1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
use core::mem;

use ext_slice::ByteSlice;
use search::byte_frequencies::BYTE_FREQUENCIES;

/// PrefilterState tracks state associated with the effectiveness of a
/// prefilter. It is used to track how many bytes, on average, are skipped by
/// the prefilter. If this average dips below a certain threshold over time,
/// then the state renders the prefilter inert and stops using it.
///
/// A prefilter state should be created for each search. (Where creating an
/// iterator via, e.g., `find_iter`, is treated as a single search.)
#[derive(Clone, Debug)]
pub struct PrefilterState {
    /// The number of skips that has been executed.
    skips: usize,
    /// The total number of bytes that have been skipped.
    skipped: usize,
    /// The maximum length of a match. This is used to help determine how many
    /// bytes on average should be skipped in order for a prefilter to be
    /// effective.
    max_match_len: usize,
    /// Once this heuristic has been deemed ineffective, it will be inert
    /// throughout the rest of its lifetime. This serves as a cheap way to
    /// check inertness.
    inert: bool,
}

impl PrefilterState {
    /// The minimum number of skip attempts to try before considering whether
    /// a prefilter is effective or not.
    const MIN_SKIPS: usize = 50;

    /// The minimum amount of bytes that skipping must average.
    ///
    /// This value was chosen based on varying it and checking the bstr/find/
    /// microbenchmarks. In particular, this can impact the
    /// pathological/repeated-{huge,small} benchmarks quite a bit if it's
    /// set too low.
    const MIN_SKIP_BYTES: usize = 8;

    /// Create a fresh prefilter state.
    pub fn new(max_match_len: usize) -> PrefilterState {
        if max_match_len == 0 {
            return PrefilterState::inert();
        }
        PrefilterState { skips: 0, skipped: 0, max_match_len, inert: false }
    }

    /// Create a fresh prefilter state that is always inert.
    fn inert() -> PrefilterState {
        PrefilterState { skips: 0, skipped: 0, max_match_len: 0, inert: true }
    }

    /// Update this state with the number of bytes skipped on the last
    /// invocation of the prefilter.
    #[inline]
    pub fn update(&mut self, skipped: usize) {
        self.skips += 1;
        self.skipped += skipped;
    }

    /// Return true if and only if this state indicates that a prefilter is
    /// still effective.
    #[inline]
    pub fn is_effective(&mut self) -> bool {
        if self.inert {
            return false;
        }
        if self.skips < PrefilterState::MIN_SKIPS {
            return true;
        }
        if self.skipped >= PrefilterState::MIN_SKIP_BYTES * self.skips {
            return true;
        }

        // We're inert.
        self.inert = true;
        false
    }
}

/// A heuristic frequency based prefilter for searching a single needle.
///
/// This prefilter attempts to pick out the byte in a needle that is predicted
/// to occur least frequently, and search for that using fast vectorized
/// routines. If a rare enough byte could not be found, then this prefilter's
/// constructors will return `None`.
///
/// This can be combined with `PrefilterState` to dynamically render this
/// prefilter inert if it proves to ineffective.
#[derive(Clone, Debug)]
pub struct Freqy {
    /// Whether this prefilter should be used or not.
    inert: bool,
    /// The length of the needle we're searching for.
    needle_len: usize,
    /// The rarest byte in the needle, according to pre-computed frequency
    /// analysis.
    rare1: u8,
    /// The leftmost offset of the rarest byte in the needle.
    rare1i: usize,
    /// The second rarest byte in the needle, according to pre-computed
    /// frequency analysis. (This may be equivalent to the rarest byte.)
    ///
    /// The second rarest byte is used as a type of guard for quickly detecting
    /// a mismatch after memchr locates an instance of the rarest byte. This
    /// is a hedge against pathological cases where the pre-computed frequency
    /// analysis may be off. (But of course, does not prevent *all*
    /// pathological cases.)
    rare2: u8,
    /// The leftmost offset of the second rarest byte in the needle.
    rare2i: usize,
}

impl Freqy {
    /// The maximum frequency rank permitted. If the rarest byte in the needle
    /// has a frequency rank above this value, then Freqy is not used.
    const MAX_RANK: usize = 200;

    /// Return a fresh prefilter state that can be used with this prefilter. A
    /// prefilter state is used to track the effectiveness of a prefilter for
    /// speeding up searches. Therefore, the prefilter state should generally
    /// be reused on subsequent searches (such as in an iterator). For searches
    /// on a different haystack, then a new prefilter state should be used.
    pub fn prefilter_state(&self) -> PrefilterState {
        if self.inert {
            PrefilterState::inert()
        } else {
            PrefilterState::new(self.needle_len)
        }
    }

    /// Returns a valid but inert prefilter. This is valid for both the forward
    /// and reverse direction.
    ///
    /// It is never correct to use an inert prefilter. The results of finding
    /// the next (or previous) candidate are unspecified.
    fn inert() -> Freqy {
        Freqy {
            inert: true,
            needle_len: 0,
            rare1: 0,
            rare1i: 0,
            rare2: 0,
            rare2i: 0,
        }
    }

    /// Return search info for the given needle in the forward direction.
    pub fn forward(needle: &[u8]) -> Freqy {
        if needle.is_empty() {
            return Freqy::inert();
        }

        // Find the rarest two bytes. Try to make them distinct (but it's not
        // required).
        let (mut rare1, mut rare1i) = (needle[0], 0);
        let (mut rare2, mut rare2i) = (needle[0], 0);
        if needle.len() >= 2 {
            rare2 = needle[1];
            rare2i = 1;
        }
        if Freqy::rank(rare2) < Freqy::rank(rare1) {
            mem::swap(&mut rare1, &mut rare2);
            mem::swap(&mut rare1i, &mut rare2i);
        }
        for (i, b) in needle.bytes().enumerate().skip(2) {
            if Freqy::rank(b) < Freqy::rank(rare1) {
                rare2 = rare1;
                rare2i = rare1i;
                rare1 = b;
                rare1i = i;
            } else if b != rare1 && Freqy::rank(b) < Freqy::rank(rare2) {
                rare2 = b;
                rare2i = i;
            }
        }
        if Freqy::rank(rare1) > Freqy::MAX_RANK {
            return Freqy::inert();
        }
        let needle_len = needle.len();
        Freqy { inert: false, needle_len, rare1, rare1i, rare2, rare2i }
    }

    /// Return search info for the given needle in the reverse direction.
    pub fn reverse(needle: &[u8]) -> Freqy {
        if needle.is_empty() {
            return Freqy::inert();
        }

        // Find the rarest two bytes. Try to make them distinct (but it's not
        // required). In reverse, the offsets correspond to the number of bytes
        // from the end of the needle. So `0` is the last byte in the needle.
        let (mut rare1i, mut rare2i) = (0, 0);
        if needle.len() >= 2 {
            rare2i += 1;
        }
        let mut rare1 = needle[needle.len() - rare1i - 1];
        let mut rare2 = needle[needle.len() - rare2i - 1];
        if Freqy::rank(rare2) < Freqy::rank(rare1) {
            mem::swap(&mut rare1, &mut rare2);
            mem::swap(&mut rare1i, &mut rare2i);
        }
        for (i, b) in needle.bytes().rev().enumerate().skip(2) {
            if Freqy::rank(b) < Freqy::rank(rare1) {
                rare2 = rare1;
                rare2i = rare1i;
                rare1 = b;
                rare1i = i;
            } else if b != rare1 && Freqy::rank(b) < Freqy::rank(rare2) {
                rare2 = b;
                rare2i = i;
            }
        }
        if Freqy::rank(rare1) > Freqy::MAX_RANK {
            return Freqy::inert();
        }
        let needle_len = needle.len();
        Freqy { inert: false, needle_len, rare1, rare1i, rare2, rare2i }
    }

    /// Look for a possible occurrence of needle. The position returned
    /// corresponds to the beginning of the occurrence, if one exists.
    ///
    /// Callers may assume that this never returns false negatives (i.e., it
    /// never misses an actual occurrence), but must check that the returned
    /// position corresponds to a match. That is, it can return false
    /// positives.
    ///
    /// This should only be used when Freqy is constructed for forward
    /// searching.
    pub fn find_candidate(
        &self,
        prestate: &mut PrefilterState,
        haystack: &[u8],
    ) -> Option<usize> {
        debug_assert!(!self.inert);

        let mut i = 0;
        while prestate.is_effective() {
            // Use a fast vectorized implementation to skip to the next
            // occurrence of the rarest byte (heuristically chosen) in the
            // needle.
            i += match haystack[i..].find_byte(self.rare1) {
                None => return None,
                Some(found) => {
                    prestate.update(found);
                    found
                }
            };

            // If we can't align our first match with the haystack, then a
            // match is impossible.
            if i < self.rare1i {
                i += 1;
                continue;
            }

            // Align our rare2 byte with the haystack. A mismatch means that
            // a match is impossible.
            let aligned_rare2i = i - self.rare1i + self.rare2i;
            if haystack.get(aligned_rare2i) != Some(&self.rare2) {
                i += 1;
                continue;
            }

            // We've done what we can. There might be a match here.
            return Some(i - self.rare1i);
        }
        // The only way we get here is if we believe our skipping heuristic
        // has become ineffective. We're allowed to return false positives,
        // so return the position at which we advanced to, aligned to the
        // haystack.
        Some(i.saturating_sub(self.rare1i))
    }

    /// Look for a possible occurrence of needle, in reverse, starting from the
    /// end of the given haystack. The position returned corresponds to the
    /// position immediately after the end of the occurrence, if one exists.
    ///
    /// Callers may assume that this never returns false negatives (i.e., it
    /// never misses an actual occurrence), but must check that the returned
    /// position corresponds to a match. That is, it can return false
    /// positives.
    ///
    /// This should only be used when Freqy is constructed for reverse
    /// searching.
    pub fn rfind_candidate(
        &self,
        prestate: &mut PrefilterState,
        haystack: &[u8],
    ) -> Option<usize> {
        debug_assert!(!self.inert);

        let mut i = haystack.len();
        while prestate.is_effective() {
            // Use a fast vectorized implementation to skip to the next
            // occurrence of the rarest byte (heuristically chosen) in the
            // needle.
            i = match haystack[..i].rfind_byte(self.rare1) {
                None => return None,
                Some(found) => {
                    prestate.update(i - found);
                    found
                }
            };

            // If we can't align our first match with the haystack, then a
            // match is impossible.
            if i + self.rare1i + 1 > haystack.len() {
                continue;
            }

            // Align our rare2 byte with the haystack. A mismatch means that
            // a match is impossible.
            let aligned = match (i + self.rare1i).checked_sub(self.rare2i) {
                None => continue,
                Some(aligned) => aligned,
            };
            if haystack.get(aligned) != Some(&self.rare2) {
                continue;
            }

            // We've done what we can. There might be a match here.
            return Some(i + self.rare1i + 1);
        }
        // The only way we get here is if we believe our skipping heuristic
        // has become ineffective. We're allowed to return false positives,
        // so return the position at which we advanced to, aligned to the
        // haystack.
        Some(i + self.rare1i + 1)
    }

    /// Return the heuristical frequency rank of the given byte. A lower rank
    /// means the byte is believed to occur less frequently.
    fn rank(b: u8) -> usize {
        BYTE_FREQUENCIES[b as usize] as usize
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use ext_slice::B;

    #[test]
    fn freqy_forward() {
        // N.B. We sometimes use uppercase here since that mostly ensures freqy
        // will be constructable. Lowercase letters may be too common for freqy
        // to work.

        let s = Freqy::forward(B("BAR"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(0), s.find_candidate(&mut pre, B("BARFOO")));

        let s = Freqy::forward(B("BAR"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(3), s.find_candidate(&mut pre, B("FOOBAR")));

        let s = Freqy::forward(B("zyzy"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(0), s.find_candidate(&mut pre, B("zyzz")));

        let s = Freqy::forward(B("zyzy"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(2), s.find_candidate(&mut pre, B("zzzy")));

        let s = Freqy::forward(B("zyzy"));
        let mut pre = s.prefilter_state();
        assert_eq!(None, s.find_candidate(&mut pre, B("zazb")));

        let s = Freqy::forward(B("yzyz"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(0), s.find_candidate(&mut pre, B("yzyy")));

        let s = Freqy::forward(B("yzyz"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(2), s.find_candidate(&mut pre, B("yyyz")));

        let s = Freqy::forward(B("yzyz"));
        let mut pre = s.prefilter_state();
        assert_eq!(None, s.find_candidate(&mut pre, B("yayb")));
    }

    #[test]
    fn freqy_reverse() {
        // N.B. We sometimes use uppercase here since that mostly ensures freqy
        // will be constructable. Lowercase letters may be too common for freqy
        // to work.

        let s = Freqy::reverse(B("BAR"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(3), s.rfind_candidate(&mut pre, B("BARFOO")));

        let s = Freqy::reverse(B("BAR"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(6), s.rfind_candidate(&mut pre, B("FOOBAR")));

        let s = Freqy::reverse(B("zyzy"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(2), s.rfind_candidate(&mut pre, B("zyzz")));

        let s = Freqy::reverse(B("zyzy"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(4), s.rfind_candidate(&mut pre, B("zzzy")));

        let s = Freqy::reverse(B("zyzy"));
        let mut pre = s.prefilter_state();
        assert_eq!(None, s.rfind_candidate(&mut pre, B("zazb")));

        let s = Freqy::reverse(B("yzyz"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(2), s.rfind_candidate(&mut pre, B("yzyy")));

        let s = Freqy::reverse(B("yzyz"));
        let mut pre = s.prefilter_state();
        assert_eq!(Some(4), s.rfind_candidate(&mut pre, B("yyyz")));

        let s = Freqy::reverse(B("yzyz"));
        let mut pre = s.prefilter_state();
        assert_eq!(None, s.rfind_candidate(&mut pre, B("yayb")));
    }
}