1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
//! API to perform page-level filtering (also known as indexes)
use parquet2::error::Error as ParquetError;
use parquet2::indexes::{
    select_pages, BooleanIndex, ByteIndex, FixedLenByteIndex, Index as ParquetIndex, NativeIndex,
    PageLocation,
};
use parquet2::metadata::{ColumnChunkMetaData, RowGroupMetaData};
use parquet2::read::{read_columns_indexes as _read_columns_indexes, read_pages_locations};
use parquet2::schema::types::PhysicalType as ParquetPhysicalType;

mod binary;
mod boolean;
mod fixed_len_binary;
mod primitive;

use std::collections::VecDeque;
use std::io::{Read, Seek};

use crate::array::UInt64Array;
use crate::datatypes::{Field, PrimitiveType};
use crate::{
    array::Array,
    datatypes::{DataType, PhysicalType},
    error::Error,
};

use super::get_field_pages;

pub use parquet2::indexes::{FilteredPage, Interval};

/// Page statistics of an Arrow field.
#[derive(Debug, PartialEq)]
pub enum FieldPageStatistics {
    /// Variant used for fields with a single parquet column (e.g. primitives, dictionaries, list)
    Single(ColumnPageStatistics),
    /// Variant used for fields with multiple parquet columns (e.g. Struct, Map)
    Multiple(Vec<FieldPageStatistics>),
}

impl From<ColumnPageStatistics> for FieldPageStatistics {
    fn from(column: ColumnPageStatistics) -> Self {
        Self::Single(column)
    }
}

/// [`ColumnPageStatistics`] contains the minimum, maximum, and null_count
/// of each page of a parquet column, as an [`Array`].
/// This struct has the following invariants:
/// * `min`, `max` and `null_count` have the same length (equal to the number of pages in the column)
/// * `min`, `max` and `null_count` are guaranteed to be non-null
/// * `min` and `max` have the same logical type
#[derive(Debug, PartialEq)]
pub struct ColumnPageStatistics {
    /// The minimum values in the pages
    pub min: Box<dyn Array>,
    /// The maximum values in the pages
    pub max: Box<dyn Array>,
    /// The number of null values in the pages.
    pub null_count: UInt64Array,
}

/// Given a sequence of [`ParquetIndex`] representing the page indexes of each column in the
/// parquet file, returns the page-level statistics as a [`FieldPageStatistics`].
///
/// This function maps timestamps, decimal types, etc. accordingly.
/// # Implementation
/// This function is CPU-bounded `O(P)` where `P` is the total number of pages on all columns.
/// # Error
/// This function errors iff the value is not deserializable to arrow (e.g. invalid utf-8)
fn deserialize(
    indexes: &mut VecDeque<&Box<dyn ParquetIndex>>,
    data_type: DataType,
) -> Result<FieldPageStatistics, Error> {
    match data_type.to_physical_type() {
        PhysicalType::Boolean => {
            let index = indexes
                .pop_front()
                .unwrap()
                .as_any()
                .downcast_ref::<BooleanIndex>()
                .unwrap();
            Ok(boolean::deserialize(&index.indexes).into())
        }
        PhysicalType::Primitive(PrimitiveType::Int128) => {
            let index = indexes.pop_front().unwrap();
            match index.physical_type() {
                ParquetPhysicalType::Int32 => {
                    let index = index.as_any().downcast_ref::<NativeIndex<i32>>().unwrap();
                    Ok(primitive::deserialize_i32(&index.indexes, data_type).into())
                }
                parquet2::schema::types::PhysicalType::Int64 => {
                    let index = index.as_any().downcast_ref::<NativeIndex<i64>>().unwrap();
                    Ok(
                        primitive::deserialize_i64(
                            &index.indexes,
                            &index.primitive_type,
                            data_type,
                        )
                        .into(),
                    )
                }
                parquet2::schema::types::PhysicalType::FixedLenByteArray(_) => {
                    let index = index.as_any().downcast_ref::<FixedLenByteIndex>().unwrap();
                    Ok(fixed_len_binary::deserialize(&index.indexes, data_type).into())
                }
                other => Err(Error::nyi(format!(
                    "Deserialize {other:?} to arrow's int64"
                ))),
            }
        }
        PhysicalType::Primitive(PrimitiveType::UInt8)
        | PhysicalType::Primitive(PrimitiveType::UInt16)
        | PhysicalType::Primitive(PrimitiveType::UInt32)
        | PhysicalType::Primitive(PrimitiveType::Int32) => {
            let index = indexes
                .pop_front()
                .unwrap()
                .as_any()
                .downcast_ref::<NativeIndex<i32>>()
                .unwrap();
            Ok(primitive::deserialize_i32(&index.indexes, data_type).into())
        }
        PhysicalType::Primitive(PrimitiveType::Int64) => {
            let index = indexes.pop_front().unwrap();
            match index.physical_type() {
                ParquetPhysicalType::Int64 => {
                    let index = index.as_any().downcast_ref::<NativeIndex<i64>>().unwrap();
                    Ok(
                        primitive::deserialize_i64(
                            &index.indexes,
                            &index.primitive_type,
                            data_type,
                        )
                        .into(),
                    )
                }
                parquet2::schema::types::PhysicalType::Int96 => {
                    let index = index
                        .as_any()
                        .downcast_ref::<NativeIndex<[u32; 3]>>()
                        .unwrap();
                    Ok(primitive::deserialize_i96(&index.indexes, data_type).into())
                }
                other => Err(Error::nyi(format!(
                    "Deserialize {other:?} to arrow's int64"
                ))),
            }
        }
        PhysicalType::Primitive(PrimitiveType::Float32) => {
            let index = indexes
                .pop_front()
                .unwrap()
                .as_any()
                .downcast_ref::<NativeIndex<f32>>()
                .unwrap();
            Ok(primitive::deserialize_id(&index.indexes, data_type).into())
        }
        PhysicalType::Primitive(PrimitiveType::Float64) => {
            let index = indexes
                .pop_front()
                .unwrap()
                .as_any()
                .downcast_ref::<NativeIndex<f64>>()
                .unwrap();
            Ok(primitive::deserialize_id(&index.indexes, data_type).into())
        }
        PhysicalType::Binary
        | PhysicalType::LargeBinary
        | PhysicalType::Utf8
        | PhysicalType::LargeUtf8 => {
            let index = indexes
                .pop_front()
                .unwrap()
                .as_any()
                .downcast_ref::<ByteIndex>()
                .unwrap();
            binary::deserialize(&index.indexes, &data_type).map(|x| x.into())
        }
        PhysicalType::FixedSizeBinary => {
            let index = indexes
                .pop_front()
                .unwrap()
                .as_any()
                .downcast_ref::<FixedLenByteIndex>()
                .unwrap();
            Ok(fixed_len_binary::deserialize(&index.indexes, data_type).into())
        }
        PhysicalType::Dictionary(_) => {
            if let DataType::Dictionary(_, inner, _) = data_type.to_logical_type() {
                deserialize(indexes, (**inner).clone())
            } else {
                unreachable!()
            }
        }
        PhysicalType::List => {
            if let DataType::List(inner) = data_type.to_logical_type() {
                deserialize(indexes, inner.data_type.clone())
            } else {
                unreachable!()
            }
        }
        PhysicalType::LargeList => {
            if let DataType::LargeList(inner) = data_type.to_logical_type() {
                deserialize(indexes, inner.data_type.clone())
            } else {
                unreachable!()
            }
        }
        PhysicalType::Struct => {
            let children_fields = if let DataType::Struct(children) = data_type.to_logical_type() {
                children
            } else {
                unreachable!()
            };
            let children = children_fields
                .iter()
                .map(|child| deserialize(indexes, child.data_type.clone()))
                .collect::<Result<Vec<_>, Error>>()?;

            Ok(FieldPageStatistics::Multiple(children))
        }

        other => Err(Error::nyi(format!(
            "Deserialize into arrow's {other:?} page index"
        ))),
    }
}

/// Checks whether the row group have page index information (page statistics)
pub fn has_indexes(row_group: &RowGroupMetaData) -> bool {
    row_group
        .columns()
        .iter()
        .all(|chunk| chunk.column_chunk().column_index_offset.is_some())
}

/// Reads the column indexes from the reader assuming a valid set of derived Arrow fields
/// for all parquet the columns in the file.
///
/// It returns one [`FieldPageStatistics`] per field in `fields`
///
/// This function is expected to be used to filter out parquet pages.
///
/// # Implementation
/// This function is IO-bounded and calls `reader.read_exact` exactly once.
/// # Error
/// Errors iff the indexes can't be read or their deserialization to arrow is incorrect (e.g. invalid utf-8)
pub fn read_columns_indexes<R: Read + Seek>(
    reader: &mut R,
    chunks: &[ColumnChunkMetaData],
    fields: &[Field],
) -> Result<Vec<FieldPageStatistics>, Error> {
    let indexes = _read_columns_indexes(reader, chunks)?;

    fields
        .iter()
        .map(|field| {
            let indexes = get_field_pages(chunks, &indexes, &field.name);
            let mut indexes = indexes.into_iter().collect();

            deserialize(&mut indexes, field.data_type.clone())
        })
        .collect()
}

/// Returns the set of (row) intervals of the pages.
pub fn compute_page_row_intervals(
    locations: &[PageLocation],
    num_rows: usize,
) -> Result<Vec<Interval>, ParquetError> {
    if locations.is_empty() {
        return Ok(vec![]);
    };

    let last = (|| {
        let start: usize = locations.last().unwrap().first_row_index.try_into()?;
        let length = num_rows - start;
        Result::<_, ParquetError>::Ok(Interval::new(start, length))
    })();

    let pages_lengths = locations
        .windows(2)
        .map(|x| {
            let start = usize::try_from(x[0].first_row_index)?;
            let length = usize::try_from(x[1].first_row_index - x[0].first_row_index)?;
            Ok(Interval::new(start, length))
        })
        .chain(std::iter::once(last));
    pages_lengths.collect()
}

/// Reads all page locations and index locations (IO-bounded) and uses `predicate` to compute
/// the set of [`FilteredPage`] that fulfill the predicate.
///
/// The non-trivial argument of this function is `predicate`, that controls which pages are selected.
/// Its signature contains 2 arguments:
/// * 0th argument (indexes): contains one [`ColumnPageStatistics`] (page statistics) per field.
///   Use it to evaluate the predicate against
/// * 1th argument (intervals): contains one [`Vec<Vec<Interval>>`] (row positions) per field.
///   For each field, the outermost vector corresponds to each parquet column:
///   a primitive field contains 1 column, a struct field with 2 primitive fields contain 2 columns.
///   The inner `Vec<Interval>` contains one [`Interval`] per page: its length equals the length of [`ColumnPageStatistics`].
/// It returns a single [`Vec<Interval>`] denoting the set of intervals that the predicate selects (over all columns).
///
/// This returns one item per `field`. For each field, there is one item per column (for non-nested types it returns one column)
/// and finally [`Vec<FilteredPage>`], that corresponds to the set of selected pages.
pub fn read_filtered_pages<
    R: Read + Seek,
    F: Fn(&[FieldPageStatistics], &[Vec<Vec<Interval>>]) -> Vec<Interval>,
>(
    reader: &mut R,
    row_group: &RowGroupMetaData,
    fields: &[Field],
    predicate: F,
    //is_intersection: bool,
) -> Result<Vec<Vec<Vec<FilteredPage>>>, Error> {
    let num_rows = row_group.num_rows();

    // one vec per column
    let locations = read_pages_locations(reader, row_group.columns())?;
    // one Vec<Vec<>> per field (non-nested contain a single entry on the first column)
    let locations = fields
        .iter()
        .map(|field| get_field_pages(row_group.columns(), &locations, &field.name))
        .collect::<Vec<_>>();

    // one ColumnPageStatistics per field
    let indexes = read_columns_indexes(reader, row_group.columns(), fields)?;

    let intervals = locations
        .iter()
        .map(|locations| {
            locations
                .iter()
                .map(|locations| Ok(compute_page_row_intervals(locations, num_rows)?))
                .collect::<Result<Vec<_>, Error>>()
        })
        .collect::<Result<Vec<_>, Error>>()?;

    let intervals = predicate(&indexes, &intervals);

    locations
        .into_iter()
        .map(|locations| {
            locations
                .into_iter()
                .map(|locations| Ok(select_pages(&intervals, locations, num_rows)?))
                .collect::<Result<Vec<_>, Error>>()
        })
        .collect()
}