1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
use crate::bitmap::utils::{BitChunkIterExact, BitChunksExact};
use crate::datatypes::{DataType, PhysicalType, PrimitiveType};
use crate::error::{Error, Result};
use crate::offset::Offset;
use crate::scalar::*;
use crate::types::simd::*;
use crate::types::NativeType;
use crate::{
    array::{Array, BinaryArray, BooleanArray, PrimitiveArray, Utf8Array},
    bitmap::Bitmap,
};

/// Trait describing a type describing multiple lanes with an order relationship
/// consistent with the same order of `T`.
pub trait SimdOrd<T> {
    /// The minimum value
    const MIN: T;
    /// The maximum value
    const MAX: T;
    /// reduce itself to the minimum
    fn max_element(self) -> T;
    /// reduce itself to the maximum
    fn min_element(self) -> T;
    /// lane-wise maximum between two instances
    fn max_lane(self, x: Self) -> Self;
    /// lane-wise minimum between two instances
    fn min_lane(self, x: Self) -> Self;
    /// returns a new instance with all lanes equal to `MIN`
    fn new_min() -> Self;
    /// returns a new instance with all lanes equal to `MAX`
    fn new_max() -> Self;
}

fn nonnull_min_primitive<T>(values: &[T]) -> T
where
    T: NativeType + Simd,
    T::Simd: SimdOrd<T>,
{
    let chunks = values.chunks_exact(T::Simd::LANES);
    let remainder = chunks.remainder();

    let chunk_reduced = chunks.fold(T::Simd::new_min(), |acc, chunk| {
        let chunk = T::Simd::from_chunk(chunk);
        acc.min_lane(chunk)
    });

    let remainder = T::Simd::from_incomplete_chunk(remainder, T::Simd::MAX);
    let reduced = chunk_reduced.min_lane(remainder);

    reduced.min_element()
}

fn null_min_primitive_impl<T, I>(values: &[T], mut validity_masks: I) -> T
where
    T: NativeType + Simd,
    T::Simd: SimdOrd<T>,
    I: BitChunkIterExact<<<T as Simd>::Simd as NativeSimd>::Chunk>,
{
    let mut chunks = values.chunks_exact(T::Simd::LANES);

    let chunk_reduced = chunks.by_ref().zip(validity_masks.by_ref()).fold(
        T::Simd::new_min(),
        |acc, (chunk, validity_chunk)| {
            let chunk = T::Simd::from_chunk(chunk);
            let mask = <T::Simd as NativeSimd>::Mask::from_chunk(validity_chunk);
            let chunk = chunk.select(mask, T::Simd::new_min());
            acc.min_lane(chunk)
        },
    );

    let remainder = T::Simd::from_incomplete_chunk(chunks.remainder(), T::Simd::MAX);
    let mask = <T::Simd as NativeSimd>::Mask::from_chunk(validity_masks.remainder());
    let remainder = remainder.select(mask, T::Simd::new_min());
    let reduced = chunk_reduced.min_lane(remainder);

    reduced.min_element()
}

/// # Panics
/// iff `values.len() != bitmap.len()` or the operation overflows.
fn null_min_primitive<T>(values: &[T], bitmap: &Bitmap) -> T
where
    T: NativeType + Simd,
    T::Simd: SimdOrd<T>,
{
    let (slice, offset, length) = bitmap.as_slice();
    if offset == 0 {
        let validity_masks = BitChunksExact::<<T::Simd as NativeSimd>::Chunk>::new(slice, length);
        null_min_primitive_impl(values, validity_masks)
    } else {
        let validity_masks = bitmap.chunks::<<T::Simd as NativeSimd>::Chunk>();
        null_min_primitive_impl(values, validity_masks)
    }
}

/// # Panics
/// iff `values.len() != bitmap.len()` or the operation overflows.
fn null_max_primitive<T>(values: &[T], bitmap: &Bitmap) -> T
where
    T: NativeType + Simd,
    T::Simd: SimdOrd<T>,
{
    let (slice, offset, length) = bitmap.as_slice();
    if offset == 0 {
        let validity_masks = BitChunksExact::<<T::Simd as NativeSimd>::Chunk>::new(slice, length);
        null_max_primitive_impl(values, validity_masks)
    } else {
        let validity_masks = bitmap.chunks::<<T::Simd as NativeSimd>::Chunk>();
        null_max_primitive_impl(values, validity_masks)
    }
}

fn nonnull_max_primitive<T>(values: &[T]) -> T
where
    T: NativeType + Simd,
    T::Simd: SimdOrd<T>,
{
    let chunks = values.chunks_exact(T::Simd::LANES);
    let remainder = chunks.remainder();

    let chunk_reduced = chunks.fold(T::Simd::new_max(), |acc, chunk| {
        let chunk = T::Simd::from_chunk(chunk);
        acc.max_lane(chunk)
    });

    let remainder = T::Simd::from_incomplete_chunk(remainder, T::Simd::MIN);
    let reduced = chunk_reduced.max_lane(remainder);

    reduced.max_element()
}

fn null_max_primitive_impl<T, I>(values: &[T], mut validity_masks: I) -> T
where
    T: NativeType + Simd,
    T::Simd: SimdOrd<T>,
    I: BitChunkIterExact<<<T as Simd>::Simd as NativeSimd>::Chunk>,
{
    let mut chunks = values.chunks_exact(T::Simd::LANES);

    let chunk_reduced = chunks.by_ref().zip(validity_masks.by_ref()).fold(
        T::Simd::new_max(),
        |acc, (chunk, validity_chunk)| {
            let chunk = T::Simd::from_chunk(chunk);
            let mask = <T::Simd as NativeSimd>::Mask::from_chunk(validity_chunk);
            let chunk = chunk.select(mask, T::Simd::new_max());
            acc.max_lane(chunk)
        },
    );

    let remainder = T::Simd::from_incomplete_chunk(chunks.remainder(), T::Simd::MIN);
    let mask = <T::Simd as NativeSimd>::Mask::from_chunk(validity_masks.remainder());
    let remainder = remainder.select(mask, T::Simd::new_max());
    let reduced = chunk_reduced.max_lane(remainder);

    reduced.max_element()
}

/// Returns the minimum value in the array, according to the natural order.
/// For floating point arrays any NaN values are considered to be greater than any other non-null value
pub fn min_primitive<T>(array: &PrimitiveArray<T>) -> Option<T>
where
    T: NativeType + Simd,
    T::Simd: SimdOrd<T>,
{
    let null_count = array.null_count();

    // Includes case array.len() == 0
    if null_count == array.len() {
        return None;
    }
    let values = array.values();

    Some(if let Some(validity) = array.validity() {
        null_min_primitive(values, validity)
    } else {
        nonnull_min_primitive(values)
    })
}

/// Returns the maximum value in the array, according to the natural order.
/// For floating point arrays any NaN values are considered to be greater than any other non-null value
pub fn max_primitive<T>(array: &PrimitiveArray<T>) -> Option<T>
where
    T: NativeType + Simd,
    T::Simd: SimdOrd<T>,
{
    let null_count = array.null_count();

    // Includes case array.len() == 0
    if null_count == array.len() {
        return None;
    }
    let values = array.values();

    Some(if let Some(validity) = array.validity() {
        null_max_primitive(values, validity)
    } else {
        nonnull_max_primitive(values)
    })
}

/// Helper to compute min/max of [`BinaryArray`] and [`Utf8Array`]
macro_rules! min_max_binary_utf8 {
    ($array: expr, $cmp: expr) => {
        if $array.null_count() == $array.len() {
            None
        } else if $array.validity().is_some() {
            $array
                .iter()
                .reduce(|v1, v2| match (v1, v2) {
                    (None, v2) => v2,
                    (v1, None) => v1,
                    (Some(v1), Some(v2)) => {
                        if $cmp(v1, v2) {
                            Some(v2)
                        } else {
                            Some(v1)
                        }
                    }
                })
                .unwrap_or(None)
        } else {
            $array
                .values_iter()
                .reduce(|v1, v2| if $cmp(v1, v2) { v2 } else { v1 })
        }
    };
}

/// Returns the maximum value in the binary array, according to the natural order.
pub fn max_binary<O: Offset>(array: &BinaryArray<O>) -> Option<&[u8]> {
    min_max_binary_utf8!(array, |a, b| a < b)
}

/// Returns the minimum value in the binary array, according to the natural order.
pub fn min_binary<O: Offset>(array: &BinaryArray<O>) -> Option<&[u8]> {
    min_max_binary_utf8!(array, |a, b| a > b)
}

/// Returns the maximum value in the string array, according to the natural order.
pub fn max_string<O: Offset>(array: &Utf8Array<O>) -> Option<&str> {
    min_max_binary_utf8!(array, |a, b| a < b)
}

/// Returns the minimum value in the string array, according to the natural order.
pub fn min_string<O: Offset>(array: &Utf8Array<O>) -> Option<&str> {
    min_max_binary_utf8!(array, |a, b| a > b)
}

/// Returns the minimum value in the boolean array.
///
/// ```
/// use arrow2::{
///   array::BooleanArray,
///   compute::aggregate::min_boolean,
/// };
///
/// let a = BooleanArray::from(vec![Some(true), None, Some(false)]);
/// assert_eq!(min_boolean(&a), Some(false))
/// ```
pub fn min_boolean(array: &BooleanArray) -> Option<bool> {
    // short circuit if all nulls / zero length array
    let null_count = array.null_count();
    if null_count == array.len() {
        None
    } else if null_count == 0 {
        Some(array.values().unset_bits() == 0)
    } else {
        // Note the min bool is false (0), so short circuit as soon as we see it
        array
            .iter()
            .find(|&b| b == Some(false))
            .flatten()
            .or(Some(true))
    }
}

/// Returns the maximum value in the boolean array
///
/// ```
/// use arrow2::{
///   array::BooleanArray,
///   compute::aggregate::max_boolean,
/// };
///
/// let a = BooleanArray::from(vec![Some(true), None, Some(false)]);
/// assert_eq!(max_boolean(&a), Some(true))
/// ```
pub fn max_boolean(array: &BooleanArray) -> Option<bool> {
    // short circuit if all nulls / zero length array
    let null_count = array.null_count();
    if null_count == array.len() {
        None
    } else if null_count == 0 {
        Some(array.values().unset_bits() < array.len())
    } else {
        // Note the max bool is true (1), so short circuit as soon as we see it
        array
            .iter()
            .find(|&b| b == Some(true))
            .flatten()
            .or(Some(false))
    }
}

macro_rules! dyn_generic {
    ($array_ty:ty, $scalar_ty:ty, $array:expr, $f:ident) => {{
        let array = $array.as_any().downcast_ref::<$array_ty>().unwrap();
        Box::new(<$scalar_ty>::new($f(array)))
    }};
}

macro_rules! with_match_primitive_type {(
    $key_type:expr, | $_:tt $T:ident | $($body:tt)*
) => ({
    macro_rules! __with_ty__ {( $_ $T:ident ) => ( $($body)* )}
    use crate::datatypes::PrimitiveType::*;
    match $key_type {
        Int8 => __with_ty__! { i8 },
        Int16 => __with_ty__! { i16 },
        Int32 => __with_ty__! { i32 },
        Int64 => __with_ty__! { i64 },
        Int128 => __with_ty__! { i128 },
        UInt8 => __with_ty__! { u8 },
        UInt16 => __with_ty__! { u16 },
        UInt32 => __with_ty__! { u32 },
        UInt64 => __with_ty__! { u64 },
        Float32 => __with_ty__! { f32 },
        Float64 => __with_ty__! { f64 },
        _ => return Err(Error::InvalidArgumentError(format!(
            "`min` and `max` operator do not support primitive `{:?}`",
            $key_type,
        ))),
    }
})}

/// Returns the maximum of [`Array`]. The scalar is null when all elements are null.
/// # Error
/// Errors iff the type does not support this operation.
pub fn max(array: &dyn Array) -> Result<Box<dyn Scalar>> {
    Ok(match array.data_type().to_physical_type() {
        PhysicalType::Boolean => dyn_generic!(BooleanArray, BooleanScalar, array, max_boolean),
        PhysicalType::Primitive(primitive) => with_match_primitive_type!(primitive, |$T| {
            let data_type = array.data_type().clone();
            let array = array.as_any().downcast_ref().unwrap();
            Box::new(PrimitiveScalar::<$T>::new(data_type, max_primitive::<$T>(array)))
        }),
        PhysicalType::Utf8 => dyn_generic!(Utf8Array<i32>, Utf8Scalar<i32>, array, max_string),
        PhysicalType::LargeUtf8 => dyn_generic!(Utf8Array<i64>, Utf8Scalar<i64>, array, max_string),
        PhysicalType::Binary => {
            dyn_generic!(BinaryArray<i32>, BinaryScalar<i32>, array, max_binary)
        }
        PhysicalType::LargeBinary => {
            dyn_generic!(BinaryArray<i64>, BinaryScalar<i64>, array, min_binary)
        }
        _ => {
            return Err(Error::InvalidArgumentError(format!(
                "The `max` operator does not support type `{:?}`",
                array.data_type(),
            )))
        }
    })
}

/// Returns the minimum of [`Array`]. The scalar is null when all elements are null.
/// # Error
/// Errors iff the type does not support this operation.
pub fn min(array: &dyn Array) -> Result<Box<dyn Scalar>> {
    Ok(match array.data_type().to_physical_type() {
        PhysicalType::Boolean => dyn_generic!(BooleanArray, BooleanScalar, array, min_boolean),
        PhysicalType::Primitive(primitive) => with_match_primitive_type!(primitive, |$T| {
            let data_type = array.data_type().clone();
            let array = array.as_any().downcast_ref().unwrap();
            Box::new(PrimitiveScalar::<$T>::new(data_type, min_primitive::<$T>(array)))
        }),
        PhysicalType::Utf8 => dyn_generic!(Utf8Array<i32>, Utf8Scalar<i32>, array, min_string),
        PhysicalType::LargeUtf8 => dyn_generic!(Utf8Array<i64>, Utf8Scalar<i64>, array, min_string),
        PhysicalType::Binary => {
            dyn_generic!(BinaryArray<i32>, BinaryScalar<i32>, array, min_binary)
        }
        PhysicalType::LargeBinary => {
            dyn_generic!(BinaryArray<i64>, BinaryScalar<i64>, array, min_binary)
        }
        _ => {
            return Err(Error::InvalidArgumentError(format!(
                "The `max` operator does not support type `{:?}`",
                array.data_type(),
            )))
        }
    })
}

/// Whether [`min`] supports `data_type`
pub fn can_min(data_type: &DataType) -> bool {
    let physical = data_type.to_physical_type();
    if let PhysicalType::Primitive(primitive) = physical {
        use PrimitiveType::*;
        matches!(
            primitive,
            Int8 | Int16 | Int64 | Int128 | UInt8 | UInt16 | UInt32 | UInt64 | Float32 | Float64
        )
    } else {
        use PhysicalType::*;
        matches!(physical, Boolean | Utf8 | LargeUtf8 | Binary | LargeBinary)
    }
}

/// Whether [`max`] supports `data_type`
pub fn can_max(data_type: &DataType) -> bool {
    can_min(data_type)
}