1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
use std::collections::HashMap;
use std::mem;
use std::rc::Rc;

use dense;
use error::Result;
use nfa::{self, NFA};
use sparse_set::SparseSet;
use state_id::{dead_id, StateID};

type DFARepr<S> = dense::Repr<Vec<S>, S>;

/// A determinizer converts an NFA to a DFA.
///
/// This determinizer follows the typical powerset construction, where each
/// DFA state is comprised of one or more NFA states. In the worst case, there
/// is one DFA state for every possible combination of NFA states. In practice,
/// this only happens in certain conditions, typically when there are bounded
/// repetitions.
///
/// The type variable `S` refers to the chosen state identifier representation
/// used for the DFA.
///
/// The lifetime variable `'a` refers to the lifetime of the NFA being
/// converted to a DFA.
#[derive(Debug)]
pub(crate) struct Determinizer<'a, S: StateID> {
    /// The NFA we're converting into a DFA.
    nfa: &'a NFA,
    /// The DFA we're building.
    dfa: DFARepr<S>,
    /// Each DFA state being built is defined as an *ordered* set of NFA
    /// states, along with a flag indicating whether the state is a match
    /// state or not.
    ///
    /// This is never empty. The first state is always a dummy state such that
    /// a state id == 0 corresponds to a dead state.
    builder_states: Vec<Rc<State>>,
    /// A cache of DFA states that already exist and can be easily looked up
    /// via ordered sets of NFA states.
    cache: HashMap<Rc<State>, S>,
    /// Scratch space for a stack of NFA states to visit, for depth first
    /// visiting without recursion.
    stack: Vec<nfa::StateID>,
    /// Scratch space for storing an ordered sequence of NFA states, for
    /// amortizing allocation.
    scratch_nfa_states: Vec<nfa::StateID>,
    /// Whether to build a DFA that finds the longest possible match.
    longest_match: bool,
}

/// An intermediate representation for a DFA state during determinization.
#[derive(Debug, Eq, Hash, PartialEq)]
struct State {
    /// Whether this state is a match state or not.
    is_match: bool,
    /// An ordered sequence of NFA states that make up this DFA state.
    nfa_states: Vec<nfa::StateID>,
}

impl<'a, S: StateID> Determinizer<'a, S> {
    /// Create a new determinizer for converting the given NFA to a DFA.
    pub fn new(nfa: &'a NFA) -> Determinizer<'a, S> {
        let dead = Rc::new(State::dead());
        let mut cache = HashMap::default();
        cache.insert(dead.clone(), dead_id());

        Determinizer {
            nfa,
            dfa: DFARepr::empty().anchored(nfa.is_anchored()),
            builder_states: vec![dead],
            cache,
            stack: vec![],
            scratch_nfa_states: vec![],
            longest_match: false,
        }
    }

    /// Instruct the determinizer to use equivalence classes as the transition
    /// alphabet instead of all possible byte values.
    pub fn with_byte_classes(mut self) -> Determinizer<'a, S> {
        let byte_classes = self.nfa.byte_classes().clone();
        self.dfa = DFARepr::empty_with_byte_classes(byte_classes)
            .anchored(self.nfa.is_anchored());
        self
    }

    /// Instruct the determinizer to build a DFA that recognizes the longest
    /// possible match instead of the leftmost first match. This is useful when
    /// constructing reverse DFAs for finding the start of a match.
    pub fn longest_match(mut self, yes: bool) -> Determinizer<'a, S> {
        self.longest_match = yes;
        self
    }

    /// Build the DFA. If there was a problem constructing the DFA (e.g., if
    /// the chosen state identifier representation is too small), then an error
    /// is returned.
    pub fn build(mut self) -> Result<DFARepr<S>> {
        let representative_bytes: Vec<u8> =
            self.dfa.byte_classes().representatives().collect();
        let mut sparse = self.new_sparse_set();
        let mut uncompiled = vec![self.add_start(&mut sparse)?];
        while let Some(dfa_id) = uncompiled.pop() {
            for &b in &representative_bytes {
                let (next_dfa_id, is_new) =
                    self.cached_state(dfa_id, b, &mut sparse)?;
                self.dfa.add_transition(dfa_id, b, next_dfa_id);
                if is_new {
                    uncompiled.push(next_dfa_id);
                }
            }
        }

        // At this point, we shuffle the matching states in the final DFA to
        // the beginning. This permits a DFA's match loop to detect a match
        // condition by merely inspecting the current state's identifier, and
        // avoids the need for any additional auxiliary storage.
        let is_match: Vec<bool> =
            self.builder_states.iter().map(|s| s.is_match).collect();
        self.dfa.shuffle_match_states(&is_match);
        Ok(self.dfa)
    }

    /// Return the identifier for the next DFA state given an existing DFA
    /// state and an input byte. If the next DFA state already exists, then
    /// return its identifier from the cache. Otherwise, build the state, cache
    /// it and return its identifier.
    ///
    /// The given sparse set is used for scratch space. It must have a capacity
    /// equivalent to the total number of NFA states, but its contents are
    /// otherwise unspecified.
    ///
    /// This routine returns a boolean indicating whether a new state was
    /// built. If a new state is built, then the caller needs to add it to its
    /// frontier of uncompiled DFA states to compute transitions for.
    fn cached_state(
        &mut self,
        dfa_id: S,
        b: u8,
        sparse: &mut SparseSet,
    ) -> Result<(S, bool)> {
        sparse.clear();
        // Compute the set of all reachable NFA states, including epsilons.
        self.next(dfa_id, b, sparse);
        // Build a candidate state and check if it has already been built.
        let state = self.new_state(sparse);
        if let Some(&cached_id) = self.cache.get(&state) {
            // Since we have a cached state, put the constructed state's
            // memory back into our scratch space, so that it can be reused.
            mem::replace(&mut self.scratch_nfa_states, state.nfa_states);
            return Ok((cached_id, false));
        }
        // Nothing was in the cache, so add this state to the cache.
        self.add_state(state).map(|s| (s, true))
    }

    /// Compute the set of all eachable NFA states, including the full epsilon
    /// closure, from a DFA state for a single byte of input.
    fn next(&mut self, dfa_id: S, b: u8, next_nfa_states: &mut SparseSet) {
        next_nfa_states.clear();
        for i in 0..self.builder_states[dfa_id.to_usize()].nfa_states.len() {
            let nfa_id = self.builder_states[dfa_id.to_usize()].nfa_states[i];
            match *self.nfa.state(nfa_id) {
                nfa::State::Union { .. }
                | nfa::State::Fail
                | nfa::State::Match => {}
                nfa::State::Range { range: ref r } => {
                    if r.start <= b && b <= r.end {
                        self.epsilon_closure(r.next, next_nfa_states);
                    }
                }
                nfa::State::Sparse { ref ranges } => {
                    for r in ranges.iter() {
                        if r.start > b {
                            break;
                        } else if r.start <= b && b <= r.end {
                            self.epsilon_closure(r.next, next_nfa_states);
                            break;
                        }
                    }
                }
            }
        }
    }

    /// Compute the epsilon closure for the given NFA state.
    fn epsilon_closure(&mut self, start: nfa::StateID, set: &mut SparseSet) {
        if !self.nfa.state(start).is_epsilon() {
            set.insert(start);
            return;
        }

        self.stack.push(start);
        while let Some(mut id) = self.stack.pop() {
            loop {
                if set.contains(id) {
                    break;
                }
                set.insert(id);
                match *self.nfa.state(id) {
                    nfa::State::Range { .. }
                    | nfa::State::Sparse { .. }
                    | nfa::State::Fail
                    | nfa::State::Match => break,
                    nfa::State::Union { ref alternates } => {
                        id = match alternates.get(0) {
                            None => break,
                            Some(&id) => id,
                        };
                        self.stack.extend(alternates[1..].iter().rev());
                    }
                }
            }
        }
    }

    /// Compute the initial DFA state and return its identifier.
    ///
    /// The sparse set given is used for scratch space, and must have capacity
    /// equal to the total number of NFA states. Its contents are unspecified.
    fn add_start(&mut self, sparse: &mut SparseSet) -> Result<S> {
        sparse.clear();
        self.epsilon_closure(self.nfa.start(), sparse);
        let state = self.new_state(&sparse);
        let id = self.add_state(state)?;
        self.dfa.set_start_state(id);
        Ok(id)
    }

    /// Add the given state to the DFA and make it available in the cache.
    ///
    /// The state initially has no transitions. That is, it transitions to the
    /// dead state for all possible inputs.
    fn add_state(&mut self, state: State) -> Result<S> {
        let id = self.dfa.add_empty_state()?;
        let rstate = Rc::new(state);
        self.builder_states.push(rstate.clone());
        self.cache.insert(rstate, id);
        Ok(id)
    }

    /// Convert the given set of ordered NFA states to a DFA state.
    fn new_state(&mut self, set: &SparseSet) -> State {
        let mut state = State {
            is_match: false,
            nfa_states: mem::replace(&mut self.scratch_nfa_states, vec![]),
        };
        state.nfa_states.clear();

        for &id in set {
            match *self.nfa.state(id) {
                nfa::State::Range { .. } => {
                    state.nfa_states.push(id);
                }
                nfa::State::Sparse { .. } => {
                    state.nfa_states.push(id);
                }
                nfa::State::Fail => {
                    break;
                }
                nfa::State::Match => {
                    state.is_match = true;
                    if !self.longest_match {
                        break;
                    }
                }
                nfa::State::Union { .. } => {}
            }
        }
        state
    }

    /// Create a new sparse set with enough capacity to hold all NFA states.
    fn new_sparse_set(&self) -> SparseSet {
        SparseSet::new(self.nfa.len())
    }
}

impl State {
    /// Create a new empty dead state.
    fn dead() -> State {
        State { nfa_states: vec![], is_match: false }
    }
}