1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
//! Dataflow operator for delta joins over partially ordered timestamps.
//!
//! Given multiple streams of updates `(data, time, diff)` that are each
//! defined over the same partially ordered `time`, we want to form the
//! full cross-join of all relations (we will *later* apply some filters
//! and instead equijoin on keys).
//!
//! The "correct" output is the outer join of these triples, where
//! 1. The `data` entries are just tuple'd up together,
//! 2. The `time` entries are subjected to the lattice `join` operator,
//! 3. The `diff` entries are multiplied.
//!
//! One way to produce the correct output is to form independent dataflow
//! fragments for each input stream, such that each intended output is then
//! produced by exactly one of these input streams.
//!
//! There are several incorrect ways one might do this, but here is one way
//! that I hope is not incorrect:
//!
//! Each input stream of updates is joined with each other input collection,
//! where each input update is matched against each other input update that
//! has a `time` that is less-than the input update's `time`, *UNDER A TOTAL
//! ORDER ON `time`*. The output are the `(data, time, diff)` entries that
//! follow the rules above, except that we additionally preserve the input's
//! initial `time` as well, for use in subsequent joins with the other input
//! collections.
//!
//! There are some caveats about ties, and we should treat each `time` for
//! each input as occurring at distinct times, one after the other (so that
//! ties are resolved by the index of the input). There is also the matter
//! of logical compaction, which should not be done in a way that prevents
//! the correct determination of the total order comparison.
use std::collections::HashMap;
use std::ops::Mul;
use timely::dataflow::Scope;
use timely::dataflow::channels::pact::{Pipeline, Exchange};
use timely::dataflow::operators::Operator;
use timely::progress::Antichain;
use differential_dataflow::{ExchangeData, Collection, AsCollection, Hashable};
use differential_dataflow::difference::{Monoid, Semigroup};
use differential_dataflow::lattice::Lattice;
use differential_dataflow::operators::arrange::Arranged;
use differential_dataflow::trace::{Cursor, TraceReader};
use differential_dataflow::consolidation::{consolidate, consolidate_updates};
use differential_dataflow::trace::cursor::IntoOwned;
/// A binary equijoin that responds to updates on only its first input.
///
/// This operator responds to inputs of the form
///
/// ```ignore
/// ((key, val1, time1), initial_time, diff1)
/// ```
///
/// where `initial_time` is less or equal to `time1`, and produces as output
///
/// ```ignore
/// ((output_func(key, val1, val2), lub(time1, time2)), initial_time, diff1 * diff2)
/// ```
///
/// for each `((key, val2), time2, diff2)` present in `arrangement`, where
/// `time2` is less than `initial_time` *UNDER THE TOTAL ORDER ON TIMES*.
/// This last constraint is important to ensure that we correctly produce
/// all pairs of output updates across multiple `half_join` operators.
///
/// Notice that the time is hoisted up into data. The expectation is that
/// once out of the "delta flow region", the updates will be `delay`d to the
/// times specified in the payloads.
pub fn half_join<G, K, V, R, Tr, FF, CF, DOut, S>(
stream: &Collection<G, (K, V, G::Timestamp), R>,
arrangement: Arranged<G, Tr>,
frontier_func: FF,
comparison: CF,
mut output_func: S,
) -> Collection<G, (DOut, G::Timestamp), <R as Mul<Tr::Diff>>::Output>
where
G: Scope<Timestamp = Tr::Time>,
K: Hashable + ExchangeData,
V: ExchangeData,
R: ExchangeData + Monoid,
Tr: TraceReader+Clone+'static,
for<'a> Tr::Key<'a> : IntoOwned<'a, Owned = K>,
R: Mul<Tr::Diff>,
<R as Mul<Tr::Diff>>::Output: Semigroup,
FF: Fn(&G::Timestamp, &mut Antichain<G::Timestamp>) + 'static,
CF: Fn(Tr::TimeGat<'_>, &G::Timestamp) -> bool + 'static,
DOut: Clone+'static,
S: FnMut(&K, &V, Tr::Val<'_>)->DOut+'static,
{
let output_func = move |k: &K, v1: &V, v2: Tr::Val<'_>, initial: &G::Timestamp, time: &G::Timestamp, diff1: &R, diff2: &Tr::Diff| {
let diff = diff1.clone() * diff2.clone();
let dout = (output_func(k, v1, v2), time.clone());
Some((dout, initial.clone(), diff))
};
half_join_internal_unsafe(stream, arrangement, frontier_func, comparison, |_timer, _count| false, output_func)
}
/// An unsafe variant of `half_join` where the `output_func` closure takes
/// additional arguments for `time` and `diff` as input and returns an iterator
/// over `(data, time, diff)` triplets. This allows for more flexibility, but
/// is more error-prone.
///
/// This operator responds to inputs of the form
///
/// ```ignore
/// ((key, val1, time1), initial_time, diff1)
/// ```
///
/// where `initial_time` is less or equal to `time1`, and produces as output
///
/// ```ignore
/// output_func(key, val1, val2, initial_time, lub(time1, time2), diff1, diff2)
/// ```
///
/// for each `((key, val2), time2, diff2)` present in `arrangement`, where
/// `time2` is less than `initial_time` *UNDER THE TOTAL ORDER ON TIMES*.
///
/// The `yield_function` allows the caller to indicate when the operator should
/// yield control, as a function of the elapsed time and the number of matched
/// records. Note this is not the number of *output* records, owing mainly to
/// the number of matched records being easiest to record with low overhead.
pub fn half_join_internal_unsafe<G, K, V, R, Tr, FF, CF, DOut, ROut, Y, I, S>(
stream: &Collection<G, (K, V, G::Timestamp), R>,
mut arrangement: Arranged<G, Tr>,
frontier_func: FF,
comparison: CF,
yield_function: Y,
mut output_func: S,
) -> Collection<G, DOut, ROut>
where
G: Scope<Timestamp = Tr::Time>,
K: Hashable + ExchangeData,
V: ExchangeData,
R: ExchangeData + Monoid,
Tr: TraceReader+Clone+'static,
for<'a> Tr::Key<'a> : IntoOwned<'a, Owned = K>,
FF: Fn(&G::Timestamp, &mut Antichain<G::Timestamp>) + 'static,
CF: Fn(Tr::TimeGat<'_>, &Tr::Time) -> bool + 'static,
DOut: Clone+'static,
ROut: Semigroup + 'static,
Y: Fn(std::time::Instant, usize) -> bool + 'static,
I: IntoIterator<Item=(DOut, G::Timestamp, ROut)>,
S: FnMut(&K, &V, Tr::Val<'_>, &G::Timestamp, &G::Timestamp, &R, &Tr::Diff)-> I + 'static,
{
// No need to block physical merging for this operator.
arrangement.trace.set_physical_compaction(Antichain::new().borrow());
let mut arrangement_trace = Some(arrangement.trace);
let arrangement_stream = arrangement.stream;
let mut stash = HashMap::new();
let mut buffer = Vec::new();
let exchange = Exchange::new(move |update: &((K, V, G::Timestamp),G::Timestamp,R)| (update.0).0.hashed().into());
// Stash for (time, diff) accumulation.
let mut output_buffer = Vec::new();
stream.inner.binary_frontier(&arrangement_stream, exchange, Pipeline, "HalfJoin", move |_,info| {
// Acquire an activator to reschedule the operator when it has unfinished work.
let activator = stream.scope().activator_for(info.address);
move |input1, input2, output| {
// drain the first input, stashing requests.
input1.for_each(|capability, data| {
data.swap(&mut buffer);
stash.entry(capability.retain())
.or_insert(Vec::new())
.extend(buffer.drain(..))
});
// Drain input batches; although we do not observe them, we want access to the input
// to observe the frontier and to drive scheduling.
input2.for_each(|_, _| { });
// Local variables to track if and when we should exit early.
// The rough logic is that we fully process inputs and set their differences to zero,
// stopping at any point. We clean up all of the zeros in buffers that did any work,
// and reactivate at the end if the yield function still says so.
let mut yielded = false;
let timer = std::time::Instant::now();
let mut work = 0;
// New entries to introduce to the stash after processing.
let mut stash_additions = HashMap::new();
if let Some(ref mut trace) = arrangement_trace {
for (capability, proposals) in stash.iter_mut() {
// Avoid computation if we should already yield.
// TODO: Verify this is correct for TOTAL ORDER.
yielded = yielded || yield_function(timer, work);
if !yielded && !input2.frontier.less_equal(capability.time()) {
let mut session = output.session(capability);
// Sort requests by key for in-order cursor traversal.
consolidate_updates(proposals);
let (mut cursor, storage) = trace.cursor();
// Process proposals one at a time, stopping if we should yield.
for &mut ((ref key, ref val1, ref time), ref initial, ref mut diff1) in proposals.iter_mut() {
// Use TOTAL ORDER to allow the release of `time`.
yielded = yielded || yield_function(timer, work);
if !yielded && !input2.frontier.frontier().iter().any(|t| comparison(<Tr::TimeGat<'_> as IntoOwned>::borrow_as(t), initial)) {
use differential_dataflow::trace::cursor::IntoOwned;
cursor.seek_key(&storage, IntoOwned::borrow_as(key));
if cursor.get_key(&storage) == Some(IntoOwned::borrow_as(key)) {
while let Some(val2) = cursor.get_val(&storage) {
cursor.map_times(&storage, |t, d| {
if comparison(t, initial) {
let mut t = t.into_owned();
t.join_assign(time);
output_buffer.push((t, d.into_owned()))
}
});
consolidate(&mut output_buffer);
work += output_buffer.len();
for (time, diff2) in output_buffer.drain(..) {
for dout in output_func(&key, val1, val2, initial, &time, &diff1, &diff2) {
session.give(dout);
}
}
cursor.step_val(&storage);
}
cursor.rewind_vals(&storage);
}
*diff1 = R::zero();
}
}
proposals.retain(|ptd| !ptd.2.is_zero());
// Determine the lower bound of remaining update times.
let mut antichain = Antichain::new();
for (_, initial, _) in proposals.iter() {
antichain.insert(initial.clone());
}
// Fast path: there is only one element in the antichain.
// All times in `proposals` must be greater or equal to it.
if antichain.len() == 1 && !antichain.less_equal(capability.time()) {
stash_additions
.entry(capability.delayed(&antichain[0]))
.or_insert(Vec::new())
.extend(proposals.drain(..));
}
else if antichain.len() > 1 {
// Any remaining times should peel off elements from `proposals`.
let mut additions = vec![Vec::new(); antichain.len()];
for (data, initial, diff) in proposals.drain(..) {
use timely::PartialOrder;
let position = antichain.iter().position(|t| t.less_equal(&initial)).unwrap();
additions[position].push((data, initial, diff));
}
for (time, addition) in antichain.into_iter().zip(additions) {
stash_additions
.entry(capability.delayed(&time))
.or_insert(Vec::new())
.extend(addition);
}
}
}
}
}
// If we yielded, re-activate the operator.
if yielded {
activator.activate();
}
// drop fully processed capabilities.
stash.retain(|_,proposals| !proposals.is_empty());
for (capability, proposals) in stash_additions.into_iter() {
stash.entry(capability).or_insert(Vec::new()).extend(proposals);
}
// The logical merging frontier depends on both input1 and stash.
let mut frontier = timely::progress::frontier::Antichain::new();
for time in input1.frontier().frontier().iter() {
frontier_func(time, &mut frontier);
}
for time in stash.keys() {
frontier_func(time, &mut frontier);
}
arrangement_trace.as_mut().map(|trace| trace.set_logical_compaction(frontier.borrow()));
if input1.frontier().is_empty() && stash.is_empty() {
arrangement_trace = None;
}
}
}).as_collection()
}