1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! An explicit representation of a rendering plan for provided dataflows.
#![warn(missing_debug_implementations)]
use std::collections::{BTreeMap, BTreeSet};
use std::num::NonZeroU64;
use mz_expr::{
CollectionPlan, EvalError, Id, LetRecLimit, LocalId, MapFilterProject, MirScalarExpr,
OptimizedMirRelationExpr, TableFunc,
};
use mz_ore::soft_assert_eq_no_log;
use mz_ore::str::Indent;
use mz_proto::{IntoRustIfSome, ProtoType, RustType, TryFromProtoError};
use mz_repr::explain::text::text_string_at;
use mz_repr::explain::{DummyHumanizer, ExplainConfig, ExprHumanizer, PlanRenderingContext};
use mz_repr::optimize::OptimizerFeatures;
use mz_repr::{ColumnType, Diff, GlobalId, Row};
use proptest::arbitrary::Arbitrary;
use proptest::prelude::*;
use proptest::strategy::Strategy;
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
use crate::dataflows::DataflowDescription;
use crate::plan::join::JoinPlan;
use crate::plan::proto_available_collections::ProtoColumnTypes;
use crate::plan::reduce::{KeyValPlan, ReducePlan};
use crate::plan::threshold::ThresholdPlan;
use crate::plan::top_k::TopKPlan;
use crate::plan::transform::{Transform, TransformConfig};
mod lowering;
pub mod flat_plan;
pub mod interpret;
pub mod join;
pub mod reduce;
pub mod threshold;
pub mod top_k;
pub mod transform;
include!(concat!(env!("OUT_DIR"), "/mz_compute_types.plan.rs"));
/// The forms in which an operator's output is available;
/// it can be considered the plan-time equivalent of
/// `render::context::CollectionBundle`.
///
/// These forms are either "raw", representing an unarranged collection,
/// or "arranged", representing one that has been arranged by some key.
///
/// The raw collection, if it exists, may be consumed directly.
///
/// The arranged collections are slightly more complicated:
/// Each key here is attached to a description of how the corresponding
/// arrangement is permuted to remove value columns
/// that are redundant with key columns. Thus, the first element in each
/// tuple of `arranged` is the arrangement key; the second is the map of
/// logical output columns to columns in the key or value of the deduplicated
/// representation, and the third is a "thinning expression",
/// or list of columns to include in the value
/// when arranging.
///
/// For example, assume a 5-column collection is to be arranged by the key
/// `[Column(2), Column(0) + Column(3), Column(1)]`.
/// Then `Column(1)` and `Column(2)` in the value are redundant with the key, and
/// only columns 0, 3, and 4 need to be stored separately.
/// The thinning expression will then be `[0, 3, 4]`.
///
/// The permutation represents how to recover the
/// original values (logically `[Column(0), Column(1), Column(2), Column(3), Column(4)]`)
/// from the key and value of the arrangement, logically
/// `[Column(2), Column(0) + Column(3), Column(1), Column(0), Column(3), Column(4)]`.
/// Thus, the permutation in this case should be `{0: 3, 1: 2, 2: 0, 3: 4, 4: 5}`.
///
/// Note that this description, while true at the time of writing, is merely illustrative;
/// users of this struct should not rely on the exact strategy used for generating
/// the permutations. As long as clients apply the thinning expression
/// when creating arrangements, and permute by the hashmap when reading them,
/// the contract of the function where they are generated (`mz_expr::permutation_for_arrangement`)
/// ensures that the correct values will be read.
#[derive(
Arbitrary, Clone, Debug, Default, Deserialize, Eq, Ord, PartialEq, PartialOrd, Serialize,
)]
pub struct AvailableCollections {
/// Whether the collection exists in unarranged form.
pub raw: bool,
/// The set of arrangements of the collection, along with a
/// column permutation mapping
#[proptest(strategy = "prop::collection::vec(any_arranged_thin(), 0..3)")]
pub arranged: Vec<(Vec<MirScalarExpr>, BTreeMap<usize, usize>, Vec<usize>)>,
/// The types of the columns in the raw form of the collection, if known. We
/// only capture types when necessary to support arrangement specialization,
/// so this only done for specific LIR operators during lowering.
pub types: Option<Vec<ColumnType>>,
}
/// A strategy that produces arrangements that are thinner than the default. That is
/// the number of direct children is limited to a maximum of 3.
pub(crate) fn any_arranged_thin(
) -> impl Strategy<Value = (Vec<MirScalarExpr>, BTreeMap<usize, usize>, Vec<usize>)> {
(
prop::collection::vec(MirScalarExpr::arbitrary(), 0..3),
BTreeMap::<usize, usize>::arbitrary(),
Vec::<usize>::arbitrary(),
)
}
impl RustType<ProtoColumnTypes> for Vec<ColumnType> {
fn into_proto(&self) -> ProtoColumnTypes {
ProtoColumnTypes {
types: self.into_proto(),
}
}
fn from_proto(proto: ProtoColumnTypes) -> Result<Self, TryFromProtoError> {
proto.types.into_rust()
}
}
impl RustType<ProtoAvailableCollections> for AvailableCollections {
fn into_proto(&self) -> ProtoAvailableCollections {
ProtoAvailableCollections {
raw: self.raw,
arranged: self.arranged.into_proto(),
types: self.types.into_proto(),
}
}
fn from_proto(x: ProtoAvailableCollections) -> Result<Self, TryFromProtoError> {
Ok({
Self {
raw: x.raw,
arranged: x.arranged.into_rust()?,
types: x.types.into_rust()?,
}
})
}
}
impl AvailableCollections {
/// Represent a collection that has no arrangements.
pub fn new_raw() -> Self {
Self {
raw: true,
arranged: Vec::new(),
types: None,
}
}
/// Represent a collection that is arranged in the
/// specified ways, with optionally given types describing
/// the rows that would be in the raw form of the collection.
pub fn new_arranged(
arranged: Vec<(Vec<MirScalarExpr>, BTreeMap<usize, usize>, Vec<usize>)>,
types: Option<Vec<ColumnType>>,
) -> Self {
assert!(
!arranged.is_empty(),
"Invariant violated: at least one collection must exist"
);
Self {
raw: false,
arranged,
types,
}
}
/// Get some arrangement, if one exists.
pub fn arbitrary_arrangement(
&self,
) -> Option<&(Vec<MirScalarExpr>, BTreeMap<usize, usize>, Vec<usize>)> {
assert!(
self.raw || !self.arranged.is_empty(),
"Invariant violated: at least one collection must exist"
);
self.arranged.get(0)
}
}
/// An identifier for an LIR node.
pub type LirId = u64;
/// A rendering plan with as much conditional logic as possible removed.
#[derive(Clone, Debug, Deserialize, Eq, Ord, PartialEq, PartialOrd, Serialize)]
pub enum Plan<T = mz_repr::Timestamp> {
/// A collection containing a pre-determined collection.
Constant {
/// Explicit update triples for the collection.
rows: Result<Vec<(Row, T, Diff)>, EvalError>,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// A reference to a bound collection.
///
/// This is commonly either an external reference to an existing source or
/// maintained arrangement, or an internal reference to a `Let` identifier.
Get {
/// A global or local identifier naming the collection.
id: Id,
/// Arrangements that will be available.
///
/// The collection will also be loaded if available, which it will
/// not be for imported data, but which it may be for locally defined
/// data.
// TODO: Be more explicit about whether a collection is available,
// although one can always produce it from an arrangement, and it
// seems generally advantageous to do that instead (to avoid cloning
// rows, by using `mfp` first on borrowed data).
keys: AvailableCollections,
/// The actions to take when introducing the collection.
plan: GetPlan,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// Binds `value` to `id`, and then results in `body` with that binding.
///
/// This stage has the effect of sharing `value` across multiple possible
/// uses in `body`, and is the only mechanism we have for sharing collection
/// information across parts of a dataflow.
///
/// The binding is not available outside of `body`.
Let {
/// The local identifier to be used, available to `body` as `Id::Local(id)`.
id: LocalId,
/// The collection that should be bound to `id`.
value: Box<Plan<T>>,
/// The collection that results, which is allowed to contain `Get` stages
/// that reference `Id::Local(id)`.
body: Box<Plan<T>>,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// Binds `values` to `ids`, evaluates them potentially recursively, and returns `body`.
///
/// All bindings are available to all bindings, and to `body`.
/// The contents of each binding are initially empty, and then updated through a sequence
/// of iterations in which each binding is updated in sequence, from the most recent values
/// of all bindings.
LetRec {
/// The local identifiers to be used, available to `body` as `Id::Local(id)`.
ids: Vec<LocalId>,
/// The collection that should be bound to `id`.
values: Vec<Plan<T>>,
/// Maximum number of iterations. See further info on the MIR `LetRec`.
limits: Vec<Option<LetRecLimit>>,
/// The collection that results, which is allowed to contain `Get` stages
/// that reference `Id::Local(id)`.
body: Box<Plan<T>>,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// Map, Filter, and Project operators.
///
/// This stage contains work that we would ideally like to fuse to other plan
/// stages, but for practical reasons cannot. For example: threshold, topk,
/// and sometimes reduce stages are not able to absorb this operator.
Mfp {
/// The input collection.
input: Box<Plan<T>>,
/// Linear operator to apply to each record.
mfp: MapFilterProject,
/// Whether the input is from an arrangement, and if so,
/// whether we can seek to a specific value therein
input_key_val: Option<(Vec<MirScalarExpr>, Option<Row>)>,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// A variable number of output records for each input record.
///
/// This stage is a bit of a catch-all for logic that does not easily fit in
/// map stages. This includes table valued functions, but also functions of
/// multiple arguments, and functions that modify the sign of updates.
///
/// This stage allows a `MapFilterProject` operator to be fused to its output,
/// and this can be very important as otherwise the output of `func` is just
/// appended to the input record, for as many outputs as it has. This has the
/// unpleasant default behavior of repeating potentially large records that
/// are being unpacked, producing quadratic output in those cases. Instead,
/// in these cases use a `mfp` member that projects away these large fields.
FlatMap {
/// The input collection.
input: Box<Plan<T>>,
/// The variable-record emitting function.
func: TableFunc,
/// Expressions that for each row prepare the arguments to `func`.
exprs: Vec<MirScalarExpr>,
/// Linear operator to apply to each record produced by `func`.
mfp_after: MapFilterProject,
/// The particular arrangement of the input we expect to use,
/// if any
input_key: Option<Vec<MirScalarExpr>>,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// A multiway relational equijoin, with fused map, filter, and projection.
///
/// This stage performs a multiway join among `inputs`, using the equality
/// constraints expressed in `plan`. The plan also describes the implementation
/// strategy we will use, and any pushed down per-record work.
Join {
/// An ordered list of inputs that will be joined.
inputs: Vec<Plan<T>>,
/// Detailed information about the implementation of the join.
///
/// This includes information about the implementation strategy, but also
/// any map, filter, project work that we might follow the join with, but
/// potentially pushed down into the implementation of the join.
plan: JoinPlan,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// Aggregation by key.
Reduce {
/// The input collection.
input: Box<Plan<T>>,
/// A plan for changing input records into key, value pairs.
key_val_plan: KeyValPlan,
/// A plan for performing the reduce.
///
/// The implementation of reduction has several different strategies based
/// on the properties of the reduction, and the input itself. Please check
/// out the documentation for this type for more detail.
plan: ReducePlan,
/// The particular arrangement of the input we expect to use,
/// if any
input_key: Option<Vec<MirScalarExpr>>,
/// An MFP that must be applied to results. The projection part of this
/// MFP must preserve the key for the reduction; otherwise, the results
/// become undefined. Additionally, the MFP must be free from temporal
/// predicates so that it can be readily evaluated.
mfp_after: MapFilterProject,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// Key-based "Top K" operator, retaining the first K records in each group.
TopK {
/// The input collection.
input: Box<Plan<T>>,
/// A plan for performing the Top-K.
///
/// The implementation of reduction has several different strategies based
/// on the properties of the reduction, and the input itself. Please check
/// out the documentation for this type for more detail.
top_k_plan: TopKPlan,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// Inverts the sign of each update.
Negate {
/// The input collection.
input: Box<Plan<T>>,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// Filters records that accumulate negatively.
///
/// Although the operator suppresses updates, it is a stateful operator taking
/// resources proportional to the number of records with non-zero accumulation.
Threshold {
/// The input collection.
input: Box<Plan<T>>,
/// A plan for performing the threshold.
///
/// The implementation of reduction has several different strategies based
/// on the properties of the reduction, and the input itself. Please check
/// out the documentation for this type for more detail.
threshold_plan: ThresholdPlan,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// Adds the contents of the input collections.
///
/// Importantly, this is *multiset* union, so the multiplicities of records will
/// add. This is in contrast to *set* union, where the multiplicities would be
/// capped at one. A set union can be formed with `Union` followed by `Reduce`
/// implementing the "distinct" operator.
Union {
/// The input collections
inputs: Vec<Plan<T>>,
/// Whether to consolidate the output, e.g., cancel negated records.
consolidate_output: bool,
/// A dataflow-local identifier.
lir_id: LirId,
},
/// The `input` plan, but with additional arrangements.
///
/// This operator does not change the logical contents of `input`, but ensures
/// that certain arrangements are available in the results. This operator can
/// be important for e.g. the `Join` stage which benefits from multiple arrangements
/// or to cap a `Plan` so that indexes can be exported.
ArrangeBy {
/// The input collection.
input: Box<Plan<T>>,
/// A list of arrangement keys, and possibly a raw collection,
/// that will be added to those of the input.
///
/// If any of these collection forms are already present in the input, they have no effect.
forms: AvailableCollections,
/// The key that must be used to access the input.
input_key: Option<Vec<MirScalarExpr>>,
/// The MFP that must be applied to the input.
input_mfp: MapFilterProject,
/// A dataflow-local identifier.
lir_id: LirId,
},
}
impl<T> Plan<T> {
/// Iterates through references to child expressions.
pub fn children(&self) -> impl Iterator<Item = &Self> {
let mut first = None;
let mut second = None;
let mut rest = None;
let mut last = None;
use Plan::*;
match self {
Constant { .. } | Get { .. } => (),
Let { value, body, .. } => {
first = Some(&**value);
second = Some(&**body);
}
LetRec { values, body, .. } => {
rest = Some(values);
last = Some(&**body);
}
Mfp { input, .. }
| FlatMap { input, .. }
| Reduce { input, .. }
| TopK { input, .. }
| Negate { input, .. }
| Threshold { input, .. }
| ArrangeBy { input, .. } => {
first = Some(&**input);
}
Join { inputs, .. } | Union { inputs, .. } => {
rest = Some(inputs);
}
}
first
.into_iter()
.chain(second)
.chain(rest.into_iter().flatten())
.chain(last)
}
/// Iterates through mutable references to child expressions.
pub fn children_mut(&mut self) -> impl Iterator<Item = &mut Self> {
let mut first = None;
let mut second = None;
let mut rest = None;
let mut last = None;
use Plan::*;
match self {
Constant { .. } | Get { .. } => (),
Let { value, body, .. } => {
first = Some(&mut **value);
second = Some(&mut **body);
}
LetRec { values, body, .. } => {
rest = Some(values);
last = Some(&mut **body);
}
Mfp { input, .. }
| FlatMap { input, .. }
| Reduce { input, .. }
| TopK { input, .. }
| Negate { input, .. }
| Threshold { input, .. }
| ArrangeBy { input, .. } => {
first = Some(&mut **input);
}
Join { inputs, .. } | Union { inputs, .. } => {
rest = Some(inputs);
}
}
first
.into_iter()
.chain(second)
.chain(rest.into_iter().flatten())
.chain(last)
}
}
impl<T> Plan<T> {
/// Return this plan's `LirId`.
pub fn lir_id(&self) -> LirId {
use Plan::*;
match self {
Constant { lir_id, .. }
| Get { lir_id, .. }
| Let { lir_id, .. }
| LetRec { lir_id, .. }
| Mfp { lir_id, .. }
| FlatMap { lir_id, .. }
| Join { lir_id, .. }
| Reduce { lir_id, .. }
| TopK { lir_id, .. }
| Negate { lir_id, .. }
| Threshold { lir_id, .. }
| Union { lir_id, .. }
| ArrangeBy { lir_id, .. } => *lir_id,
}
}
}
impl Plan {
/// Pretty-print this [Plan] to a string.
pub fn pretty(&self) -> String {
let config = ExplainConfig::default();
self.explain(&config, None)
}
/// Pretty-print this [Plan] to a string using a custom
/// [ExplainConfig] and an optionally provided [ExprHumanizer].
pub fn explain(&self, config: &ExplainConfig, humanizer: Option<&dyn ExprHumanizer>) -> String {
text_string_at(self, || PlanRenderingContext {
indent: Indent::default(),
humanizer: humanizer.unwrap_or(&DummyHumanizer),
annotations: BTreeMap::default(),
config,
})
}
}
impl Arbitrary for Plan {
type Strategy = BoxedStrategy<Plan>;
type Parameters = ();
fn arbitrary_with(_: Self::Parameters) -> Self::Strategy {
let row_diff = prop::collection::vec(
(
Row::arbitrary_with((1..5).into()),
mz_repr::Timestamp::arbitrary(),
Diff::arbitrary(),
),
0..2,
);
let rows = prop::result::maybe_ok(row_diff, EvalError::arbitrary());
let constant =
(rows, any::<LirId>()).prop_map(|(rows, lir_id)| Plan::Constant { rows, lir_id });
let get = (
any::<GlobalId>(),
any::<AvailableCollections>(),
any::<GetPlan>(),
any::<LirId>(),
)
.prop_map(|(id, keys, plan, lir_id)| Plan::<mz_repr::Timestamp>::Get {
id: Id::Global(id),
keys,
plan,
lir_id,
});
let leaf = prop::strategy::Union::new(vec![constant.boxed(), get.boxed()]).boxed();
leaf.prop_recursive(2, 4, 5, |inner| {
prop::strategy::Union::new(vec![
//Plan::Let
(
any::<LocalId>(),
inner.clone(),
inner.clone(),
any::<LirId>(),
)
.prop_map(|(id, value, body, lir_id)| Plan::Let {
id,
value: value.into(),
body: body.into(),
lir_id,
})
.boxed(),
//Plan::Mfp
(
inner.clone(),
any::<MapFilterProject>(),
any::<Option<(Vec<MirScalarExpr>, Option<Row>)>>(),
any::<LirId>(),
)
.prop_map(|(input, mfp, input_key_val, lir_id)| Plan::Mfp {
input: input.into(),
mfp,
input_key_val,
lir_id,
})
.boxed(),
//Plan::FlatMap
(
inner.clone(),
any::<TableFunc>(),
any::<Vec<MirScalarExpr>>(),
any::<MapFilterProject>(),
any::<Option<Vec<MirScalarExpr>>>(),
any::<LirId>(),
)
.prop_map(
|(input, func, exprs, mfp, input_key, lir_id)| Plan::FlatMap {
input: input.into(),
func,
exprs,
mfp_after: mfp,
input_key,
lir_id,
},
)
.boxed(),
//Plan::Join
(
prop::collection::vec(inner.clone(), 0..2),
any::<JoinPlan>(),
any::<LirId>(),
)
.prop_map(|(inputs, plan, lir_id)| Plan::Join {
inputs,
plan,
lir_id,
})
.boxed(),
//Plan::Reduce
(
inner.clone(),
any::<KeyValPlan>(),
any::<ReducePlan>(),
any::<Option<Vec<MirScalarExpr>>>(),
any::<MapFilterProject>(),
any::<LirId>(),
)
.prop_map(
|(input, key_val_plan, plan, input_key, mfp_after, lir_id)| Plan::Reduce {
input: input.into(),
key_val_plan,
plan,
input_key,
mfp_after,
lir_id,
},
)
.boxed(),
//Plan::TopK
(inner.clone(), any::<TopKPlan>(), any::<LirId>())
.prop_map(|(input, top_k_plan, lir_id)| Plan::TopK {
input: input.into(),
top_k_plan,
lir_id,
})
.boxed(),
//Plan::Negate
(inner.clone(), any::<LirId>())
.prop_map(|(x, lir_id)| Plan::Negate {
input: x.into(),
lir_id,
})
.boxed(),
//Plan::Threshold
(inner.clone(), any::<ThresholdPlan>(), any::<LirId>())
.prop_map(|(input, threshold_plan, lir_id)| Plan::Threshold {
input: input.into(),
threshold_plan,
lir_id,
})
.boxed(),
// Plan::Union
(
prop::collection::vec(inner.clone(), 0..2),
any::<bool>(),
any::<LirId>(),
)
.prop_map(|(x, b, lir_id)| Plan::Union {
inputs: x,
consolidate_output: b,
lir_id,
})
.boxed(),
//Plan::ArrangeBy
(
inner,
any::<AvailableCollections>(),
any::<Option<Vec<MirScalarExpr>>>(),
any::<MapFilterProject>(),
any::<LirId>(),
)
.prop_map(
|(input, forms, input_key, input_mfp, lir_id)| Plan::ArrangeBy {
input: input.into(),
forms,
input_key,
input_mfp,
lir_id,
},
)
.boxed(),
])
})
.boxed()
}
}
/// How a `Get` stage will be rendered.
#[derive(Arbitrary, Clone, Debug, Serialize, Deserialize, Eq, PartialEq, Ord, PartialOrd)]
pub enum GetPlan {
/// Simply pass input arrangements on to the next stage.
PassArrangements,
/// Using the supplied key, optionally seek the row, and apply the MFP.
Arrangement(
#[proptest(strategy = "prop::collection::vec(MirScalarExpr::arbitrary(), 0..3)")]
Vec<MirScalarExpr>,
Option<Row>,
MapFilterProject,
),
/// Scan the input collection (unarranged) and apply the MFP.
Collection(MapFilterProject),
}
impl RustType<ProtoGetPlan> for GetPlan {
fn into_proto(&self) -> ProtoGetPlan {
use proto_get_plan::Kind::*;
ProtoGetPlan {
kind: Some(match self {
GetPlan::PassArrangements => PassArrangements(()),
GetPlan::Arrangement(k, s, m) => {
Arrangement(proto_get_plan::ProtoGetPlanArrangement {
key: k.into_proto(),
seek: s.into_proto(),
mfp: Some(m.into_proto()),
})
}
GetPlan::Collection(mfp) => Collection(mfp.into_proto()),
}),
}
}
fn from_proto(proto: ProtoGetPlan) -> Result<Self, TryFromProtoError> {
use proto_get_plan::Kind::*;
use proto_get_plan::ProtoGetPlanArrangement;
match proto.kind {
Some(PassArrangements(())) => Ok(GetPlan::PassArrangements),
Some(Arrangement(ProtoGetPlanArrangement { key, seek, mfp })) => {
Ok(GetPlan::Arrangement(
key.into_rust()?,
seek.into_rust()?,
mfp.into_rust_if_some("ProtoGetPlanArrangement::mfp")?,
))
}
Some(Collection(mfp)) => Ok(GetPlan::Collection(mfp.into_rust()?)),
None => Err(TryFromProtoError::missing_field("ProtoGetPlan::kind")),
}
}
}
impl RustType<ProtoLetRecLimit> for LetRecLimit {
fn into_proto(&self) -> ProtoLetRecLimit {
ProtoLetRecLimit {
max_iters: self.max_iters.get(),
return_at_limit: self.return_at_limit,
}
}
fn from_proto(proto: ProtoLetRecLimit) -> Result<Self, TryFromProtoError> {
Ok(LetRecLimit {
max_iters: NonZeroU64::new(proto.max_iters).expect("max_iters > 0"),
return_at_limit: proto.return_at_limit,
})
}
}
impl<T: timely::progress::Timestamp> Plan<T> {
/// Convert the dataflow description into one that uses render plans.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "finalize_dataflow")
)]
pub fn finalize_dataflow(
desc: DataflowDescription<OptimizedMirRelationExpr>,
features: &OptimizerFeatures,
) -> Result<DataflowDescription<Self>, String> {
// First, we lower the dataflow description from MIR to LIR.
let mut dataflow = Self::lower_dataflow(desc, features)?;
// Subsequently, we perform plan refinements for the dataflow.
Self::refine_source_mfps(&mut dataflow);
if features.enable_consolidate_after_union_negate {
Self::refine_union_negate_consolidation(&mut dataflow);
}
if dataflow.is_single_time() {
Self::refine_single_time_operator_selection(&mut dataflow);
// The relaxation of the `must_consolidate` flag performs an LIR-based
// analysis and transform under checked recursion. By a similar argument
// made in `from_mir`, we do not expect the recursion limit to be hit.
// However, if that happens, we propagate an error to the caller.
// To apply the transform, we first obtain monotonic source and index
// global IDs and add them to a `TransformConfig` instance.
let monotonic_ids = dataflow
.source_imports
.iter()
.filter_map(|(id, (_, monotonic))| if *monotonic { Some(id) } else { None })
.chain(
dataflow
.index_imports
.iter()
.filter_map(|(id, index_import)| {
if index_import.monotonic {
Some(id)
} else {
None
}
}),
)
.cloned()
.collect::<BTreeSet<_>>();
let config = TransformConfig { monotonic_ids };
Self::refine_single_time_consolidation(&mut dataflow, &config)?;
}
soft_assert_eq_no_log!(dataflow.check_invariants(), Ok(()));
mz_repr::explain::trace_plan(&dataflow);
Ok(dataflow)
}
/// Lowers the dataflow description from MIR to LIR. To this end, the
/// method collects all available arrangements and based on this information
/// creates plans for every object to be built for the dataflow.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment ="mir_to_lir")
)]
fn lower_dataflow(
desc: DataflowDescription<OptimizedMirRelationExpr>,
features: &OptimizerFeatures,
) -> Result<DataflowDescription<Self>, String> {
let context = lowering::Context::new(desc.debug_name.clone(), features);
let dataflow = context.lower(desc)?;
mz_repr::explain::trace_plan(&dataflow);
Ok(dataflow)
}
/// Refines the source instance descriptions for sources imported by `dataflow` to
/// push down common MFP expressions.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "refine_source_mfps")
)]
fn refine_source_mfps(dataflow: &mut DataflowDescription<Self>) {
// Extract MFPs from Get operators for sources, and extract what we can for the source.
// For each source, we want to find `&mut MapFilterProject` for each `Get` expression.
for (source_id, (source, _monotonic)) in dataflow.source_imports.iter_mut() {
let mut identity_present = false;
let mut mfps = Vec::new();
for build_desc in dataflow.objects_to_build.iter_mut() {
let mut todo = vec![&mut build_desc.plan];
while let Some(expression) = todo.pop() {
if let Plan::Get { id, plan, .. } = expression {
if *id == mz_expr::Id::Global(*source_id) {
match plan {
GetPlan::Collection(mfp) => mfps.push(mfp),
GetPlan::PassArrangements => {
identity_present = true;
}
GetPlan::Arrangement(..) => {
panic!("Surprising `GetPlan` for imported source: {:?}", plan);
}
}
}
} else {
todo.extend(expression.children_mut());
}
}
}
// Direct exports of sources are possible, and prevent pushdown.
identity_present |= dataflow
.index_exports
.values()
.any(|(x, _)| x.on_id == *source_id);
identity_present |= dataflow.sink_exports.values().any(|x| x.from == *source_id);
if !identity_present && !mfps.is_empty() {
// Extract a common prefix `MapFilterProject` from `mfps`.
let common = MapFilterProject::extract_common(&mut mfps[..]);
// Apply common expressions to the source's `MapFilterProject`.
let mut mfp = if let Some(mfp) = source.arguments.operators.take() {
MapFilterProject::compose(mfp, common)
} else {
common
};
mfp.optimize();
source.arguments.operators = Some(mfp);
}
}
mz_repr::explain::trace_plan(dataflow);
}
/// Changes the `consolidate_output` flag of such Unions that have at least one Negated input.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "refine_union_negate_consolidation")
)]
fn refine_union_negate_consolidation(dataflow: &mut DataflowDescription<Self>) {
for build_desc in dataflow.objects_to_build.iter_mut() {
let mut todo = vec![&mut build_desc.plan];
while let Some(expression) = todo.pop() {
match expression {
Plan::Union {
inputs,
consolidate_output,
..
} => {
if inputs
.iter()
.any(|input| matches!(input, Plan::Negate { .. }))
{
*consolidate_output = true;
}
}
_ => {}
}
todo.extend(expression.children_mut());
}
}
mz_repr::explain::trace_plan(dataflow);
}
/// Refines the plans of objects to be built as part of `dataflow` to take advantage
/// of monotonic operators if the dataflow refers to a single-time, i.e., is for a
/// one-shot SELECT query.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "refine_single_time_operator_selection")
)]
fn refine_single_time_operator_selection(dataflow: &mut DataflowDescription<Self>) {
// We should only reach here if we have a one-shot SELECT query, i.e.,
// a single-time dataflow.
assert!(dataflow.is_single_time());
// Upgrade single-time plans to monotonic.
for build_desc in dataflow.objects_to_build.iter_mut() {
let mut todo = vec![&mut build_desc.plan];
while let Some(expression) = todo.pop() {
match expression {
Plan::Reduce { plan, .. } => {
// Upgrade non-monotonic hierarchical plans to monotonic with mandatory consolidation.
match plan {
ReducePlan::Collation(collation) => {
collation.as_monotonic(true);
}
ReducePlan::Hierarchical(hierarchical) => {
hierarchical.as_monotonic(true);
}
_ => {
// Nothing to do for other plans, and doing nothing is safe for future variants.
}
}
todo.extend(expression.children_mut());
}
Plan::TopK { top_k_plan, .. } => {
top_k_plan.as_monotonic(true);
todo.extend(expression.children_mut());
}
Plan::LetRec { body, .. } => {
// Only the non-recursive `body` is restricted to a single time.
todo.push(body);
}
_ => {
// Nothing to do for other expressions, and doing nothing is safe for future expressions.
todo.extend(expression.children_mut());
}
}
}
}
mz_repr::explain::trace_plan(dataflow);
}
/// Refines the plans of objects to be built as part of a single-time `dataflow` to relax
/// the setting of the `must_consolidate` attribute of monotonic operators, if necessary,
/// whenever the input is deemed to be physically monotonic.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "refine_single_time_consolidation")
)]
fn refine_single_time_consolidation(
dataflow: &mut DataflowDescription<Self>,
config: &TransformConfig,
) -> Result<(), String> {
// We should only reach here if we have a one-shot SELECT query, i.e.,
// a single-time dataflow.
assert!(dataflow.is_single_time());
let transform = transform::RelaxMustConsolidate::<T>::new();
for build_desc in dataflow.objects_to_build.iter_mut() {
transform
.transform(config, &mut build_desc.plan)
.map_err(|_| "Maximum recursion limit error in consolidation relaxation.")?;
}
mz_repr::explain::trace_plan(dataflow);
Ok(())
}
}
impl<T> CollectionPlan for Plan<T> {
fn depends_on_into(&self, out: &mut BTreeSet<GlobalId>) {
match self {
Plan::Constant { rows: _, lir_id: _ } => (),
Plan::Get {
id,
keys: _,
plan: _,
lir_id: _,
} => match id {
Id::Global(id) => {
out.insert(*id);
}
Id::Local(_) => (),
},
Plan::Let {
id: _,
value,
body,
lir_id: _,
} => {
value.depends_on_into(out);
body.depends_on_into(out);
}
Plan::LetRec {
ids: _,
values,
limits: _,
body,
lir_id: _,
} => {
for value in values.iter() {
value.depends_on_into(out);
}
body.depends_on_into(out);
}
Plan::Join {
inputs,
plan: _,
lir_id: _,
}
| Plan::Union {
inputs,
consolidate_output: _,
lir_id: _,
} => {
for input in inputs {
input.depends_on_into(out);
}
}
Plan::Mfp {
input,
mfp: _,
input_key_val: _,
lir_id: _,
}
| Plan::FlatMap {
input,
func: _,
exprs: _,
mfp_after: _,
input_key: _,
lir_id: _,
}
| Plan::ArrangeBy {
input,
forms: _,
input_key: _,
input_mfp: _,
lir_id: _,
}
| Plan::Reduce {
input,
key_val_plan: _,
plan: _,
input_key: _,
mfp_after: _,
lir_id: _,
}
| Plan::TopK {
input,
top_k_plan: _,
lir_id: _,
}
| Plan::Negate { input, lir_id: _ }
| Plan::Threshold {
input,
threshold_plan: _,
lir_id: _,
} => {
input.depends_on_into(out);
}
}
}
}
/// Returns bucket sizes, descending, suitable for hierarchical decomposition of an operator, based
/// on the expected number of rows that will have the same group key.
fn bucketing_of_expected_group_size(expected_group_size: Option<u64>) -> Vec<u64> {
// NOTE(vmarcos): The fan-in of 16 defined below is used in the tuning advice built-in view
// mz_internal.mz_expected_group_size_advice.
let mut buckets = vec![];
let mut current = 16;
// Plan for 4B records in the expected case if the user didn't specify a group size.
let limit = expected_group_size.unwrap_or(4_000_000_000);
// Distribute buckets in powers of 16, so that we can strike a balance between how many inputs
// each layer gets from the preceding layer, while also limiting the number of layers.
while current < limit {
buckets.push(current);
current = current.saturating_mul(16);
}
buckets.reverse();
buckets
}
#[cfg(test)]
mod tests {
use mz_proto::protobuf_roundtrip;
use super::*;
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[mz_ore::test]
#[cfg_attr(miri, ignore)] // unsupported operation: can't call foreign function `decContextDefault` on OS `linux`
fn available_collections_protobuf_roundtrip(expect in any::<AvailableCollections>() ) {
let actual = protobuf_roundtrip::<_, ProtoAvailableCollections>(&expect);
assert!(actual.is_ok());
assert_eq!(actual.unwrap(), expect);
}
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[mz_ore::test]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decContextDefault` on OS `linux`
fn get_plan_protobuf_roundtrip(expect in any::<GetPlan>()) {
let actual = protobuf_roundtrip::<_, ProtoGetPlan>(&expect);
assert!(actual.is_ok());
assert_eq!(actual.unwrap(), expect);
}
}
}