use crate::common::AdjustedMantissa;
use crate::float::Float;
use crate::table::{LARGEST_POWER_OF_FIVE, POWER_OF_FIVE_128, SMALLEST_POWER_OF_FIVE};
#[inline]
pub fn compute_float<F: Float>(q: i64, mut w: u64) -> AdjustedMantissa {
let am_zero = AdjustedMantissa::zero_pow2(0);
let am_inf = AdjustedMantissa::zero_pow2(F::INFINITE_POWER);
let am_error = AdjustedMantissa::zero_pow2(-1);
if w == 0 || q < F::SMALLEST_POWER_OF_TEN as i64 {
return am_zero;
} else if q > F::LARGEST_POWER_OF_TEN as i64 {
return am_inf;
}
let lz = w.leading_zeros();
w <<= lz;
let (lo, hi) = compute_product_approx(q, w, F::MANTISSA_EXPLICIT_BITS + 3);
if lo == 0xFFFF_FFFF_FFFF_FFFF {
let inside_safe_exponent = (q >= -27) && (q <= 55);
if !inside_safe_exponent {
return am_error;
}
}
let upperbit = (hi >> 63) as i32;
let mut mantissa = hi >> (upperbit + 64 - F::MANTISSA_EXPLICIT_BITS as i32 - 3);
let mut power2 = power(q as i32) + upperbit - lz as i32 - F::MINIMUM_EXPONENT;
if power2 <= 0 {
if -power2 + 1 >= 64 {
return am_zero;
}
mantissa >>= -power2 + 1;
mantissa += mantissa & 1;
mantissa >>= 1;
power2 = (mantissa >= (1_u64 << F::MANTISSA_EXPLICIT_BITS)) as i32;
return AdjustedMantissa { mantissa, power2 };
}
if lo <= 1
&& q >= F::MIN_EXPONENT_ROUND_TO_EVEN as i64
&& q <= F::MAX_EXPONENT_ROUND_TO_EVEN as i64
&& mantissa & 3 == 1
&& (mantissa << (upperbit + 64 - F::MANTISSA_EXPLICIT_BITS as i32 - 3)) == hi
{
mantissa &= !1_u64;
}
mantissa += mantissa & 1;
mantissa >>= 1;
if mantissa >= (2_u64 << F::MANTISSA_EXPLICIT_BITS) {
mantissa = 1_u64 << F::MANTISSA_EXPLICIT_BITS;
power2 += 1;
}
mantissa &= !(1_u64 << F::MANTISSA_EXPLICIT_BITS);
if power2 >= F::INFINITE_POWER {
return am_inf;
}
AdjustedMantissa { mantissa, power2 }
}
#[inline]
fn power(q: i32) -> i32 {
(q.wrapping_mul(152_170 + 65536) >> 16) + 63
}
#[inline]
fn full_multiplication(a: u64, b: u64) -> (u64, u64) {
let r = (a as u128) * (b as u128);
(r as u64, (r >> 64) as u64)
}
#[inline]
fn compute_product_approx(q: i64, w: u64, precision: usize) -> (u64, u64) {
debug_assert!(q >= SMALLEST_POWER_OF_FIVE as i64);
debug_assert!(q <= LARGEST_POWER_OF_FIVE as i64);
debug_assert!(precision <= 64);
let mask = if precision < 64 {
0xFFFF_FFFF_FFFF_FFFF_u64 >> precision
} else {
0xFFFF_FFFF_FFFF_FFFF_u64
};
let index = (q - SMALLEST_POWER_OF_FIVE as i64) as usize;
let (lo5, hi5) = unsafe { *POWER_OF_FIVE_128.get_unchecked(index) };
let (mut first_lo, mut first_hi) = full_multiplication(w, lo5);
if first_hi & mask == mask {
let (_, second_hi) = full_multiplication(w, hi5);
first_lo = first_lo.wrapping_add(second_hi);
if second_hi > first_lo {
first_hi += 1;
}
}
(first_lo, first_hi)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_full_multiplication() {
fn check(a: u64, b: u64, lo: u64, hi: u64) {
assert_eq!(full_multiplication(a, b), (lo, hi));
assert_eq!(full_multiplication(b, a), (lo, hi));
}
check(1 << 0, 1 << 0, 1, 0);
check(1 << 0, 1 << 63, 1 << 63, 0);
check(1 << 1, 1 << 63, 0, 1);
check(1 << 63, 1 << 0, 1 << 63, 0);
check(1 << 63, 1 << 1, 0, 1);
check(1 << 63, 1 << 2, 0, 2);
check(1 << 63, 1 << 63, 0, 1 << 62);
}
}