1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Renders a plan into a timely/differential dataflow computation.
//!
//! ## Error handling
//!
//! Timely and differential have no idioms for computations that can error. The
//! philosophy is, reasonably, to define the semantics of the computation such
//! that errors are unnecessary: e.g., by using wrap-around semantics for
//! integer overflow.
//!
//! Unfortunately, SQL semantics are not nearly so elegant, and require errors
//! in myriad cases. The classic example is a division by zero, but invalid
//! input for casts, overflowing integer operations, and dozens of other
//! functions need the ability to produce errors ar runtime.
//!
//! At the moment, only *scalar* expression evaluation can fail, so only
//! operators that evaluate scalar expressions can fail. At the time of writing,
//! that includes map, filter, reduce, and join operators. Constants are a bit
//! of a special case: they can be either a constant vector of rows *or* a
//! constant, singular error.
//!
//! The approach taken is to build two parallel trees of computation: one for
//! the rows that have been successfully evaluated (the "oks tree"), and one for
//! the errors that have been generated (the "errs tree"). For example:
//!
//! ```text
//!    oks1  errs1       oks2  errs2
//!      |     |           |     |
//!      |     |           |     |
//!   project  |           |     |
//!      |     |           |     |
//!      |     |           |     |
//!     map    |           |     |
//!      |\    |           |     |
//!      | \   |           |     |
//!      |  \  |           |     |
//!      |   \ |           |     |
//!      |    \|           |     |
//!   project  +           +     +
//!      |     |          /     /
//!      |     |         /     /
//!    join ------------+     /
//!      |     |             /
//!      |     | +----------+
//!      |     |/
//!     oks   errs
//! ```
//!
//! The project operation cannot fail, so errors from errs1 are propagated
//! directly. Map operators are fallible and so can inject additional errors
//! into the stream. Join operators combine the errors from each of their
//! inputs.
//!
//! The semantics of the error stream are minimal. From the perspective of SQL,
//! a dataflow is considered to be in an error state if there is at least one
//! element in the final errs collection. The error value returned to the user
//! is selected arbitrarily; SQL only makes provisions to return one error to
//! the user at a time. There are plans to make the err collection accessible to
//! end users, so they can see all errors at once.
//!
//! To make errors transient, simply ensure that the operator can retract any
//! produced errors when corrected data arrives. To make errors permanent, write
//! the operator such that it never retracts the errors it produced. Future work
//! will likely want to introduce some sort of sort order for errors, so that
//! permanent errors are returned to the user ahead of transient errors—probably
//! by introducing a new error type a la:
//!
//! ```no_run
//! # struct EvalError;
//! # struct SourceError;
//! enum DataflowError {
//!     Transient(EvalError),
//!     Permanent(SourceError),
//! }
//! ```
//!
//! If the error stream is empty, the oks stream must be correct. If the error
//! stream is non-empty, then there are no semantics for the oks stream. This is
//! sufficient to support SQL in its current form, but is likely to be
//! unsatisfactory long term. We suspect that we can continue to imbue the oks
//! stream with semantics if we are very careful in describing what data should
//! and should not be produced upon encountering an error. Roughly speaking, the
//! oks stream could represent the correct result of the computation where all
//! rows that caused an error have been pruned from the stream. There are
//! strange and confusing questions here around foreign keys, though: what if
//! the optimizer proves that a particular key must exist in a collection, but
//! the key gets pruned away because its row participated in a scalar expression
//! evaluation that errored?
//!
//! In the meantime, it is probably wise for operators to keep the oks stream
//! roughly "as correct as possible" even when errors are present in the errs
//! stream. This reduces the amount of recomputation that must be performed
//! if/when the errors are retracted.

use std::any::Any;
use std::collections::{BTreeMap, BTreeSet};
use std::convert::Infallible;
use std::future::Future;
use std::pin::Pin;
use std::rc::{Rc, Weak};
use std::sync::Arc;
use std::task::Poll;

use differential_dataflow::dynamic::pointstamp::PointStamp;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::operators::arrange::{Arranged, TraceAgent};
use differential_dataflow::trace::{Batch, Batcher, Trace, TraceReader};
use differential_dataflow::{AsCollection, Collection, Data, ExchangeData, Hashable};
use futures::channel::oneshot;
use futures::FutureExt;
use mz_compute_types::dataflows::{BuildDesc, DataflowDescription, IndexDesc};
use mz_compute_types::dyncfgs::ENABLE_OPERATOR_HYDRATION_STATUS_LOGGING;
use mz_compute_types::plan::flat_plan::{FlatPlan, FlatPlanNode};
use mz_compute_types::plan::LirId;
use mz_expr::{EvalError, Id};
use mz_persist_client::operators::shard_source::SnapshotMode;
use mz_repr::{Datum, Diff, GlobalId, Row, SharedRow};
use mz_storage_operators::persist_source;
use mz_storage_types::controller::CollectionMetadata;
use mz_storage_types::errors::DataflowError;
use mz_timely_util::operator::CollectionExt;
use timely::communication::Allocate;
use timely::container::columnation::Columnation;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::operators::to_stream::ToStream;
use timely::dataflow::operators::{BranchWhen, Operator};
use timely::dataflow::scopes::Child;
use timely::dataflow::{Scope, Stream};
use timely::order::Product;
use timely::progress::timestamp::Refines;
use timely::progress::{Antichain, Timestamp};
use timely::worker::Worker as TimelyWorker;
use timely::PartialOrder;

use crate::arrangement::manager::TraceBundle;
use crate::compute_state::ComputeState;
use crate::extensions::arrange::{ArrangementSize, KeyCollection, MzArrange};
use crate::extensions::reduce::MzReduce;
use crate::logging::compute::{LogDataflowErrors, LogImportFrontiers};
use crate::render::context::{
    ArrangementFlavor, Context, MzArrangement, MzArrangementImport, ShutdownToken,
};
use crate::typedefs::{ErrSpine, KeyBatcher};

pub mod context;
mod errors;
mod flat_map;
mod join;
mod reduce;
pub mod sinks;
mod threshold;
mod top_k;

pub use context::CollectionBundle;
pub use join::LinearJoinSpec;

/// Assemble the "compute"  side of a dataflow, i.e. all but the sources.
///
/// This method imports sources from provided assets, and then builds the remaining
/// dataflow using "compute-local" assets like shared arrangements, and producing
/// both arrangements and sinks.
pub fn build_compute_dataflow<A: Allocate>(
    timely_worker: &mut TimelyWorker<A>,
    compute_state: &mut ComputeState,
    dataflow: DataflowDescription<FlatPlan, CollectionMetadata>,
    start_signal: StartSignal,
) {
    // Mutually recursive view definitions require special handling.
    let recursive = dataflow
        .objects_to_build
        .iter()
        .any(|object| object.plan.is_recursive());

    // Determine indexes to export, and their dependencies.
    let indexes = dataflow
        .index_exports
        .iter()
        .map(|(idx_id, (idx, _typ))| (*idx_id, dataflow.depends_on(idx.on_id), idx.clone()))
        .collect::<Vec<_>>();

    // Determine sinks to export, and their dependencies.
    let sinks = dataflow
        .sink_exports
        .iter()
        .map(|(sink_id, sink)| (*sink_id, dataflow.depends_on(sink.from), sink.clone()))
        .collect::<Vec<_>>();

    let worker_logging = timely_worker.log_register().get("timely");

    let name = format!("Dataflow: {}", &dataflow.debug_name);
    let input_name = format!("InputRegion: {}", &dataflow.debug_name);
    let build_name = format!("BuildRegion: {}", &dataflow.debug_name);

    timely_worker.dataflow_core(&name, worker_logging, Box::new(()), |_, scope| {
        // The scope.clone() occurs to allow import in the region.
        // We build a region here to establish a pattern of a scope inside the dataflow,
        // so that other similar uses (e.g. with iterative scopes) do not require weird
        // alternate type signatures.
        let mut imported_sources = Vec::new();
        let mut tokens = BTreeMap::new();
        scope.clone().region_named(&input_name, |region| {
            // Import declared sources into the rendering context.
            for (source_id, (source, _monotonic)) in dataflow.source_imports.iter() {
                region.region_named(&format!("Source({:?})", source_id), |inner| {
                    let mut mfp = source.arguments.operators.clone().map(|ops| {
                        mz_expr::MfpPlan::create_from(ops)
                            .expect("Linear operators should always be valid")
                    });

                    // Note: For correctness, we require that sources only emit times advanced by
                    // `dataflow.as_of`. `persist_source` is documented to provide this guarantee.
                    let (mut ok_stream, err_stream, token) = persist_source::persist_source(
                        inner,
                        *source_id,
                        Arc::clone(&compute_state.persist_clients),
                        source.storage_metadata.clone(),
                        dataflow.as_of.clone(),
                        SnapshotMode::Include,
                        dataflow.until.clone(),
                        mfp.as_mut(),
                        compute_state.dataflow_max_inflight_bytes(),
                        start_signal.clone(),
                    );

                    // If `mfp` is non-identity, we need to apply what remains.
                    // For the moment, assert that it is either trivial or `None`.
                    assert!(mfp.map(|x| x.is_identity()).unwrap_or(true));

                    // To avoid a memory spike during arrangement hydration (#21165), need to
                    // ensure that the first frontier we report into the dataflow is beyond the
                    // `as_of`.
                    if let Some(as_of) = dataflow.as_of.clone() {
                        ok_stream = suppress_early_progress(ok_stream, as_of);
                    }

                    // If logging is enabled, log source frontier advancements. Note that we do
                    // this here instead of in the server.rs worker loop since we want to catch the
                    // wall-clock time of the frontier advancement for each dataflow as early as
                    // possible.
                    if let Some(logger) = compute_state.compute_logger.clone() {
                        let export_ids = dataflow.export_ids().collect();
                        ok_stream = ok_stream.log_import_frontiers(logger, *source_id, export_ids);
                    }

                    let (oks, errs) = (
                        ok_stream.as_collection().leave_region().leave_region(),
                        err_stream.as_collection().leave_region().leave_region(),
                    );

                    imported_sources.push((mz_expr::Id::Global(*source_id), (oks, errs)));

                    // Associate returned tokens with the source identifier.
                    let token: Rc<dyn Any> = Rc::new(token);
                    tokens.insert(*source_id, token);
                });
            }
        });

        // If there exists a recursive expression, we'll need to use a non-region scope,
        // in order to support additional timestamp coordinates for iteration.
        if recursive {
            scope.clone().iterative::<PointStamp<u64>, _, _>(|region| {
                let mut context =
                    Context::for_dataflow_in(&dataflow, region.clone(), compute_state);

                for (id, (oks, errs)) in imported_sources.into_iter() {
                    let bundle = crate::render::CollectionBundle::from_collections(
                        oks.enter(region),
                        errs.enter(region),
                    );
                    // Associate collection bundle with the source identifier.
                    context.insert_id(id, bundle);
                }

                // Import declared indexes into the rendering context.
                for (idx_id, idx) in &dataflow.index_imports {
                    let export_ids = dataflow.export_ids().collect();
                    context.import_index(
                        compute_state,
                        &mut tokens,
                        export_ids,
                        *idx_id,
                        &idx.desc,
                    );
                }

                // Build declared objects.
                for object in dataflow.objects_to_build {
                    let object_token = Rc::new(());
                    context.shutdown_token = ShutdownToken::new(Rc::downgrade(&object_token));
                    tokens.insert(object.id, object_token);

                    let bundle = context.render_recursive_plan(0, object.plan);
                    context.insert_id(Id::Global(object.id), bundle);
                }

                // Export declared indexes.
                for (idx_id, dependencies, idx) in indexes {
                    context.export_index_iterative(
                        compute_state,
                        &tokens,
                        dependencies,
                        idx_id,
                        &idx,
                    );
                }

                // Export declared sinks.
                for (sink_id, dependencies, sink) in sinks {
                    context.export_sink(
                        compute_state,
                        &tokens,
                        dependencies,
                        sink_id,
                        &sink,
                        start_signal.clone(),
                    );
                }
            });
        } else {
            scope.clone().region_named(&build_name, |region| {
                let mut context =
                    Context::for_dataflow_in(&dataflow, region.clone(), compute_state);

                for (id, (oks, errs)) in imported_sources.into_iter() {
                    let bundle = crate::render::CollectionBundle::from_collections(
                        oks.enter_region(region),
                        errs.enter_region(region),
                    );
                    // Associate collection bundle with the source identifier.
                    context.insert_id(id, bundle);
                }

                // Import declared indexes into the rendering context.
                for (idx_id, idx) in &dataflow.index_imports {
                    let export_ids = dataflow.export_ids().collect();
                    context.import_index(
                        compute_state,
                        &mut tokens,
                        export_ids,
                        *idx_id,
                        &idx.desc,
                    );
                }

                // Build declared objects.
                for object in dataflow.objects_to_build {
                    let object_token = Rc::new(());
                    context.shutdown_token = ShutdownToken::new(Rc::downgrade(&object_token));
                    tokens.insert(object.id, object_token);

                    context.build_object(object);
                }

                // Export declared indexes.
                for (idx_id, dependencies, idx) in indexes {
                    context.export_index(compute_state, &tokens, dependencies, idx_id, &idx);
                }

                // Export declared sinks.
                for (sink_id, dependencies, sink) in sinks {
                    context.export_sink(
                        compute_state,
                        &tokens,
                        dependencies,
                        sink_id,
                        &sink,
                        start_signal.clone(),
                    );
                }
            });
        }
    })
}

// This implementation block allows child timestamps to vary from parent timestamps,
// but requires the parent timestamp to be `repr::Timestamp`.
impl<'g, G, T> Context<Child<'g, G, T>>
where
    G: Scope<Timestamp = mz_repr::Timestamp>,
    T: Refines<G::Timestamp> + RenderTimestamp,
{
    pub(crate) fn import_index(
        &mut self,
        compute_state: &mut ComputeState,
        tokens: &mut BTreeMap<GlobalId, Rc<dyn std::any::Any>>,
        export_ids: Vec<GlobalId>,
        idx_id: GlobalId,
        idx: &IndexDesc,
    ) {
        if let Some(traces) = compute_state.traces.get_mut(&idx_id) {
            assert!(
                PartialOrder::less_equal(&traces.compaction_frontier(), &self.as_of_frontier),
                "Index {idx_id} has been allowed to compact beyond the dataflow as_of"
            );

            let token = traces.to_drop().clone();
            // Import the specialized trace handle as a specialized arrangement import.
            // Note that we incorporate optional logging setup as part of this process,
            // since a specialized arrangement import require us to enter a scope, but
            // we can only enter after logging is set up. We attach logging here instead
            // of implementing it in the server.rs worker loop since we want to catch the
            // wall-clock time of the frontier advancement for each dataflow as early as
            // possible.
            let (ok_arranged, ok_button) = traces.oks_mut().import_frontier_logged(
                &self.scope,
                &format!("Index({}, {:?})", idx.on_id, idx.key),
                self.as_of_frontier.clone(),
                self.until.clone(),
                compute_state.compute_logger.clone(),
                idx_id,
                export_ids,
            );
            let (err_arranged, err_button) = traces.errs_mut().import_frontier_core(
                &self.scope.parent,
                &format!("ErrIndex({}, {:?})", idx.on_id, idx.key),
                self.as_of_frontier.clone(),
                self.until.clone(),
            );
            let err_arranged = err_arranged.enter(&self.scope);

            self.update_id(
                Id::Global(idx.on_id),
                CollectionBundle::from_expressions(
                    idx.key.clone(),
                    ArrangementFlavor::Trace(idx_id, ok_arranged, err_arranged),
                ),
            );
            tokens.insert(
                idx_id,
                Rc::new((ok_button.press_on_drop(), err_button.press_on_drop(), token)),
            );
        } else {
            panic!(
                "import of index {} failed while building dataflow {}",
                idx_id, self.dataflow_id
            );
        }
    }
}

// This implementation block allows child timestamps to vary from parent timestamps.
impl<G> Context<G>
where
    G: Scope,
    G::Timestamp: RenderTimestamp,
{
    pub(crate) fn build_object(&mut self, object: BuildDesc<FlatPlan>) {
        // First, transform the relation expression into a render plan.
        let bundle = self.render_plan(object.plan);
        self.insert_id(Id::Global(object.id), bundle);
    }
}

// This implementation block requires the scopes have the same timestamp as the trace manager.
// That makes some sense, because we are hoping to deposit an arrangement in the trace manager.
impl<'g, G> Context<Child<'g, G, G::Timestamp>, G::Timestamp>
where
    G: Scope<Timestamp = mz_repr::Timestamp>,
{
    pub(crate) fn export_index(
        &mut self,
        compute_state: &mut ComputeState,
        tokens: &BTreeMap<GlobalId, Rc<dyn std::any::Any>>,
        dependency_ids: BTreeSet<GlobalId>,
        idx_id: GlobalId,
        idx: &IndexDesc,
    ) {
        // put together tokens that belong to the export
        let mut needed_tokens = Vec::new();
        for dep_id in dependency_ids {
            if let Some(token) = tokens.get(&dep_id) {
                needed_tokens.push(Rc::clone(token));
            }
        }
        let bundle = self.lookup_id(Id::Global(idx_id)).unwrap_or_else(|| {
            panic!(
                "Arrangement alarmingly absent! id: {:?}",
                Id::Global(idx_id)
            )
        });

        match bundle.arrangement(&idx.key) {
            Some(ArrangementFlavor::Local(oks, errs)) => {
                // Obtain a specialized handle matching the specialized arrangement.
                let oks_trace = oks.trace_handle();

                // Attach logging of dataflow errors.
                if let Some(logger) = compute_state.compute_logger.clone() {
                    errs.stream.log_dataflow_errors(logger, idx_id);
                }

                compute_state.traces.set(
                    idx_id,
                    TraceBundle::new(oks_trace, errs.trace).with_drop(needed_tokens),
                );
            }
            Some(ArrangementFlavor::Trace(gid, _, _)) => {
                // Duplicate of existing arrangement with id `gid`, so
                // just create another handle to that arrangement.
                let trace = compute_state.traces.get(&gid).unwrap().clone();
                compute_state.traces.set(idx_id, trace);
            }
            None => {
                println!("collection available: {:?}", bundle.collection.is_none());
                println!(
                    "keys available: {:?}",
                    bundle.arranged.keys().collect::<Vec<_>>()
                );
                panic!(
                    "Arrangement alarmingly absent! id: {:?}, keys: {:?}",
                    Id::Global(idx_id),
                    &idx.key
                );
            }
        };
    }
}

// This implementation block requires the scopes have the same timestamp as the trace manager.
// That makes some sense, because we are hoping to deposit an arrangement in the trace manager.
impl<'g, G, T> Context<Child<'g, G, T>>
where
    G: Scope<Timestamp = mz_repr::Timestamp>,
    T: RenderTimestamp,
{
    pub(crate) fn export_index_iterative(
        &mut self,
        compute_state: &mut ComputeState,
        tokens: &BTreeMap<GlobalId, Rc<dyn std::any::Any>>,
        dependency_ids: BTreeSet<GlobalId>,
        idx_id: GlobalId,
        idx: &IndexDesc,
    ) {
        // put together tokens that belong to the export
        let mut needed_tokens = Vec::new();
        for dep_id in dependency_ids {
            if let Some(token) = tokens.get(&dep_id) {
                needed_tokens.push(Rc::clone(token));
            }
        }
        let bundle = self.lookup_id(Id::Global(idx_id)).unwrap_or_else(|| {
            panic!(
                "Arrangement alarmingly absent! id: {:?}",
                Id::Global(idx_id)
            )
        });

        match bundle.arrangement(&idx.key) {
            Some(ArrangementFlavor::Local(oks, errs)) => {
                let oks = self.dispatch_rearrange_iterative(oks, "Arrange export iterative");
                let oks_trace = oks.trace_handle();

                let errs = errs
                    .as_collection(|k, v| (k.clone(), v.clone()))
                    .leave()
                    .mz_arrange("Arrange export iterative err");

                // Attach logging of dataflow errors.
                if let Some(logger) = compute_state.compute_logger.clone() {
                    errs.stream.log_dataflow_errors(logger, idx_id);
                }

                compute_state.traces.set(
                    idx_id,
                    TraceBundle::new(oks_trace, errs.trace).with_drop(needed_tokens),
                );
            }
            Some(ArrangementFlavor::Trace(gid, _, _)) => {
                // Duplicate of existing arrangement with id `gid`, so
                // just create another handle to that arrangement.
                let trace = compute_state.traces.get(&gid).unwrap().clone();
                compute_state.traces.set(idx_id, trace);
            }
            None => {
                println!("collection available: {:?}", bundle.collection.is_none());
                println!(
                    "keys available: {:?}",
                    bundle.arranged.keys().collect::<Vec<_>>()
                );
                panic!(
                    "Arrangement alarmingly absent! id: {:?}, keys: {:?}",
                    Id::Global(idx_id),
                    &idx.key
                );
            }
        };
    }

    /// Dispatches the rearranging of an arrangement coming from an iterative scope
    /// according to specialized key-value arrangement types.
    fn dispatch_rearrange_iterative(
        &self,
        oks: MzArrangement<Child<'g, G, T>>,
        name: &str,
    ) -> MzArrangement<G> {
        match oks {
            MzArrangement::RowRow(inner) => {
                let oks = self.rearrange_iterative(inner, name);
                MzArrangement::RowRow(oks)
            }
        }
    }

    /// Rearranges an arrangement coming from an iterative scope into an arrangement
    /// in the outer timestamp scope.
    fn rearrange_iterative<Tr1, Tr2>(
        &self,
        oks: Arranged<Child<'g, G, T>, TraceAgent<Tr1>>,
        name: &str,
    ) -> Arranged<G, TraceAgent<Tr2>>
    where
        Tr1: TraceReader<Time = T, Diff = Diff>,
        Tr1::KeyOwned: Columnation + ExchangeData + Hashable,
        Tr1::ValOwned: Columnation + ExchangeData,
        Tr2: Trace + TraceReader<Time = G::Timestamp, Diff = Diff> + 'static,
        Tr2::Batch: Batch,
        Tr2::Batcher: Batcher<Item = ((Tr1::KeyOwned, Tr1::ValOwned), G::Timestamp, Diff)>,
        Arranged<G, TraceAgent<Tr2>>: ArrangementSize,
    {
        use differential_dataflow::trace::cursor::MyTrait;
        oks.as_collection(|k, v| (k.into_owned(), v.into_owned()))
            .leave()
            .mz_arrange(name)
    }
}

impl<G> Context<G>
where
    G: Scope<Timestamp = Product<mz_repr::Timestamp, PointStamp<u64>>>,
{
    /// Renders a plan to a differential dataflow, producing the collection of results.
    ///
    /// This method allows for `plan` to contain a `LetRec` variant at its root, and is planned
    /// in the context of `level` pre-existing iteration coordinates.
    ///
    /// This method recursively descends `LetRec` nodes, establishing nested scopes for each
    /// and establishing the appropriate recursive dependencies among the bound variables.
    /// Once non-`LetRec` nodes are reached it calls in to `render_plan` which will error if
    /// further `LetRec` variants are found.
    ///
    /// The method requires that all variables conclude with a physical representation that
    /// contains a collection (i.e. a non-arrangement), and it will panic otherwise.
    pub fn render_recursive_plan(&mut self, level: usize, plan: FlatPlan) -> CollectionBundle<G> {
        if plan.is_recursive() {
            let (values, body) = plan.split_recursive();
            let ids: Vec<_> = values.iter().map(|(id, _, _)| *id).collect();

            // It is important that we only use the `Variable` until the object is bound.
            // At that point, all subsequent uses should have access to the object itself.
            let mut variables = BTreeMap::new();
            for id in ids.iter() {
                use differential_dataflow::dynamic::feedback_summary;
                use differential_dataflow::operators::iterate::Variable;
                let inner = feedback_summary::<u64>(level + 1, 1);
                let oks_v = Variable::new(
                    &mut self.scope,
                    Product::new(Default::default(), inner.clone()),
                );
                let err_v = Variable::new(&mut self.scope, Product::new(Default::default(), inner));

                self.insert_id(
                    Id::Local(*id),
                    CollectionBundle::from_collections(oks_v.clone(), err_v.clone()),
                );
                variables.insert(Id::Local(*id), (oks_v, err_v));
            }
            // Now render each of the bindings.
            for (id, value, limit) in values {
                let bundle = self.render_recursive_plan(level + 1, value);
                // We need to ensure that the raw collection exists, but do not have enough information
                // here to cause that to happen.
                let (oks, mut err) = bundle.collection.clone().unwrap();
                self.insert_id(Id::Local(id), bundle);
                let (oks_v, err_v) = variables.remove(&Id::Local(id)).unwrap();

                // Set oks variable to `oks` but consolidated to ensure iteration ceases at fixed point.
                let mut oks = oks.consolidate_named::<KeyBatcher<_, _, _>>("LetRecConsolidation");
                if let Some(token) = &self.shutdown_token.get_inner() {
                    oks = oks.with_token(Weak::clone(token));
                }

                if let Some(limit) = limit {
                    // We swallow the results of the `max_iter`th iteration, because
                    // these results would go into the `max_iter + 1`th iteration.
                    let (in_limit, over_limit) =
                        oks.inner.branch_when(move |Product { inner: ps, .. }| {
                            // The iteration number, or if missing a zero (as trailing zeros are truncated).
                            let iteration_index = *ps.get(level).unwrap_or(&0);
                            // The pointstamp starts counting from 0, so we need to add 1.
                            iteration_index + 1 >= limit.max_iters.into()
                        });
                    oks = Collection::new(in_limit);
                    if !limit.return_at_limit {
                        err = err.concat(&Collection::new(over_limit).map(move |_data| {
                            DataflowError::EvalError(Box::new(EvalError::LetRecLimitExceeded(
                                format!("{}", limit.max_iters.get()),
                            )))
                        }));
                    }
                }

                oks_v.set(&oks);

                // Set err variable to the distinct elements of `err`.
                // Distinctness is important, as we otherwise might add the same error each iteration,
                // say if the limit of `oks` has an error. This would result in non-terminating rather
                // than a clean report of the error. The trade-off is that we lose information about
                // multiplicities of errors, but .. this seems to be the better call.
                let err: KeyCollection<_, _, _> = err.into();
                let mut errs = err
                    .mz_arrange::<ErrSpine<_, _>>("Arrange recursive err")
                    .mz_reduce_abelian::<_, ErrSpine<_, _>>(
                        "Distinct recursive err",
                        move |_k, _s, t| t.push(((), 1)),
                    )
                    .as_collection(|k, _| k.clone());
                if let Some(token) = &self.shutdown_token.get_inner() {
                    errs = errs.with_token(Weak::clone(token));
                }
                err_v.set(&errs);
            }
            // Now extract each of the bindings into the outer scope.
            for id in ids.into_iter() {
                let bundle = self.remove_id(Id::Local(id)).unwrap();
                let (oks, err) = bundle.collection.unwrap();
                self.insert_id(
                    Id::Local(id),
                    CollectionBundle::from_collections(
                        oks.leave_dynamic(level + 1),
                        err.leave_dynamic(level + 1),
                    ),
                );
            }

            self.render_recursive_plan(level, body)
        } else {
            self.render_plan(plan)
        }
    }
}

impl<G> Context<G>
where
    G: Scope,
    G::Timestamp: RenderTimestamp,
{
    /// Renders a plan to a differential dataflow, producing the collection of results.
    ///
    /// The return type reflects the uncertainty about the data representation, perhaps
    /// as a stream of data, perhaps as an arrangement, perhaps as a stream of batches.
    pub fn render_plan(&mut self, plan: FlatPlan) -> CollectionBundle<G> {
        let (mut nodes, root_id, topological_order) = plan.destruct();

        // Rendered collections by their `LirId`.
        let mut collections = BTreeMap::new();

        for id in topological_order {
            let node = nodes.remove(&id).unwrap();
            let mut bundle = self.render_plan_node(node, &collections);

            if ENABLE_OPERATOR_HYDRATION_STATUS_LOGGING.get(&self.worker_config) {
                self.log_operator_hydration(&mut bundle, id);
            }

            collections.insert(id, bundle);
        }

        collections
            .remove(&root_id)
            .expect("FlatPlan invariant (1)")
    }

    /// Renders a plan node, producing the collection of results.
    ///
    /// # Panics
    ///
    /// Panics if any of the node's inputs is not found in `collections`.
    /// Callers must ensure that input nodes have been rendered previously.
    fn render_plan_node(
        &mut self,
        node: FlatPlanNode,
        collections: &BTreeMap<LirId, CollectionBundle<G>>,
    ) -> CollectionBundle<G> {
        use FlatPlanNode::*;

        let expect_input = |id| {
            collections
                .get(&id)
                .cloned()
                .unwrap_or_else(|| panic!("missing input collection: {id}"))
        };

        match node {
            Constant { rows } => {
                // Produce both rows and errs to avoid conditional dataflow construction.
                let (rows, errs) = match rows {
                    Ok(rows) => (rows, Vec::new()),
                    Err(e) => (Vec::new(), vec![e]),
                };

                // We should advance times in constant collections to start from `as_of`.
                let as_of_frontier = self.as_of_frontier.clone();
                let until = self.until.clone();
                let ok_collection = rows
                    .into_iter()
                    .filter_map(move |(row, mut time, diff)| {
                        time.advance_by(as_of_frontier.borrow());
                        if !until.less_equal(&time) {
                            Some((
                                row,
                                <G::Timestamp as Refines<mz_repr::Timestamp>>::to_inner(time),
                                diff,
                            ))
                        } else {
                            None
                        }
                    })
                    .to_stream(&mut self.scope)
                    .as_collection();

                let mut error_time: mz_repr::Timestamp = Timestamp::minimum();
                error_time.advance_by(self.as_of_frontier.borrow());
                let err_collection = errs
                    .into_iter()
                    .map(move |e| {
                        (
                            DataflowError::from(e),
                            <G::Timestamp as Refines<mz_repr::Timestamp>>::to_inner(error_time),
                            1,
                        )
                    })
                    .to_stream(&mut self.scope)
                    .as_collection();

                CollectionBundle::from_collections(ok_collection, err_collection)
            }
            Get { id, keys, plan } => {
                // Recover the collection from `self` and then apply `mfp` to it.
                // If `mfp` happens to be trivial, we can just return the collection.
                let mut collection = self
                    .lookup_id(id)
                    .unwrap_or_else(|| panic!("Get({:?}) not found at render time", id));
                match plan {
                    mz_compute_types::plan::GetPlan::PassArrangements => {
                        // Assert that each of `keys` are present in `collection`.
                        assert!(keys
                            .arranged
                            .iter()
                            .all(|(key, _, _)| collection.arranged.contains_key(key)));
                        assert!(keys.raw <= collection.collection.is_some());
                        // Retain only those keys we want to import.
                        collection.arranged.retain(|key, _value| {
                            keys.arranged.iter().any(|(key2, _, _)| key2 == key)
                        });
                        collection
                    }
                    mz_compute_types::plan::GetPlan::Arrangement(key, row, mfp) => {
                        let (oks, errs) = collection.as_collection_core(
                            mfp,
                            Some((key, row)),
                            self.until.clone(),
                        );
                        CollectionBundle::from_collections(oks, errs)
                    }
                    mz_compute_types::plan::GetPlan::Collection(mfp) => {
                        let (oks, errs) =
                            collection.as_collection_core(mfp, None, self.until.clone());
                        CollectionBundle::from_collections(oks, errs)
                    }
                }
            }
            LetRec { .. } => {
                unreachable!("LetRec should have been extracted and rendered");
            }
            Mfp {
                input,
                mfp,
                input_key_val,
            } => {
                let input = expect_input(input);
                // If `mfp` is non-trivial, we should apply it and produce a collection.
                if mfp.is_identity() {
                    input
                } else {
                    let (oks, errs) =
                        input.as_collection_core(mfp, input_key_val, self.until.clone());
                    CollectionBundle::from_collections(oks, errs)
                }
            }
            FlatMap {
                input,
                func,
                exprs,
                mfp_after: mfp,
                input_key,
            } => {
                let input = expect_input(input);
                self.render_flat_map(input, func, exprs, mfp, input_key)
            }
            Join { inputs, plan } => {
                let inputs = inputs.into_iter().map(expect_input).collect();
                match plan {
                    mz_compute_types::plan::join::JoinPlan::Linear(linear_plan) => {
                        self.render_join(inputs, linear_plan)
                    }
                    mz_compute_types::plan::join::JoinPlan::Delta(delta_plan) => {
                        self.render_delta_join(inputs, delta_plan)
                    }
                }
            }
            Reduce {
                input,
                key_val_plan,
                plan,
                input_key,
                mfp_after,
            } => {
                let input = expect_input(input);
                let mfp_option = (!mfp_after.is_identity()).then_some(mfp_after);
                self.render_reduce(input, key_val_plan, plan, input_key, mfp_option)
            }
            TopK { input, top_k_plan } => {
                let input = expect_input(input);
                self.render_topk(input, top_k_plan)
            }
            Negate { input } => {
                let input = expect_input(input);
                let (oks, errs) = input.as_specific_collection(None);
                CollectionBundle::from_collections(oks.negate(), errs)
            }
            Threshold {
                input,
                threshold_plan,
            } => {
                let input = expect_input(input);
                self.render_threshold(input, threshold_plan)
            }
            Union {
                inputs,
                consolidate_output,
            } => {
                let mut oks = Vec::new();
                let mut errs = Vec::new();
                for input in inputs.into_iter() {
                    let (os, es) = expect_input(input).as_specific_collection(None);
                    oks.push(os);
                    errs.push(es);
                }
                let mut oks = differential_dataflow::collection::concatenate(&mut self.scope, oks);
                if consolidate_output {
                    oks = oks.consolidate_named::<KeyBatcher<_, _, _>>("UnionConsolidation")
                }
                let errs = differential_dataflow::collection::concatenate(&mut self.scope, errs);
                CollectionBundle::from_collections(oks, errs)
            }
            ArrangeBy {
                input,
                forms: keys,
                input_key,
                input_mfp,
            } => {
                let input = expect_input(input);
                input.ensure_collections(keys, input_key, input_mfp, self.until.clone())
            }
        }
    }

    fn log_operator_hydration(&self, bundle: &mut CollectionBundle<G>, lir_id: u64) {
        // A `CollectionBundle` can contain more than one collection, which makes it not obvious to
        // which we should attach the logging operator.
        //
        // We could attach to each collection and track the lower bound of output frontiers.
        // However, that would be of limited use because we expect all collections to hydrate at
        // roughly the same time: The `ArrangeBy` operator is not fueled, so as soon as it sees the
        // frontier of the unarranged collection advance, it will perform all work necessary to
        // also advance its own frontier. We don't expect significant delays between frontier
        // advancements of the unarranged and arranged collections, so attaching the logging
        // operator to any one of them should produce accurate results.
        //
        // If the `CollectionBundle` contains both unarranged and arranged representations it is
        // beneficial to attach the logging operator to one of the arranged representation to avoid
        // unnecessary cloning of data. The unarranged collection feeds into the arrangements, so
        // if we attached the logging operator to it, we would introduce a fork in its output
        // stream, which would necessitate that all output data is cloned. In contrast, we can hope
        // that the output streams of the arrangements don't yet feed into anything else, so
        // attaching a (pass-through) logging operator does not introduce a fork.

        match bundle.arranged.values_mut().next() {
            Some(arrangement) => {
                use ArrangementFlavor::*;
                use MzArrangement as A;
                use MzArrangementImport as AI;

                match arrangement {
                    Local(A::RowRow(a), _) => {
                        a.stream = self.log_operator_hydration_inner(&a.stream, lir_id);
                    }
                    Trace(_, AI::RowRow(a), _) => {
                        a.stream = self.log_operator_hydration_inner(&a.stream, lir_id);
                    }
                }
            }
            None => {
                let (oks, _) = bundle
                    .collection
                    .as_mut()
                    .expect("CollectionBundle invariant");
                let stream = self.log_operator_hydration_inner(&oks.inner, lir_id);
                *oks = stream.as_collection();
            }
        }
    }

    fn log_operator_hydration_inner<D>(&self, stream: &Stream<G, D>, lir_id: u64) -> Stream<G, D>
    where
        D: Clone + 'static,
    {
        let Some(logger) = self.hydration_logger.clone() else {
            return stream.clone(); // hydration logging disabled
        };

        // Convert the dataflow as-of into a frontier we can compare with input frontiers.
        //
        // We (somewhat arbitrarily) define operators in iterative scopes to be hydrated when their
        // frontier advances to an outer time that's greater than the `as_of`. Comparing
        // `refine(as_of) < input_frontier` would find the moment when the first iteration was
        // complete, which is not what we want. We want `refine(as_of + 1) <= input_frontier`
        // instead.
        let mut hydration_frontier = Antichain::new();
        for time in self.as_of_frontier.iter() {
            if let Some(time) = time.try_step_forward() {
                hydration_frontier.insert(Refines::to_inner(time));
            }
        }

        let name = format!("LogOperatorHydration ({lir_id})");
        stream.unary_frontier(Pipeline, &name, |_cap, _info| {
            let mut hydrated = false;
            logger.log(lir_id, hydrated);

            let mut buffer = Vec::new();
            move |input, output| {
                // Pass through inputs.
                input.for_each(|cap, data| {
                    data.swap(&mut buffer);
                    output.session(&cap).give_vec(&mut buffer);
                });

                if hydrated {
                    return;
                }

                let frontier = input.frontier().frontier();
                if PartialOrder::less_equal(&hydration_frontier.borrow(), &frontier) {
                    hydrated = true;
                    logger.log(lir_id, hydrated);
                }
            }
        })
    }
}

/// A timestamp type that can be used for operations within MZ's dataflow layer.
pub trait RenderTimestamp: Timestamp + Lattice + Refines<mz_repr::Timestamp> + Columnation {
    /// The system timestamp component of the timestamp.
    ///
    /// This is useful for manipulating the system time, as when delaying
    /// updates for subsequent cancellation, as with monotonic reduction.
    fn system_time(&mut self) -> &mut mz_repr::Timestamp;
    /// Effects a system delay in terms of the timestamp summary.
    fn system_delay(delay: mz_repr::Timestamp) -> <Self as Timestamp>::Summary;
    /// The event timestamp component of the timestamp.
    fn event_time(&self) -> mz_repr::Timestamp;
    /// The event timestamp component of the timestamp, as a mutable reference.
    fn event_time_mut(&mut self) -> &mut mz_repr::Timestamp;
    /// Effects an event delay in terms of the timestamp summary.
    fn event_delay(delay: mz_repr::Timestamp) -> <Self as Timestamp>::Summary;
    /// Steps the timestamp back so that logical compaction to the output will
    /// not conflate `self` with any historical times.
    fn step_back(&self) -> Self;
}

impl RenderTimestamp for mz_repr::Timestamp {
    fn system_time(&mut self) -> &mut mz_repr::Timestamp {
        self
    }
    fn system_delay(delay: mz_repr::Timestamp) -> <Self as Timestamp>::Summary {
        delay
    }
    fn event_time(&self) -> mz_repr::Timestamp {
        *self
    }
    fn event_time_mut(&mut self) -> &mut mz_repr::Timestamp {
        self
    }
    fn event_delay(delay: mz_repr::Timestamp) -> <Self as Timestamp>::Summary {
        delay
    }
    fn step_back(&self) -> Self {
        self.saturating_sub(1)
    }
}

impl RenderTimestamp for Product<mz_repr::Timestamp, PointStamp<u64>> {
    fn system_time(&mut self) -> &mut mz_repr::Timestamp {
        &mut self.outer
    }
    fn system_delay(delay: mz_repr::Timestamp) -> <Self as Timestamp>::Summary {
        Product::new(delay, Default::default())
    }
    fn event_time(&self) -> mz_repr::Timestamp {
        self.outer
    }
    fn event_time_mut(&mut self) -> &mut mz_repr::Timestamp {
        &mut self.outer
    }
    fn event_delay(delay: mz_repr::Timestamp) -> <Self as Timestamp>::Summary {
        Product::new(delay, Default::default())
    }
    fn step_back(&self) -> Self {
        // It is necessary to step back both coordinates of a product,
        // and when one is a `PointStamp` that also means all coordinates
        // of the pointstamp.
        let inner = self.inner.clone();
        let mut vec = inner.into_vec();
        for item in vec.iter_mut() {
            *item = item.saturating_sub(1);
        }
        Product::new(self.outer.saturating_sub(1), PointStamp::new(vec))
    }
}

/// A signal that can be awaited by operators to suspend them prior to startup.
///
/// Used to enforce a given configured hydration concurrency by only allowing that number of
/// dataflows to perform hydration at the same time.
///
/// Note that currently only `persist_source` operators support suspension. Data can still enter a
/// suspended dataflow through arrangement imports and ideally we would be able to suspend those as
/// well.
#[derive(Clone)]
pub(super) struct StartSignal(
    // The inner type is `Infallible` because no data is ever expected on this channel. Instead the
    // signal is activated by dropping the corresponding `Sender`.
    futures::future::Shared<oneshot::Receiver<Infallible>>,
);

impl StartSignal {
    /// Create a new `StartSignal` and a corresponding token that activates the signal when
    /// dropped.
    pub fn new() -> (Self, Rc<dyn Any>) {
        let (tx, rx) = oneshot::channel::<Infallible>();
        let token = Rc::new(tx);
        let signal = Self(rx.shared());
        (signal, token)
    }
}

impl Future for StartSignal {
    type Output = ();

    fn poll(mut self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<Self::Output> {
        Pin::new(&mut self.0).poll(cx).map(|_| ())
    }
}

/// Suppress progress messages for times before the given `as_of`.
///
/// This operator exists specifically to work around a memory spike we'd otherwise see when
/// hydrating arrangements (#21165). The memory spike happens because when the `arrange_core`
/// operator observes a frontier advancement without data it inserts an empty batch into the spine.
/// When it later inserts the snapshot batch into the spine, an empty batch is already there and
/// the spine initiates a merge of these batches, which requires allocating a new batch the size of
/// the snapshot batch.
///
/// The strategy to avoid the spike is to prevent the insertion of that initial empty batch by
/// ensuring that the first frontier advancement downstream `arrange_core` operators observe is
/// beyond the `as_of`, so the snapshot data has already been collected.
///
/// To ensure this, this operator needs to take two measures:
///  * Keep around a minimum capability until the input announces progress beyond the `as_of`.
///  * Reclock all updates emitted at times not beyond the `as_of` to the minimum time.
///
/// The second measure requires elaboration: If we wouldn't reclock snapshot updates, they might
/// still be upstream of `arrange_core` operators when those get to know about us dropping the
/// minimum capability. The in-flight snapshot updates would hold back the input frontiers of
/// `arrange_core` operators to the `as_of`, which would cause them to insert empty batches.
fn suppress_early_progress<G, D>(
    stream: Stream<G, D>,
    as_of: Antichain<G::Timestamp>,
) -> Stream<G, D>
where
    G: Scope,
    D: Data,
{
    stream.unary_frontier(Pipeline, "SuppressEarlyProgress", |default_cap, _info| {
        let mut early_cap = Some(default_cap);

        let mut buffer = Default::default();
        move |input, output| {
            input.for_each(|data_cap, data| {
                data.swap(&mut buffer);
                let mut session = if as_of.less_than(data_cap.time()) {
                    output.session(&data_cap)
                } else {
                    let cap = early_cap.as_ref().expect("early_cap can't be dropped yet");
                    output.session(cap)
                };
                session.give_vec(&mut buffer);
            });

            let frontier = input.frontier().frontier();
            if !PartialOrder::less_equal(&frontier, &as_of.borrow()) {
                early_cap.take();
            }
        }
    })
}

/// Helper to merge pairs of datum iterators into a row or split a datum iterator
/// into two rows, given the arity of the first component.
#[derive(Clone, Copy, Debug)]
struct Pairer {
    split_arity: usize,
}

impl Pairer {
    /// Creates a pairer with knowledge of the arity of first component in the pair.
    fn new(split_arity: usize) -> Self {
        Self { split_arity }
    }

    /// Merges a pair of datum iterators creating a `Row` instance.
    fn merge<'a, I1, I2>(&self, first: I1, second: I2) -> Row
    where
        I1: IntoIterator<Item = Datum<'a>>,
        I2: IntoIterator<Item = Datum<'a>>,
    {
        SharedRow::pack(first.into_iter().chain(second))
    }

    /// Splits a datum iterator into a pair of `Row` instances.
    fn split<'a>(&self, datum_iter: impl IntoIterator<Item = Datum<'a>>) -> (Row, Row) {
        let mut datum_iter = datum_iter.into_iter();
        let binding = SharedRow::get();
        let mut row_builder = binding.borrow_mut();
        let first = row_builder.pack_using(datum_iter.by_ref().take(self.split_arity));
        let second = row_builder.pack_using(datum_iter);
        (first, second)
    }
}