1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Definition and helper structs for the [`ColumnNames`] attribute.
use std::ops::Range;
use mz_expr::{Id, MirRelationExpr, MirScalarExpr};
use mz_repr::explain::ExprHumanizer;
use crate::attribute::subtree_size::SubtreeSize;
use crate::attribute::{Attribute, DerivedAttributes, DerivedAttributesBuilder, Env};
/// Compute the column types of each subtree of a [MirRelationExpr] from the
/// bottom-up.
#[allow(missing_debug_implementations)]
pub struct ColumnNames<'c> {
humanizer: &'c dyn ExprHumanizer,
/// Environment of computed values for this attribute
env: Env<Self>,
/// A vector of results for all nodes in the visited tree in
/// post-visit order. An empty string denotes a missing value.
pub results: Vec<Vec<String>>,
}
impl<'c> ColumnNames<'c> {
/// Construct a new attribute instance.
pub fn new(humanizer: &'c dyn ExprHumanizer) -> Self {
Self {
humanizer,
env: Env::empty(),
results: Default::default(),
}
}
fn infer<'a, I>(&self, expr: &MirRelationExpr, mut input_results: I) -> Vec<String>
where
I: Iterator<Item = &'a Vec<String>>,
{
use MirRelationExpr::*;
match expr {
Constant { rows: _, typ } => {
// Fallback to an anonymous schema for constants.
ColumnNames::anonymous(0..typ.arity()).collect()
}
Get {
id: Id::Global(id),
typ,
access_strategy: _,
} => {
if let Some(column_names) = self.humanizer.column_names_for_id(*id) {
column_names
} else {
// Possible as some ExprHumanizer impls still return None.
ColumnNames::anonymous(0..typ.arity()).collect()
}
}
Get {
id: Id::Local(id),
typ,
access_strategy: _,
} => {
if let Some(column_names) = self.env.get(id) {
column_names.clone()
} else {
// Possible because we infer LetRec bindings in order. This
// can be improved by introducing a fixpoint loop in the
// Env<A>::schedule_tasks LetRec handling block.
ColumnNames::anonymous(0..typ.arity()).collect()
}
}
Let {
id: _,
value: _,
body: _,
} => {
// Return the column names of the `body`.
input_results.last().unwrap().clone()
}
LetRec {
ids: _,
values: _,
limits: _,
body: _,
} => {
// Return the column names of the `body`.
input_results.last().unwrap().clone()
}
Project { input: _, outputs } => {
// Permute the column names of the input.
let input_column_names = input_results.next().unwrap();
let mut column_names = vec![];
for col in outputs {
column_names.push(input_column_names[*col].clone());
}
column_names
}
Map { input: _, scalars } => {
// Extend the column names of the input with anonymous columns.
let mut column_names = input_results.next().unwrap().clone();
ColumnNames::extend_with_scalars(&mut column_names, scalars);
column_names
}
FlatMap {
input: _,
func,
exprs: _,
} => {
// Extend the column names of the input with anonymous columns.
let mut column_names = input_results.next().unwrap().clone();
let func_output_start = column_names.len();
let func_output_end = column_names.len() + func.output_arity();
column_names.extend(ColumnNames::anonymous(func_output_start..func_output_end));
column_names
}
Filter {
input: _,
predicates: _,
} => {
// Return the column names of the `input`.
input_results.next().unwrap().clone()
}
Join {
inputs: _,
equivalences: _,
implementation: _,
} => {
let mut column_names = vec![];
for input_column_names in input_results {
column_names.extend(input_column_names.iter().cloned());
}
column_names
}
Reduce {
input: _,
group_key,
aggregates,
monotonic: _,
expected_group_size: _,
} => {
// We clone and extend the input vector and then remove the part
// associated with the input at the end.
let mut column_names = input_results.next().unwrap().clone();
let input_arity = column_names.len();
// Infer the group key part.
ColumnNames::extend_with_scalars(&mut column_names, group_key);
// Infer the aggregates part.
let aggs_start = group_key.len();
let aggs_end = group_key.len() + aggregates.len();
column_names.extend(ColumnNames::anonymous(aggs_start..aggs_end));
// Remove the prefix associated with the input
column_names.drain(0..input_arity);
column_names
}
TopK {
input: _,
group_key: _,
order_key: _,
limit: _,
offset: _,
monotonic: _,
expected_group_size: _,
} => {
// Return the column names of the `input`.
input_results.next().unwrap().clone()
}
Negate { input: _ } => {
// Return the column names of the `input`.
input_results.next().unwrap().clone()
}
Threshold { input: _ } => {
// Return the column names of the `input`.
input_results.next().unwrap().clone()
}
Union { base: _, inputs: _ } => {
// Use the first non-empty column across all inputs.
let mut column_names = vec![];
let base_results = input_results.next().unwrap();
let inputs_results = input_results.collect::<Vec<_>>();
for (i, mut column_name) in base_results.iter().cloned().enumerate() {
for input_results in inputs_results.iter() {
if column_name.is_empty() && !input_results[i].is_empty() {
column_name.clone_from(&input_results[i]);
break;
}
}
column_names.push(column_name);
}
column_names
}
ArrangeBy { input: _, keys: _ } => {
// Return the column names of the `input`.
input_results.next().unwrap().clone()
}
}
}
/// fallback schema consisting of ordinal column names: #0, #1, ...
fn anonymous(range: Range<usize>) -> impl Iterator<Item = String> {
range.map(|_| String::new())
}
/// fallback schema consisting of ordinal column names: #0, #1, ...
fn extend_with_scalars(column_names: &mut Vec<String>, scalars: &Vec<MirScalarExpr>) {
for scalar in scalars {
column_names.push(match scalar {
MirScalarExpr::Column(c) => column_names[*c].clone(),
_ => String::new(),
});
}
}
}
impl<'a> Attribute for ColumnNames<'a> {
type Value = Vec<String>;
fn derive(&mut self, expr: &MirRelationExpr, deps: &DerivedAttributes) {
let n = self.results.len();
let mut offsets = Vec::new();
let mut offset = 1;
for _ in 0..expr.num_inputs() {
offsets.push(n - offset);
offset += &deps.get_results::<SubtreeSize>()[n - offset];
}
let input_schemas = offsets.into_iter().rev().map(|o| &self.results[o]);
self.results.push(self.infer(expr, input_schemas));
}
fn schedule_env_tasks(&mut self, expr: &MirRelationExpr) {
self.env.schedule_tasks(expr);
}
fn handle_env_tasks(&mut self) {
self.env.handle_tasks(&self.results);
}
fn add_dependencies(builder: &mut DerivedAttributesBuilder)
where
Self: Sized,
{
builder.require(SubtreeSize::default());
}
fn get_results(&self) -> &Vec<Self::Value> {
&self.results
}
fn get_results_mut(&mut self) -> &mut Vec<Self::Value> {
&mut self.results
}
fn take(self) -> Vec<Self::Value> {
self.results
}
}