1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

// Copied from https://github.com/apache/arrow-rs/blob/6859efa690d4c9530cf8a24053bc6ed81025a164/parquet/src/util/bit_pack.rs

/// Macro that generates an unpack function taking the number of bits as a const generic
macro_rules! unpack_impl {
    ($t:ty, $bytes:literal, $bits:tt) => {
        pub fn unpack<const NUM_BITS: usize>(input: &[u8], output: &mut [$t; $bits]) {
            if NUM_BITS == 0 {
                for out in output {
                    *out = 0;
                }
                return;
            }

            assert!(NUM_BITS <= $bytes * 8);

            let mask = match NUM_BITS {
                $bits => <$t>::MAX,
                _ => ((1 << NUM_BITS) - 1),
            };

            assert!(input.len() >= NUM_BITS * $bytes);

            let r = |output_idx: usize| {
                <$t>::from_le_bytes(
                    input[output_idx * $bytes..output_idx * $bytes + $bytes]
                        .try_into()
                        .unwrap(),
                )
            };

            seq_macro::seq!(i in 0..$bits {
                let start_bit = i * NUM_BITS;
                let end_bit = start_bit + NUM_BITS;

                let start_bit_offset = start_bit % $bits;
                let end_bit_offset = end_bit % $bits;
                let start_byte = start_bit / $bits;
                let end_byte = end_bit / $bits;
                if start_byte != end_byte && end_bit_offset != 0 {
                    let val = r(start_byte);
                    let a = val >> start_bit_offset;
                    let val = r(end_byte);
                    let b = val << (NUM_BITS - end_bit_offset);

                    output[i] = a | (b & mask);
                } else {
                    let val = r(start_byte);
                    output[i] = (val >> start_bit_offset) & mask;
                }
            });
        }
    };
}

/// Macro that generates unpack functions that accept num_bits as a parameter
macro_rules! unpack {
    ($name:ident, $t:ty, $bytes:literal, $bits:tt) => {
        mod $name {
            unpack_impl!($t, $bytes, $bits);
        }

        /// Unpack packed `input` into `output` with a bit width of `num_bits`
        pub fn $name(input: &[u8], output: &mut [$t; $bits], num_bits: usize) {
            // This will get optimised into a jump table
            seq_macro::seq!(i in 0..=$bits {
                if i == num_bits {
                    return $name::unpack::<i>(input, output);
                }
            });
            unreachable!("invalid num_bits {}", num_bits);
        }
    };
}

unpack!(unpack8, u8, 1, 8);
unpack!(unpack16, u16, 2, 16);
unpack!(unpack32, u32, 4, 32);
unpack!(unpack64, u64, 8, 64);

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_basic() {
        let input = [0xFF; 4096];

        for i in 0..=8 {
            let mut output = [0; 8];
            unpack8(&input, &mut output, i);
            for (idx, out) in output.iter().enumerate() {
                assert_eq!(out.trailing_ones() as usize, i, "out[{}] = {}", idx, out);
            }
        }

        for i in 0..=16 {
            let mut output = [0; 16];
            unpack16(&input, &mut output, i);
            for (idx, out) in output.iter().enumerate() {
                assert_eq!(out.trailing_ones() as usize, i, "out[{}] = {}", idx, out);
            }
        }

        for i in 0..=32 {
            let mut output = [0; 32];
            unpack32(&input, &mut output, i);
            for (idx, out) in output.iter().enumerate() {
                assert_eq!(out.trailing_ones() as usize, i, "out[{}] = {}", idx, out);
            }
        }

        for i in 0..=64 {
            let mut output = [0; 64];
            unpack64(&input, &mut output, i);
            for (idx, out) in output.iter().enumerate() {
                assert_eq!(out.trailing_ones() as usize, i, "out[{}] = {}", idx, out);
            }
        }
    }
}