1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Definition and helper structs for the [`Cardinality`] attribute.
use std::collections::{BTreeMap, BTreeSet};
use mz_expr::{
BinaryFunc, Id, JoinImplementation, MirRelationExpr, MirScalarExpr, TableFunc, UnaryFunc,
VariadicFunc,
};
use mz_ore::cast::CastLossy;
use mz_repr::GlobalId;
use mz_repr::explain::ExprHumanizer;
use ordered_float::OrderedFloat;
use crate::attribute::subtree_size::SubtreeSize;
use crate::attribute::unique_keys::UniqueKeys;
use crate::attribute::{Attribute, DerivedAttributes, DerivedAttributesBuilder, Env};
use crate::symbolic::SymbolicExpression;
use super::Arity;
/// Compute the estimated cardinality of each subtree of a [MirRelationExpr] from the bottom up.
#[allow(missing_debug_implementations)]
pub struct Cardinality {
/// Environment of computed values for this attribute
env: Env<Self>,
/// A vector of results for all nodes in the visited tree in
/// post-visit order
pub results: Vec<SymExp>,
/// A factorizer for generating appropriating scaling factors
pub factorize: Box<dyn Factorizer + Send + Sync>,
}
impl Default for Cardinality {
fn default() -> Self {
Cardinality {
env: Env::default(),
results: Vec::new(),
factorize: Box::new(WorstCaseFactorizer {
cardinalities: BTreeMap::new(),
}),
}
}
}
/// The variables used in symbolic expressions representing cardinality
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum FactorizerVariable {
/// The total cardinality of a given global id
Id(GlobalId),
/// The inverse of the number of distinct keys in the index held in the given column, i.e., 1/|# of distinct keys|
///
/// TODO(mgree): need to correlate this back to a given global table, to feed in statistics (or have a sub-attribute for collecting this)
Index(usize),
/// An unbound local or other unknown quantity
Unknown,
}
/// SymbolicExpressions specialized to factorizer variables
pub type SymExp = SymbolicExpression<FactorizerVariable>;
/// A `Factorizer` computes selectivity factors
pub trait Factorizer {
/// Compute selectivity for the flat map of `tf`
fn flat_map(&self, tf: &TableFunc, input: &SymExp) -> SymExp;
/// Computes selectivity of the predicate `expr`, given that `unique_columns` are indexed/unique
///
/// The result should be in the range [0, 1.0]
fn predicate(&self, expr: &MirScalarExpr, unique_columns: &BTreeSet<usize>) -> SymExp;
/// Computes selectivity for a filter
fn filter(
&self,
predicates: &Vec<MirScalarExpr>,
keys: &Vec<Vec<usize>>,
input: &SymExp,
) -> SymExp;
/// Computes selectivity for a join; the cardinality estimate for each input is paired with the keys on that input
///
/// `unique_columns` maps column references (that are indexed/unique) to their relation's index in `inputs`
fn join(
&self,
equivalences: &Vec<Vec<MirScalarExpr>>,
implementation: &JoinImplementation,
unique_columns: BTreeMap<usize, usize>,
inputs: Vec<&SymExp>,
) -> SymExp;
/// Computes selectivity for a reduce
fn reduce(
&self,
group_key: &Vec<MirScalarExpr>,
expected_group_size: &Option<u64>,
input: &SymExp,
) -> SymExp;
/// Computes selectivity for a topk
fn topk(
&self,
group_key: &Vec<usize>,
limit: &Option<MirScalarExpr>,
expected_group_size: &Option<u64>,
input: &SymExp,
) -> SymExp;
/// Computes slectivity for a threshold
fn threshold(&self, input: &SymExp) -> SymExp;
}
/// The simplest possible `Factorizer` that aims to generate worst-case, upper-bound cardinalities
#[derive(Debug)]
pub struct WorstCaseFactorizer {
/// cardinalities for each `GlobalId` and its unique values
pub cardinalities: BTreeMap<FactorizerVariable, usize>,
}
/// The default selectivity for predicates we know nothing about.
///
/// It is safe to use this instead of `FactorizerVariable::Index(col)`.
pub const WORST_CASE_SELECTIVITY: f64 = 0.1;
impl Factorizer for WorstCaseFactorizer {
fn flat_map(&self, tf: &TableFunc, input: &SymExp) -> SymExp {
match tf {
TableFunc::Wrap { types, width } => {
input * (f64::cast_lossy(types.len()) / f64::cast_lossy(*width))
}
_ => {
// TODO(mgree) what explosion factor should we make up?
input * &SymExp::from(4.0)
}
}
}
fn predicate(&self, expr: &MirScalarExpr, unique_columns: &BTreeSet<usize>) -> SymExp {
let index_cardinality = |expr: &MirScalarExpr| -> Option<SymExp> {
match expr {
MirScalarExpr::Column(col) => {
if unique_columns.contains(col) {
Some(SymbolicExpression::symbolic(FactorizerVariable::Index(
*col,
)))
} else {
None
}
}
_ => None,
}
};
match expr {
MirScalarExpr::Column(_)
| MirScalarExpr::Literal(_, _)
| MirScalarExpr::CallUnmaterializable(_) => SymExp::from(1.0),
MirScalarExpr::CallUnary { func, expr } => match func {
UnaryFunc::Not(_) => 1.0 - self.predicate(expr, unique_columns),
UnaryFunc::IsTrue(_) | UnaryFunc::IsFalse(_) => SymExp::from(0.5),
UnaryFunc::IsNull(_) => {
if let Some(icard) = index_cardinality(expr) {
icard
} else {
SymExp::from(WORST_CASE_SELECTIVITY)
}
}
_ => SymExp::from(WORST_CASE_SELECTIVITY),
},
MirScalarExpr::CallBinary { func, expr1, expr2 } => {
match func {
BinaryFunc::Eq => match (index_cardinality(expr1), index_cardinality(expr2)) {
(Some(icard1), Some(icard2)) => SymbolicExpression::max(icard1, icard2),
(Some(icard), None) | (None, Some(icard)) => icard,
(None, None) => SymExp::from(WORST_CASE_SELECTIVITY),
},
// 1.0 - the Eq case
BinaryFunc::NotEq => match (index_cardinality(expr1), index_cardinality(expr2))
{
(Some(icard1), Some(icard2)) => {
1.0 - SymbolicExpression::max(icard1, icard2)
}
(Some(icard), None) | (None, Some(icard)) => 1.0 - icard,
(None, None) => SymExp::from(1.0 - WORST_CASE_SELECTIVITY),
},
BinaryFunc::Lt | BinaryFunc::Lte | BinaryFunc::Gt | BinaryFunc::Gte => {
// TODO(mgree) if we have high/low key values and one of the columns is an index, we can do better
SymExp::from(0.33)
}
_ => SymExp::from(1.0), // TOOD(mgree): are there other interesting cases?
}
}
MirScalarExpr::CallVariadic { func, exprs } => match func {
VariadicFunc::And => {
// can't use SymExp::product because it expects a vector of references :/
let mut factor = SymExp::from(1.0);
for expr in exprs {
factor = factor * self.predicate(expr, unique_columns);
}
factor
}
VariadicFunc::Or => {
// TODO(mgree): BETWEEN will get compiled down to an OR of appropriate bounds---we could try to detect it and be clever
// F(expr1 OR expr2) = F(expr1) + F(expr2) - F(expr1) * F(expr2), but generalized
let mut exprs = exprs.into_iter();
let mut expr1;
if let Some(first) = exprs.next() {
expr1 = self.predicate(first, unique_columns);
} else {
return SymExp::from(1.0);
}
for expr2 in exprs {
let expr2 = self.predicate(expr2, unique_columns);
// TODO(mgree) a big expression! two things could help: hash-consing and simplification
expr1 = expr1.clone() + expr2.clone() - expr1.clone() * expr2;
}
expr1
}
_ => SymExp::from(1.0),
},
MirScalarExpr::If { cond: _, then, els } => SymExp::max(
self.predicate(then, unique_columns),
self.predicate(els, unique_columns),
),
}
}
fn filter(
&self,
predicates: &Vec<MirScalarExpr>,
keys: &Vec<Vec<usize>>,
input: &SymExp,
) -> SymExp {
// TODO(mgree): should we try to do something for indices built on multiple columns?
let mut unique_columns = BTreeSet::new();
for key in keys {
if key.len() == 1 {
unique_columns.insert(key[0]);
}
}
// worst case scaling factor is 1
let mut factor = SymExp::from(1.0);
for expr in predicates {
let predicate_scaling_factor = self.predicate(expr, &unique_columns);
// constant scaling factors should be in [0,1]
debug_assert!(
match predicate_scaling_factor {
SymExp::Constant(OrderedFloat(n)) => 0.0 <= n && n <= 1.0,
_ => true,
},
"predicate scaling factor {predicate_scaling_factor} should be in the range [0,1]"
);
factor = factor * predicate_scaling_factor;
}
input.clone() * factor
}
fn join(
&self,
equivalences: &Vec<Vec<MirScalarExpr>>,
_implementation: &JoinImplementation,
unique_columns: BTreeMap<usize, usize>,
inputs: Vec<&SymExp>,
) -> SymExp {
let mut inputs = inputs.into_iter().cloned().collect::<Vec<_>>();
for equiv in equivalences {
// those sources which have a unique key
let mut unique_sources = BTreeSet::new();
let mut all_unique = true;
for expr in equiv {
if let MirScalarExpr::Column(col) = expr {
if let Some(idx) = unique_columns.get(col) {
unique_sources.insert(*idx);
} else {
all_unique = false;
}
} else {
all_unique = false;
}
}
// no unique columns in this equivalence
if unique_sources.is_empty() {
continue;
}
// ALL unique columns in this equivalence
if all_unique {
// these inputs have unique keys for _all_ of the equivalence, so they're a bound on how many rows we'll get from those sources
// we'll find the leftmost such input and use it to hold the minimum; the other sources we set to 1.0 (so they have no effect)
let mut sources = unique_sources.iter();
let lhs_idx = *sources.next().unwrap();
let mut lhs = std::mem::replace(&mut inputs[lhs_idx], SymExp::f64(1.0));
for &rhs_idx in sources {
let rhs = std::mem::replace(&mut inputs[rhs_idx], SymExp::f64(1.0));
lhs = SymExp::min(lhs, rhs);
}
inputs[lhs_idx] = lhs;
// best option! go look at the next equivalence
continue;
}
// some unique columns in this equivalence
for idx in unique_sources {
// when joining R and S on R.x = S.x, if R.x is unique and S.x is not, we're bounded above by the cardinality of S
inputs[idx] = SymExp::f64(1.0);
}
}
SymbolicExpression::product(inputs)
}
fn reduce(
&self,
group_key: &Vec<MirScalarExpr>,
expected_group_size: &Option<u64>,
input: &SymExp,
) -> SymExp {
// TODO(mgree): if no `group_key` is present, we can do way better
if let Some(group_size) = expected_group_size {
input / f64::cast_lossy(*group_size)
} else if group_key.is_empty() {
SymExp::from(1.0)
} else {
// in the worst case, every row is its own group
input.clone()
}
}
fn topk(
&self,
group_key: &Vec<usize>,
limit: &Option<MirScalarExpr>,
expected_group_size: &Option<u64>,
input: &SymExp,
) -> SymExp {
// TODO: support simple arithmetic expressions
let k = limit
.as_ref()
.and_then(|l| l.as_literal_int64())
.map_or(1, |l| std::cmp::max(0, l));
if let Some(group_size) = expected_group_size {
input * (f64::cast_lossy(k) / f64::cast_lossy(*group_size))
} else if group_key.is_empty() {
SymExp::from(k)
} else {
// in the worst case, every row is its own group
input.clone()
}
}
fn threshold(&self, input: &SymExp) -> SymExp {
// worst case scaling factor is 1
input.clone()
}
}
impl Attribute for Cardinality {
type Value = SymExp;
fn derive(&mut self, expr: &MirRelationExpr, deps: &DerivedAttributes) {
use MirRelationExpr::*;
let n = self.results.len();
match expr {
Constant { rows, .. } => self
.results
.push(SymExp::from(rows.as_ref().map_or_else(|_| 0, |v| v.len()))),
Get { id, .. } => match id {
Id::Local(id) => match self.env.get(id) {
Some(value) => self.results.push(value.clone()),
None => {
// TODO(mgree) when will we meet an unbound local?
self.results
.push(SymExp::symbolic(FactorizerVariable::Unknown));
}
},
Id::Global(id) => self
.results
.push(SymbolicExpression::symbolic(FactorizerVariable::Id(*id))),
},
Let { .. } | Project { .. } | Map { .. } | ArrangeBy { .. } | Negate { .. } => {
let input = self.results[n - 1].clone();
self.results.push(input);
}
LetRec { .. } =>
// TODO(mgree): implement a recurrence-based approach (or at least identify common idioms, e.g. transitive closure)
{
self.results
.push(SymbolicExpression::symbolic(FactorizerVariable::Unknown));
}
Union { base: _, inputs } => {
let mut branches = Vec::with_capacity(inputs.len() + 1);
let mut offset = 1;
for _ in 0..inputs.len() {
branches.push(self.results[n - offset].clone());
offset += deps.get_results::<SubtreeSize>()[n - offset];
}
branches.push(self.results[n - offset].clone());
self.results.push(SymbolicExpression::sum(branches));
}
FlatMap { func, .. } => {
let input = &self.results[n - 1];
self.results.push(self.factorize.flat_map(func, input));
}
Filter { predicates, .. } => {
let input = &self.results[n - 1];
let keys = &deps.get_results::<UniqueKeys>()[n - 1];
self.results
.push(self.factorize.filter(predicates, keys, input));
}
Join {
equivalences,
implementation,
inputs,
..
} => {
let mut input_results = Vec::with_capacity(inputs.len());
// maps a column to the index in `inputs` that it belongs to
let mut unique_columns = BTreeMap::new();
let mut key_offset = 0;
let mut offset = 1;
for idx in 0..inputs.len() {
let input = &self.results[n - offset];
input_results.push(input);
let arity = deps.get_results::<Arity>()[n - offset];
let keys = &deps.get_results::<UniqueKeys>()[n - offset];
for key in keys {
if key.len() == 1 {
unique_columns.insert(key_offset + key[0], idx);
}
}
key_offset += arity;
offset += &deps.get_results::<SubtreeSize>()[n - offset];
}
self.results.push(self.factorize.join(
equivalences,
implementation,
unique_columns,
input_results,
));
}
Reduce {
group_key,
expected_group_size,
..
} => {
let input = &self.results[n - 1];
self.results
.push(self.factorize.reduce(group_key, expected_group_size, input));
}
TopK {
group_key,
limit,
expected_group_size,
..
} => {
let input = &self.results[n - 1];
self.results.push(self.factorize.topk(
group_key,
limit,
expected_group_size,
input,
));
}
Threshold { .. } => {
let input = &self.results[n - 1];
self.results.push(self.factorize.threshold(input));
}
}
}
fn schedule_env_tasks(&mut self, expr: &MirRelationExpr) {
self.env.schedule_tasks(expr);
}
fn handle_env_tasks(&mut self) {
self.env.handle_tasks(&self.results);
}
fn add_dependencies(builder: &mut DerivedAttributesBuilder)
where
Self: Sized,
{
builder.require(SubtreeSize::default());
builder.require(Arity::default());
builder.require(UniqueKeys::default());
}
fn get_results(&self) -> &Vec<Self::Value> {
&self.results
}
fn get_results_mut(&mut self) -> &mut Vec<Self::Value> {
&mut self.results
}
fn take(self) -> Vec<Self::Value> {
self.results
}
}
impl SymExp {
/// Render a symbolic expression nicely
pub fn humanize(
&self,
h: &dyn ExprHumanizer,
f: &mut std::fmt::Formatter<'_>,
) -> std::fmt::Result {
self.humanize_factor(h, f)
}
fn humanize_factor(
&self,
h: &dyn ExprHumanizer,
f: &mut std::fmt::Formatter<'_>,
) -> std::fmt::Result {
use SymbolicExpression::*;
match self {
Sum(ss) => {
assert!(ss.len() >= 2);
let mut ss = ss.iter();
ss.next().unwrap().humanize_factor(h, f)?;
for s in ss {
write!(f, " + ")?;
s.humanize_factor(h, f)?;
}
Ok(())
}
_ => self.humanize_term(h, f),
}
}
fn humanize_term(
&self,
h: &dyn ExprHumanizer,
f: &mut std::fmt::Formatter<'_>,
) -> std::fmt::Result {
use SymbolicExpression::*;
match self {
Product(ps) => {
assert!(ps.len() >= 2);
let mut ps = ps.iter();
ps.next().unwrap().humanize_term(h, f)?;
for p in ps {
write!(f, " * ")?;
p.humanize_term(h, f)?;
}
Ok(())
}
_ => self.humanize_atom(h, f),
}
}
fn humanize_atom(
&self,
h: &dyn ExprHumanizer,
f: &mut std::fmt::Formatter<'_>,
) -> std::fmt::Result {
use SymbolicExpression::*;
match self {
Constant(OrderedFloat::<f64>(n)) => write!(f, "{n}"),
Symbolic(FactorizerVariable::Id(v), n) => {
let id = h.humanize_id(*v).unwrap_or_else(|| format!("{v:?}"));
write!(f, "{id}")?;
if *n > 1 {
write!(f, "^{n}")?;
}
Ok(())
}
Symbolic(FactorizerVariable::Index(col), n) => {
write!(f, "icard(#{col})^{n}")
}
Symbolic(FactorizerVariable::Unknown, n) => {
write!(f, "unknown^{n}")
}
Max(e1, e2) => {
write!(f, "max(")?;
e1.humanize_factor(h, f)?;
write!(f, ", ")?;
e2.humanize_factor(h, f)?;
write!(f, ")")
}
Min(e1, e2) => {
write!(f, "min(")?;
e1.humanize_factor(h, f)?;
write!(f, ", ")?;
e2.humanize_factor(h, f)?;
write!(f, ")")
}
Sum(_) | Product(_) => {
write!(f, "(")?;
self.humanize_factor(h, f)?;
write!(f, ")")
}
}
}
}
impl std::fmt::Display for SymExp {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.humanize(&mz_repr::explain::DummyHumanizer, f)
}
}
/// Wrapping struct for pretty printing of symbolic expressions
#[allow(missing_debug_implementations)]
pub struct HumanizedSymbolicExpression<'a, 'b> {
expr: &'a SymExp,
humanizer: &'b dyn ExprHumanizer,
}
impl<'a, 'b> HumanizedSymbolicExpression<'a, 'b> {
/// Pairs a symbolic expression with a way to render GlobalIds
pub fn new(expr: &'a SymExp, humanizer: &'b dyn ExprHumanizer) -> Self {
Self { expr, humanizer }
}
}
impl<'a, 'b> std::fmt::Display for HumanizedSymbolicExpression<'a, 'b> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.expr.normalize().humanize(self.humanizer, f)
}
}