1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
use std::io::{Read, Seek};

use futures::{
    future::{try_join_all, BoxFuture},
    AsyncRead, AsyncReadExt, AsyncSeek, AsyncSeekExt,
};
use parquet2::{
    indexes::FilteredPage,
    metadata::ColumnChunkMetaData,
    read::{BasicDecompressor, IndexedPageReader, PageMetaData, PageReader},
};

use crate::{
    array::Array, chunk::Chunk, datatypes::Field, error::Result,
    io::parquet::read::column_iter_to_arrays,
};

use super::ArrayIter;
use super::RowGroupMetaData;

/// An [`Iterator`] of [`Chunk`] that (dynamically) adapts a vector of iterators of [`Array`] into
/// an iterator of [`Chunk`].
///
/// This struct tracks advances each of the iterators individually and combines the
/// result in a single [`Chunk`].
///
/// # Implementation
/// This iterator is single-threaded and advancing it is CPU-bounded.
pub struct RowGroupDeserializer {
    num_rows: usize,
    remaining_rows: usize,
    column_chunks: Vec<ArrayIter<'static>>,
}

impl RowGroupDeserializer {
    /// Creates a new [`RowGroupDeserializer`].
    ///
    /// # Panic
    /// This function panics iff any of the `column_chunks`
    /// do not return an array with an equal length.
    pub fn new(
        column_chunks: Vec<ArrayIter<'static>>,
        num_rows: usize,
        limit: Option<usize>,
    ) -> Self {
        Self {
            num_rows,
            remaining_rows: limit.unwrap_or(usize::MAX).min(num_rows),
            column_chunks,
        }
    }

    /// Returns the number of rows on this row group
    pub fn num_rows(&self) -> usize {
        self.num_rows
    }
}

impl Iterator for RowGroupDeserializer {
    type Item = Result<Chunk<Box<dyn Array>>>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.remaining_rows == 0 {
            return None;
        }
        let chunk = self
            .column_chunks
            .iter_mut()
            .map(|iter| iter.next().unwrap())
            .collect::<Result<Vec<_>>>()
            .and_then(Chunk::try_new);
        self.remaining_rows = self.remaining_rows.saturating_sub(
            chunk
                .as_ref()
                .map(|x| x.len())
                .unwrap_or(self.remaining_rows),
        );

        Some(chunk)
    }
}

/// Returns all [`ColumnChunkMetaData`] associated to `field_name`.
/// For non-nested parquet types, this returns a single column
pub fn get_field_columns<'a>(
    columns: &'a [ColumnChunkMetaData],
    field_name: &str,
) -> Vec<&'a ColumnChunkMetaData> {
    columns
        .iter()
        .filter(|x| x.descriptor().path_in_schema[0] == field_name)
        .collect()
}

/// Returns all [`ColumnChunkMetaData`] associated to `field_name`.
/// For non-nested parquet types, this returns a single column
pub fn get_field_pages<'a, T>(
    columns: &'a [ColumnChunkMetaData],
    items: &'a [T],
    field_name: &str,
) -> Vec<&'a T> {
    columns
        .iter()
        .zip(items)
        .filter(|(metadata, _)| metadata.descriptor().path_in_schema[0] == field_name)
        .map(|(_, item)| item)
        .collect()
}

/// Reads all columns that are part of the parquet field `field_name`
/// # Implementation
/// This operation is IO-bounded `O(C)` where C is the number of columns associated to
/// the field (one for non-nested types)
pub fn read_columns<'a, R: Read + Seek>(
    reader: &mut R,
    columns: &'a [ColumnChunkMetaData],
    field_name: &str,
) -> Result<Vec<(&'a ColumnChunkMetaData, Vec<u8>)>> {
    get_field_columns(columns, field_name)
        .into_iter()
        .map(|meta| _read_single_column(reader, meta))
        .collect()
}

fn _read_single_column<'a, R>(
    reader: &mut R,
    meta: &'a ColumnChunkMetaData,
) -> Result<(&'a ColumnChunkMetaData, Vec<u8>)>
where
    R: Read + Seek,
{
    let (start, length) = meta.byte_range();
    reader.seek(std::io::SeekFrom::Start(start))?;

    let mut chunk = vec![];
    chunk.try_reserve(length as usize)?;
    reader.by_ref().take(length).read_to_end(&mut chunk)?;
    Ok((meta, chunk))
}

async fn _read_single_column_async<'b, R, F>(
    reader_factory: F,
    meta: &ColumnChunkMetaData,
) -> Result<(&ColumnChunkMetaData, Vec<u8>)>
where
    R: AsyncRead + AsyncSeek + Send + Unpin,
    F: Fn() -> BoxFuture<'b, std::io::Result<R>>,
{
    let mut reader = reader_factory().await?;
    let (start, length) = meta.byte_range();
    reader.seek(std::io::SeekFrom::Start(start)).await?;

    let mut chunk = vec![];
    chunk.try_reserve(length as usize)?;
    reader.take(length).read_to_end(&mut chunk).await?;
    Result::Ok((meta, chunk))
}

/// Reads all columns that are part of the parquet field `field_name`
/// # Implementation
/// This operation is IO-bounded `O(C)` where C is the number of columns associated to
/// the field (one for non-nested types)
///
/// It does so asynchronously via a single `join_all` over all the necessary columns for
/// `field_name`.
pub async fn read_columns_async<
    'a,
    'b,
    R: AsyncRead + AsyncSeek + Send + Unpin,
    F: Fn() -> BoxFuture<'b, std::io::Result<R>> + Clone,
>(
    reader_factory: F,
    columns: &'a [ColumnChunkMetaData],
    field_name: &str,
) -> Result<Vec<(&'a ColumnChunkMetaData, Vec<u8>)>> {
    let futures = get_field_columns(columns, field_name)
        .into_iter()
        .map(|meta| async { _read_single_column_async(reader_factory.clone(), meta).await });

    try_join_all(futures).await
}

type Pages = Box<
    dyn Iterator<Item = std::result::Result<parquet2::page::CompressedPage, parquet2::error::Error>>
        + Sync
        + Send,
>;

/// Converts a vector of columns associated with the parquet field whose name is [`Field`]
/// to an iterator of [`Array`], [`ArrayIter`] of chunk size `chunk_size`.
pub fn to_deserializer<'a>(
    columns: Vec<(&ColumnChunkMetaData, Vec<u8>)>,
    field: Field,
    num_rows: usize,
    chunk_size: Option<usize>,
    pages: Option<Vec<Vec<FilteredPage>>>,
) -> Result<ArrayIter<'a>> {
    let chunk_size = chunk_size.map(|c| c.min(num_rows));

    let (columns, types) = if let Some(pages) = pages {
        let (columns, types): (Vec<_>, Vec<_>) = columns
            .into_iter()
            .zip(pages.into_iter())
            .map(|((column_meta, chunk), mut pages)| {
                // de-offset the start, since we read in chunks (and offset is from start of file)
                let mut meta: PageMetaData = column_meta.into();
                pages
                    .iter_mut()
                    .for_each(|page| page.start -= meta.column_start);
                meta.column_start = 0;
                let pages = IndexedPageReader::new_with_page_meta(
                    std::io::Cursor::new(chunk),
                    meta,
                    pages,
                    vec![],
                    vec![],
                );
                let pages = Box::new(pages) as Pages;
                (
                    BasicDecompressor::new(pages, vec![]),
                    &column_meta.descriptor().descriptor.primitive_type,
                )
            })
            .unzip();

        (columns, types)
    } else {
        let (columns, types): (Vec<_>, Vec<_>) = columns
            .into_iter()
            .map(|(column_meta, chunk)| {
                let len = chunk.len();
                let pages = PageReader::new(
                    std::io::Cursor::new(chunk),
                    column_meta,
                    std::sync::Arc::new(|_, _| true),
                    vec![],
                    len * 2 + 1024,
                );
                let pages = Box::new(pages) as Pages;
                (
                    BasicDecompressor::new(pages, vec![]),
                    &column_meta.descriptor().descriptor.primitive_type,
                )
            })
            .unzip();

        (columns, types)
    };

    column_iter_to_arrays(columns, types, field, chunk_size, num_rows)
}

/// Returns a vector of iterators of [`Array`] ([`ArrayIter`]) corresponding to the top
/// level parquet fields whose name matches `fields`'s names.
///
/// # Implementation
/// This operation is IO-bounded `O(C)` where C is the number of columns in the row group -
/// it reads all the columns to memory from the row group associated to the requested fields.
///
/// This operation is single-threaded. For readers with stronger invariants
/// (e.g. implement [`Clone`]) you can use [`read_columns`] to read multiple columns at once
/// and convert them to [`ArrayIter`] via [`to_deserializer`].
pub fn read_columns_many<'a, R: Read + Seek>(
    reader: &mut R,
    row_group: &RowGroupMetaData,
    fields: Vec<Field>,
    chunk_size: Option<usize>,
    limit: Option<usize>,
    pages: Option<Vec<Vec<Vec<FilteredPage>>>>,
) -> Result<Vec<ArrayIter<'a>>> {
    let num_rows = row_group.num_rows();
    let num_rows = limit.map(|limit| limit.min(num_rows)).unwrap_or(num_rows);

    // reads all the necessary columns for all fields from the row group
    // This operation is IO-bounded `O(C)` where C is the number of columns in the row group
    let field_columns = fields
        .iter()
        .map(|field| read_columns(reader, row_group.columns(), &field.name))
        .collect::<Result<Vec<_>>>()?;

    if let Some(pages) = pages {
        field_columns
            .into_iter()
            .zip(fields)
            .zip(pages)
            .map(|((columns, field), pages)| {
                to_deserializer(columns, field, num_rows, chunk_size, Some(pages))
            })
            .collect()
    } else {
        field_columns
            .into_iter()
            .zip(fields.into_iter())
            .map(|(columns, field)| to_deserializer(columns, field, num_rows, chunk_size, None))
            .collect()
    }
}

/// Returns a vector of iterators of [`Array`] corresponding to the top level parquet fields whose
/// name matches `fields`'s names.
///
/// # Implementation
/// This operation is IO-bounded `O(C)` where C is the number of columns in the row group -
/// it reads all the columns to memory from the row group associated to the requested fields.
/// It does so asynchronously via `join_all`
pub async fn read_columns_many_async<
    'a,
    'b,
    R: AsyncRead + AsyncSeek + Send + Unpin,
    F: Fn() -> BoxFuture<'b, std::io::Result<R>> + Clone,
>(
    reader_factory: F,
    row_group: &RowGroupMetaData,
    fields: Vec<Field>,
    chunk_size: Option<usize>,
    limit: Option<usize>,
    pages: Option<Vec<Vec<Vec<FilteredPage>>>>,
) -> Result<Vec<ArrayIter<'a>>> {
    let num_rows = row_group.num_rows();
    let num_rows = limit.map(|limit| limit.min(num_rows)).unwrap_or(num_rows);

    let futures = fields
        .iter()
        .map(|field| read_columns_async(reader_factory.clone(), row_group.columns(), &field.name));

    let field_columns = try_join_all(futures).await?;

    if let Some(pages) = pages {
        field_columns
            .into_iter()
            .zip(fields)
            .zip(pages)
            .map(|((columns, field), pages)| {
                to_deserializer(columns, field, num_rows, chunk_size, Some(pages))
            })
            .collect()
    } else {
        field_columns
            .into_iter()
            .zip(fields.into_iter())
            .map(|(columns, field)| to_deserializer(columns, field, num_rows, chunk_size, None))
            .collect()
    }
}