1832    #[inline(always)]
1833    fn nth_back(&mut self, n: usize) -> Option<I::Item> {
1834        (**self).nth_back(n)
1835    }
1836}
1837
1838impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
1839    #[inline(always)]
1840    fn len(&self) -> usize {
1841        (**self).len()
1842    }
1843}
1844
1845impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
1846
1847#[cfg(not(no_global_oom_handling))]
1848impl<I> FromIterator<I> for Box<[I]> {
1849    #[inline(always)]
1850    fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
1851        iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
1852    }
1853}
1854
1855#[cfg(not(no_global_oom_handling))]
1856impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
1857    #[inline(always)]
1858    fn clone(&self) -> Self {
1859        let alloc = Box::allocator(self).clone();
1860        let mut vec = Vec::with_capacity_in(self.len(), alloc);
1861        vec.extend_from_slice(self);
1862        vec.into_boxed_slice()
1863    }
1864
1865    #[inline(always)]
1866    fn clone_from(&mut self, other: &Self) {
1867        if self.len() == other.len() {
1868            self.clone_from_slice(other);
1869        } else {
1870            *self = other.clone();
1871        }
1872    }
1873}
1874
1875impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
1876    #[inline(always)]
1877    fn borrow(&self) -> &T {
1878        self
1879    }
1880}
1881
1882impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
1883    #[inline(always)]
1884    fn borrow_mut(&mut self) -> &mut T {
1885        self
1886    }
1887}
1888
1889impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
1890    #[inline(always)]
1891    fn as_ref(&self) -> &T {
1892        self
1893    }
1894}
1895
1896impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
1897    #[inline(always)]
1898    fn as_mut(&mut self) -> &mut T {
1899        self
1900    }
1901}
1902
1903/* Nota bene
1904 *
1905 *  We could have chosen not to add this impl, and instead have written a
1906 *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
1907 *  because Box<T> implements Unpin even when T does not, as a result of
1908 *  this impl.
1909 *
1910 *  We chose this API instead of the alternative for a few reasons:
1911 *      - Logically, it is helpful to understand pinning in regard to the
1912 *        memory region being pointed to. For this reason none of the
1913 *        standard library pointer types support projecting through a pin
1914 *        (Box<T> is the only pointer type in std for which this would be
1915 *        safe.)
1916 *      - It is in practice very useful to have Box<T> be unconditionally
1917 *        Unpin because of trait objects, for which the structural auto
1918 *        trait functionality does not apply (e.g., Box<dyn Foo> would
1919 *        otherwise not be Unpin).
1920 *
1921 *  Another type with the same semantics as Box but only a conditional
1922 *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
1923 *  could have a method to project a Pin<T> from it.
1924 */
1925impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}
1926
1927impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
1928where
1929    A: 'static,
1930{
1931    type Output = F::Output;
1932
1933    #[inline(always)]
1934    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1935        F::poll(Pin::new(&mut *self), cx)
1936    }
1937}
1938
1939#[cfg(feature = "std")]
1940mod error {
1941    use std::error::Error;
1942
1943    use super::Box;
1944
1945    #[cfg(not(no_global_oom_handling))]
1946    impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
1947        /// Converts a type of [`Error`] into a box of dyn [`Error`].
1948        ///
1949        /// # Examples
1950        ///
1951        /// ```
1952        /// use std::error::Error;
1953        /// use std::fmt;
1954        /// use std::mem;
1955        ///
1956        /// #[derive(Debug)]
1957        /// struct AnError;
1958        ///
1959        /// impl fmt::Display for AnError {
1960        ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1961        ///         write!(f, "An error")
1962        ///     }
1963        /// }
1964        ///
1965        /// impl Error for AnError {}
1966        ///
1967        /// let an_error = AnError;
1968        /// assert!(0 == mem::size_of_val(&an_error));
1969        /// let a_boxed_error = Box::<dyn Error>::from(an_error);
1970        /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
1971        /// ```
1972        #[inline(always)]
1973        fn from(err: E) -> Box<dyn Error + 'a> {
1974            unsafe { Box::from_raw(Box::leak(Box::new(err))) }
1975        }
1976    }
1977
1978    #[cfg(not(no_global_oom_handling))]
1979    impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
1980        /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
1981        /// dyn [`Error`] + [`Send`] + [`Sync`].
1982        ///
1983        /// # Examples
1984        ///
1985        /// ```
1986        /// use std::error::Error;
1987        /// use std::fmt;
1988        /// use std::mem;
1989        ///
1990        /// #[derive(Debug)]
1991        /// struct AnError;
1992        ///
1993        /// impl fmt::Display for AnError {
1994        ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1995        ///         write!(f, "An error")
1996        ///     }
1997        /// }
1998        ///
1999        /// impl Error for AnError {}
2000        ///
2001        /// unsafe impl Send for AnError {}
2002        ///
2003        /// unsafe impl Sync for AnError {}
2004        ///
2005        /// let an_error = AnError;
2006        /// assert!(0 == mem::size_of_val(&an_error));
2007        /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
2008        /// assert!(
2009        ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2010        /// ```
2011        #[inline(always)]
2012        fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
2013            unsafe { Box::from_raw(Box::leak(Box::new(err))) }
2014        }
2015    }
2016
2017    impl<T: Error> Error for Box<T> {
2018        #[inline(always)]
2019        fn source(&self) -> Option<&(dyn Error + 'static)> {
2020            Error::source(&**self)
2021        }
2022    }
2023}
2024
2025#[cfg(feature = "std")]
2026impl<R: std::io::Read + ?Sized, A: Allocator> std::io::Read for Box<R, A> {
2027    #[inline]
2028    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
2029        (**self).read(buf)
2030    }
2031
2032    #[inline]
2033    fn read_to_end(&mut self, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
2034        (**self).read_to_end(buf)
2035    }
2036
2037    #[inline]
2038    fn read_to_string(&mut self, buf: &mut String) -> std::io::Result<usize> {
2039        (**self).read_to_string(buf)
2040    }
2041
2042    #[inline]
2043    fn read_exact(&mut self, buf: &mut [u8]) -> std::io::Result<()> {
2044        (**self).read_exact(buf)
2045    }
2046}
2047
2048#[cfg(feature = "std")]
2049impl<W: std::io::Write + ?Sized, A: Allocator> std::io::Write for Box<W, A> {
2050    #[inline]
2051    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
2052        (**self).write(buf)
2053    }
2054
2055    #[inline]
2056    fn flush(&mut self) -> std::io::Result<()> {
2057        (**self).flush()
2058    }
2059
2060    #[inline]
2061    fn write_all(&mut self, buf: &[u8]) -> std::io::Result<()> {
2062        (**self).write_all(buf)
2063    }
2064
2065    #[inline]
2066    fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> std::io::Result<()> {
2067        (**self).write_fmt(fmt)
2068    }
2069}
2070
2071#[cfg(feature = "std")]
2072impl<S: std::io::Seek + ?Sized, A: Allocator> std::io::Seek for Box<S, A> {
2073    #[inline]
2074    fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
2075        (**self).seek(pos)
2076    }
2077
2078    #[inline]
2079    fn stream_position(&mut self) -> std::io::Result<u64> {
2080        (**self).stream_position()
2081    }
2082}
2083
2084#[cfg(feature = "std")]
2085impl<B: std::io::BufRead + ?Sized, A: Allocator> std::io::BufRead for Box<B, A> {
2086    #[inline]
2087    fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
2088        (**self).fill_buf()
2089    }
2090
2091    #[inline]
2092    fn consume(&mut self, amt: usize) {
2093        (**self).consume(amt)
2094    }
2095
2096    #[inline]
2097    fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
2098        (**self).read_until(byte, buf)
2099    }
2100
2101    #[inline]
2102    fn read_line(&mut self, buf: &mut std::string::String) -> std::io::Result<usize> {
2103        (**self).read_line(buf)
2104    }
2105}
2106
2107#[cfg(feature = "alloc")]
2108impl<A: Allocator> Extend<Box<str, A>> for alloc_crate::string::String {
2109    fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2110        iter.into_iter().for_each(move |s| self.push_str(&s));
2111    }
2112}
2113
2114#[cfg(not(no_global_oom_handling))]
2115impl Clone for Box<core::ffi::CStr> {
2116    #[inline]
2117    fn clone(&self) -> Self {
2118        (**self).into()
2119    }
2120}
2121
2122#[cfg(not(no_global_oom_handling))]
2123impl From<&core::ffi::CStr> for Box<core::ffi::CStr> {
2124    /// Converts a `&CStr` into a `Box<CStr>`,
2125    /// by copying the contents into a newly allocated [`Box`].
2126    fn from(s: &core::ffi::CStr) -> Box<core::ffi::CStr> {
2127        let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
2128        unsafe { Box::from_raw(Box::into_raw(boxed) as *mut core::ffi::CStr) }
2129    }
2130}
2131
2132#[cfg(feature = "serde")]
2133impl<T, A> serde::Serialize for Box<T, A>
2134where
2135    T: serde::Serialize,
2136    A: Allocator,
2137{
2138    #[inline(always)]
2139    fn serialize<S: serde::ser::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
2140        (**self).serialize(serializer)
2141    }
2142}
2143
2144#[cfg(feature = "serde")]
2145impl<'de, T, A> serde::Deserialize<'de> for Box<T, A>
2146where
2147    T: serde::Deserialize<'de>,
2148    A: Allocator + Default,
2149{
2150    #[inline(always)]
2151    fn deserialize<D: serde::de::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
2152        let value = T::deserialize(deserializer)?;
2153        Ok(Box::new_in(value, A::default()))
2154    }
2155}