1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
use core::mem;
use ext_slice::ByteSlice;
use search::byte_frequencies::BYTE_FREQUENCIES;
/// PrefilterState tracks state associated with the effectiveness of a
/// prefilter. It is used to track how many bytes, on average, are skipped by
/// the prefilter. If this average dips below a certain threshold over time,
/// then the state renders the prefilter inert and stops using it.
///
/// A prefilter state should be created for each search. (Where creating an
/// iterator via, e.g., `find_iter`, is treated as a single search.)
#[derive(Clone, Debug)]
pub struct PrefilterState {
/// The number of skips that has been executed.
skips: usize,
/// The total number of bytes that have been skipped.
skipped: usize,
/// The maximum length of a match. This is used to help determine how many
/// bytes on average should be skipped in order for a prefilter to be
/// effective.
max_match_len: usize,
/// Once this heuristic has been deemed ineffective, it will be inert
/// throughout the rest of its lifetime. This serves as a cheap way to
/// check inertness.
inert: bool,
}
impl PrefilterState {
/// The minimum number of skip attempts to try before considering whether
/// a prefilter is effective or not.
const MIN_SKIPS: usize = 50;
/// The minimum amount of bytes that skipping must average.
///
/// This value was chosen based on varying it and checking the bstr/find/
/// microbenchmarks. In particular, this can impact the
/// pathological/repeated-{huge,small} benchmarks quite a bit if it's
/// set too low.
const MIN_SKIP_BYTES: usize = 8;
/// Create a fresh prefilter state.
pub fn new(max_match_len: usize) -> PrefilterState {
if max_match_len == 0 {
return PrefilterState::inert();
}
PrefilterState { skips: 0, skipped: 0, max_match_len, inert: false }
}
/// Create a fresh prefilter state that is always inert.
fn inert() -> PrefilterState {
PrefilterState { skips: 0, skipped: 0, max_match_len: 0, inert: true }
}
/// Update this state with the number of bytes skipped on the last
/// invocation of the prefilter.
#[inline]
pub fn update(&mut self, skipped: usize) {
self.skips += 1;
self.skipped += skipped;
}
/// Return true if and only if this state indicates that a prefilter is
/// still effective.
#[inline]
pub fn is_effective(&mut self) -> bool {
if self.inert {
return false;
}
if self.skips < PrefilterState::MIN_SKIPS {
return true;
}
if self.skipped >= PrefilterState::MIN_SKIP_BYTES * self.skips {
return true;
}
// We're inert.
self.inert = true;
false
}
}
/// A heuristic frequency based prefilter for searching a single needle.
///
/// This prefilter attempts to pick out the byte in a needle that is predicted
/// to occur least frequently, and search for that using fast vectorized
/// routines. If a rare enough byte could not be found, then this prefilter's
/// constructors will return `None`.
///
/// This can be combined with `PrefilterState` to dynamically render this
/// prefilter inert if it proves to ineffective.
#[derive(Clone, Debug)]
pub struct Freqy {
/// Whether this prefilter should be used or not.
inert: bool,
/// The length of the needle we're searching for.
needle_len: usize,
/// The rarest byte in the needle, according to pre-computed frequency
/// analysis.
rare1: u8,
/// The leftmost offset of the rarest byte in the needle.
rare1i: usize,
/// The second rarest byte in the needle, according to pre-computed
/// frequency analysis. (This may be equivalent to the rarest byte.)
///
/// The second rarest byte is used as a type of guard for quickly detecting
/// a mismatch after memchr locates an instance of the rarest byte. This
/// is a hedge against pathological cases where the pre-computed frequency
/// analysis may be off. (But of course, does not prevent *all*
/// pathological cases.)
rare2: u8,
/// The leftmost offset of the second rarest byte in the needle.
rare2i: usize,
}
impl Freqy {
/// The maximum frequency rank permitted. If the rarest byte in the needle
/// has a frequency rank above this value, then Freqy is not used.
const MAX_RANK: usize = 200;
/// Return a fresh prefilter state that can be used with this prefilter. A
/// prefilter state is used to track the effectiveness of a prefilter for
/// speeding up searches. Therefore, the prefilter state should generally
/// be reused on subsequent searches (such as in an iterator). For searches
/// on a different haystack, then a new prefilter state should be used.
pub fn prefilter_state(&self) -> PrefilterState {
if self.inert {
PrefilterState::inert()
} else {
PrefilterState::new(self.needle_len)
}
}
/// Returns a valid but inert prefilter. This is valid for both the forward
/// and reverse direction.
///
/// It is never correct to use an inert prefilter. The results of finding
/// the next (or previous) candidate are unspecified.
fn inert() -> Freqy {
Freqy {
inert: true,
needle_len: 0,
rare1: 0,
rare1i: 0,
rare2: 0,
rare2i: 0,
}
}
/// Return search info for the given needle in the forward direction.
pub fn forward(needle: &[u8]) -> Freqy {
if needle.is_empty() {
return Freqy::inert();
}
// Find the rarest two bytes. Try to make them distinct (but it's not
// required).
let (mut rare1, mut rare1i) = (needle[0], 0);
let (mut rare2, mut rare2i) = (needle[0], 0);
if needle.len() >= 2 {
rare2 = needle[1];
rare2i = 1;
}
if Freqy::rank(rare2) < Freqy::rank(rare1) {
mem::swap(&mut rare1, &mut rare2);
mem::swap(&mut rare1i, &mut rare2i);
}
for (i, b) in needle.bytes().enumerate().skip(2) {
if Freqy::rank(b) < Freqy::rank(rare1) {
rare2 = rare1;
rare2i = rare1i;
rare1 = b;
rare1i = i;
} else if b != rare1 && Freqy::rank(b) < Freqy::rank(rare2) {
rare2 = b;
rare2i = i;
}
}
if Freqy::rank(rare1) > Freqy::MAX_RANK {
return Freqy::inert();
}
let needle_len = needle.len();
Freqy { inert: false, needle_len, rare1, rare1i, rare2, rare2i }
}
/// Return search info for the given needle in the reverse direction.
pub fn reverse(needle: &[u8]) -> Freqy {
if needle.is_empty() {
return Freqy::inert();
}
// Find the rarest two bytes. Try to make them distinct (but it's not
// required). In reverse, the offsets correspond to the number of bytes
// from the end of the needle. So `0` is the last byte in the needle.
let (mut rare1i, mut rare2i) = (0, 0);
if needle.len() >= 2 {
rare2i += 1;
}
let mut rare1 = needle[needle.len() - rare1i - 1];
let mut rare2 = needle[needle.len() - rare2i - 1];
if Freqy::rank(rare2) < Freqy::rank(rare1) {
mem::swap(&mut rare1, &mut rare2);
mem::swap(&mut rare1i, &mut rare2i);
}
for (i, b) in needle.bytes().rev().enumerate().skip(2) {
if Freqy::rank(b) < Freqy::rank(rare1) {
rare2 = rare1;
rare2i = rare1i;
rare1 = b;
rare1i = i;
} else if b != rare1 && Freqy::rank(b) < Freqy::rank(rare2) {
rare2 = b;
rare2i = i;
}
}
if Freqy::rank(rare1) > Freqy::MAX_RANK {
return Freqy::inert();
}
let needle_len = needle.len();
Freqy { inert: false, needle_len, rare1, rare1i, rare2, rare2i }
}
/// Look for a possible occurrence of needle. The position returned
/// corresponds to the beginning of the occurrence, if one exists.
///
/// Callers may assume that this never returns false negatives (i.e., it
/// never misses an actual occurrence), but must check that the returned
/// position corresponds to a match. That is, it can return false
/// positives.
///
/// This should only be used when Freqy is constructed for forward
/// searching.
pub fn find_candidate(
&self,
prestate: &mut PrefilterState,
haystack: &[u8],
) -> Option<usize> {
debug_assert!(!self.inert);
let mut i = 0;
while prestate.is_effective() {
// Use a fast vectorized implementation to skip to the next
// occurrence of the rarest byte (heuristically chosen) in the
// needle.
i += match haystack[i..].find_byte(self.rare1) {
None => return None,
Some(found) => {
prestate.update(found);
found
}
};
// If we can't align our first match with the haystack, then a
// match is impossible.
if i < self.rare1i {
i += 1;
continue;
}
// Align our rare2 byte with the haystack. A mismatch means that
// a match is impossible.
let aligned_rare2i = i - self.rare1i + self.rare2i;
if haystack.get(aligned_rare2i) != Some(&self.rare2) {
i += 1;
continue;
}
// We've done what we can. There might be a match here.
return Some(i - self.rare1i);
}
// The only way we get here is if we believe our skipping heuristic
// has become ineffective. We're allowed to return false positives,
// so return the position at which we advanced to, aligned to the
// haystack.
Some(i.saturating_sub(self.rare1i))
}
/// Look for a possible occurrence of needle, in reverse, starting from the
/// end of the given haystack. The position returned corresponds to the
/// position immediately after the end of the occurrence, if one exists.
///
/// Callers may assume that this never returns false negatives (i.e., it
/// never misses an actual occurrence), but must check that the returned
/// position corresponds to a match. That is, it can return false
/// positives.
///
/// This should only be used when Freqy is constructed for reverse
/// searching.
pub fn rfind_candidate(
&self,
prestate: &mut PrefilterState,
haystack: &[u8],
) -> Option<usize> {
debug_assert!(!self.inert);
let mut i = haystack.len();
while prestate.is_effective() {
// Use a fast vectorized implementation to skip to the next
// occurrence of the rarest byte (heuristically chosen) in the
// needle.
i = match haystack[..i].rfind_byte(self.rare1) {
None => return None,
Some(found) => {
prestate.update(i - found);
found
}
};
// If we can't align our first match with the haystack, then a
// match is impossible.
if i + self.rare1i + 1 > haystack.len() {
continue;
}
// Align our rare2 byte with the haystack. A mismatch means that
// a match is impossible.
let aligned = match (i + self.rare1i).checked_sub(self.rare2i) {
None => continue,
Some(aligned) => aligned,
};
if haystack.get(aligned) != Some(&self.rare2) {
continue;
}
// We've done what we can. There might be a match here.
return Some(i + self.rare1i + 1);
}
// The only way we get here is if we believe our skipping heuristic
// has become ineffective. We're allowed to return false positives,
// so return the position at which we advanced to, aligned to the
// haystack.
Some(i + self.rare1i + 1)
}
/// Return the heuristical frequency rank of the given byte. A lower rank
/// means the byte is believed to occur less frequently.
fn rank(b: u8) -> usize {
BYTE_FREQUENCIES[b as usize] as usize
}
}
#[cfg(test)]
mod tests {
use super::*;
use ext_slice::B;
#[test]
fn freqy_forward() {
// N.B. We sometimes use uppercase here since that mostly ensures freqy
// will be constructable. Lowercase letters may be too common for freqy
// to work.
let s = Freqy::forward(B("BAR"));
let mut pre = s.prefilter_state();
assert_eq!(Some(0), s.find_candidate(&mut pre, B("BARFOO")));
let s = Freqy::forward(B("BAR"));
let mut pre = s.prefilter_state();
assert_eq!(Some(3), s.find_candidate(&mut pre, B("FOOBAR")));
let s = Freqy::forward(B("zyzy"));
let mut pre = s.prefilter_state();
assert_eq!(Some(0), s.find_candidate(&mut pre, B("zyzz")));
let s = Freqy::forward(B("zyzy"));
let mut pre = s.prefilter_state();
assert_eq!(Some(2), s.find_candidate(&mut pre, B("zzzy")));
let s = Freqy::forward(B("zyzy"));
let mut pre = s.prefilter_state();
assert_eq!(None, s.find_candidate(&mut pre, B("zazb")));
let s = Freqy::forward(B("yzyz"));
let mut pre = s.prefilter_state();
assert_eq!(Some(0), s.find_candidate(&mut pre, B("yzyy")));
let s = Freqy::forward(B("yzyz"));
let mut pre = s.prefilter_state();
assert_eq!(Some(2), s.find_candidate(&mut pre, B("yyyz")));
let s = Freqy::forward(B("yzyz"));
let mut pre = s.prefilter_state();
assert_eq!(None, s.find_candidate(&mut pre, B("yayb")));
}
#[test]
fn freqy_reverse() {
// N.B. We sometimes use uppercase here since that mostly ensures freqy
// will be constructable. Lowercase letters may be too common for freqy
// to work.
let s = Freqy::reverse(B("BAR"));
let mut pre = s.prefilter_state();
assert_eq!(Some(3), s.rfind_candidate(&mut pre, B("BARFOO")));
let s = Freqy::reverse(B("BAR"));
let mut pre = s.prefilter_state();
assert_eq!(Some(6), s.rfind_candidate(&mut pre, B("FOOBAR")));
let s = Freqy::reverse(B("zyzy"));
let mut pre = s.prefilter_state();
assert_eq!(Some(2), s.rfind_candidate(&mut pre, B("zyzz")));
let s = Freqy::reverse(B("zyzy"));
let mut pre = s.prefilter_state();
assert_eq!(Some(4), s.rfind_candidate(&mut pre, B("zzzy")));
let s = Freqy::reverse(B("zyzy"));
let mut pre = s.prefilter_state();
assert_eq!(None, s.rfind_candidate(&mut pre, B("zazb")));
let s = Freqy::reverse(B("yzyz"));
let mut pre = s.prefilter_state();
assert_eq!(Some(2), s.rfind_candidate(&mut pre, B("yzyy")));
let s = Freqy::reverse(B("yzyz"));
let mut pre = s.prefilter_state();
assert_eq!(Some(4), s.rfind_candidate(&mut pre, B("yyyz")));
let s = Freqy::reverse(B("yzyz"));
let mut pre = s.prefilter_state();
assert_eq!(None, s.rfind_candidate(&mut pre, B("yayb")));
}
}