1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
use std::{iter::FromIterator, ops::Deref, sync::Arc};

use either::Either;

use crate::{buffer::Bytes, error::Error, trusted_len::TrustedLen};

use super::{
    chunk_iter_to_vec,
    utils::{count_zeros, fmt, get_bit, get_bit_unchecked, BitChunk, BitChunks, BitmapIter},
    IntoIter, MutableBitmap,
};

/// An immutable container semantically equivalent to `Arc<Vec<bool>>` but represented as `Arc<Vec<u8>>` where
/// each boolean is represented as a single bit.
///
/// # Examples
/// ```
/// use arrow2::bitmap::{Bitmap, MutableBitmap};
///
/// let bitmap = Bitmap::from([true, false, true]);
/// assert_eq!(bitmap.iter().collect::<Vec<_>>(), vec![true, false, true]);
///
/// // creation directly from bytes
/// let bitmap = Bitmap::try_new(vec![0b00001101], 5).unwrap();
/// // note: the first bit is the left-most of the first byte
/// assert_eq!(bitmap.iter().collect::<Vec<_>>(), vec![true, false, true, true, false]);
/// // we can also get the slice:
/// assert_eq!(bitmap.as_slice(), ([0b00001101u8].as_ref(), 0, 5));
/// // debug helps :)
/// assert_eq!(format!("{:?}", bitmap), "[0b___01101]".to_string());
///
/// // it supports copy-on-write semantics (to a `MutableBitmap`)
/// let bitmap: MutableBitmap = bitmap.into_mut().right().unwrap();
/// assert_eq!(bitmap, MutableBitmap::from([true, false, true, true, false]));
///
/// // slicing is 'O(1)' (data is shared)
/// let bitmap = Bitmap::try_new(vec![0b00001101], 5).unwrap();
/// let sliced = bitmap.slice(1, 4);
/// assert_eq!(sliced.as_slice(), ([0b00001101u8].as_ref(), 1, 4)); // 1 here is the offset:
/// assert_eq!(format!("{:?}", sliced), "[0b___0110_]".to_string());
/// // when sliced (or cloned), it is no longer possible to `into_mut`.
/// let same: Bitmap = sliced.into_mut().left().unwrap();
/// ```
#[derive(Clone)]
pub struct Bitmap {
    bytes: Arc<Bytes<u8>>,
    // both are measured in bits. They are used to bound the bitmap to a region of Bytes.
    offset: usize,
    length: usize,
    // this is a cache: it is computed on initialization
    unset_bits: usize,
}

impl std::fmt::Debug for Bitmap {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let (bytes, offset, len) = self.as_slice();
        fmt(bytes, offset, len, f)
    }
}

impl Default for Bitmap {
    fn default() -> Self {
        MutableBitmap::new().into()
    }
}

impl Bitmap {
    /// Initializes an empty [`Bitmap`].
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    /// Initializes a new [`Bitmap`] from vector of bytes and a length.
    /// # Errors
    /// This function errors iff `length > bytes.len() * 8`
    #[inline]
    pub fn try_new(bytes: Vec<u8>, length: usize) -> Result<Self, Error> {
        if length > bytes.len().saturating_mul(8) {
            return Err(Error::InvalidArgumentError(format!(
                "The length of the bitmap ({}) must be `<=` to the number of bytes times 8 ({})",
                length,
                bytes.len().saturating_mul(8)
            )));
        }
        let unset_bits = count_zeros(&bytes, 0, length);
        Ok(Self {
            length,
            offset: 0,
            bytes: Arc::new(bytes.into()),
            unset_bits,
        })
    }

    /// Returns the length of the [`Bitmap`].
    #[inline]
    pub fn len(&self) -> usize {
        self.length
    }

    /// Returns whether [`Bitmap`] is empty
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns a new iterator of `bool` over this bitmap
    pub fn iter(&self) -> BitmapIter {
        BitmapIter::new(&self.bytes, self.offset, self.length)
    }

    /// Returns an iterator over bits in bit chunks [`BitChunk`].
    ///
    /// This iterator is useful to operate over multiple bits via e.g. bitwise.
    pub fn chunks<T: BitChunk>(&self) -> BitChunks<T> {
        BitChunks::new(&self.bytes, self.offset, self.length)
    }

    /// Creates a new [`Bitmap`] from [`Bytes`] and a length.
    /// # Panic
    /// Panics iff `length <= bytes.len() * 8`
    #[inline]
    pub(crate) fn from_bytes(bytes: Bytes<u8>, length: usize) -> Self {
        assert!(length <= bytes.len() * 8);
        let unset_bits = count_zeros(&bytes, 0, length);
        Self {
            length,
            offset: 0,
            bytes: Arc::new(bytes),
            unset_bits,
        }
    }

    /// Returns the byte slice of this [`Bitmap`].
    ///
    /// The returned tuple contains:
    /// * `.1`: The byte slice, truncated to the start of the first bit. So the start of the slice
    ///       is within the first 8 bits.
    /// * `.2`: The start offset in bits on a range `0 <= offsets < 8`.
    /// * `.3`: The length in number of bits.
    #[inline]
    pub fn as_slice(&self) -> (&[u8], usize, usize) {
        let start = self.offset / 8;
        let len = (self.offset % 8 + self.length).saturating_add(7) / 8;
        (
            &self.bytes[start..start + len],
            self.offset % 8,
            self.length,
        )
    }

    /// Returns the number of unset bits on this [`Bitmap`].
    ///
    /// Guaranteed to be `<= self.len()`.
    /// # Implementation
    /// This function is `O(1)` - the number of unset bits is computed when the bitmap is
    /// created
    pub const fn unset_bits(&self) -> usize {
        self.unset_bits
    }

    /// Returns the number of unset bits on this [`Bitmap`].
    #[inline]
    #[deprecated(since = "0.13.0", note = "use `unset_bits` instead")]
    pub fn null_count(&self) -> usize {
        self.unset_bits
    }

    /// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
    /// # Panic
    /// Panics iff `offset + length > self.length`, i.e. if the offset and `length`
    /// exceeds the allocated capacity of `self`.
    #[inline]
    #[must_use]
    pub fn slice(self, offset: usize, length: usize) -> Self {
        assert!(offset + length <= self.length);
        unsafe { self.slice_unchecked(offset, length) }
    }

    /// Slices `self`, offseting by `offset` and truncating up to `length` bits.
    /// # Safety
    /// The caller must ensure that `self.offset + offset + length <= self.len()`
    #[inline]
    pub unsafe fn slice_unchecked(mut self, offset: usize, length: usize) -> Self {
        // count the smallest chunk
        if length < self.length / 2 {
            // count the null values in the slice
            self.unset_bits = count_zeros(&self.bytes, self.offset + offset, length);
        } else {
            // subtract the null count of the chunks we slice off
            let start_end = self.offset + offset + length;
            let head_count = count_zeros(&self.bytes, self.offset, offset);
            let tail_count = count_zeros(&self.bytes, start_end, self.length - length - offset);
            self.unset_bits -= head_count + tail_count;
        }
        self.offset += offset;
        self.length = length;
        self
    }

    /// Returns whether the bit at position `i` is set.
    /// # Panics
    /// Panics iff `i >= self.len()`.
    #[inline]
    pub fn get_bit(&self, i: usize) -> bool {
        get_bit(&self.bytes, self.offset + i)
    }

    /// Unsafely returns whether the bit at position `i` is set.
    /// # Safety
    /// Unsound iff `i >= self.len()`.
    #[inline]
    pub unsafe fn get_bit_unchecked(&self, i: usize) -> bool {
        get_bit_unchecked(&self.bytes, self.offset + i)
    }

    /// Returns a pointer to the start of this [`Bitmap`] (ignores `offsets`)
    /// This pointer is allocated iff `self.len() > 0`.
    pub(crate) fn as_ptr(&self) -> *const u8 {
        self.bytes.deref().as_ptr()
    }

    /// Returns a pointer to the start of this [`Bitmap`] (ignores `offsets`)
    /// This pointer is allocated iff `self.len() > 0`.
    pub(crate) fn offset(&self) -> usize {
        self.offset
    }

    /// Converts this [`Bitmap`] to [`MutableBitmap`], returning itself if the conversion
    /// is not possible
    ///
    /// This operation returns a [`MutableBitmap`] iff:
    /// * this [`Bitmap`] is not an offsetted slice of another [`Bitmap`]
    /// * this [`Bitmap`] has not been cloned (i.e. [`Arc`]`::get_mut` yields [`Some`])
    /// * this [`Bitmap`] was not imported from the c data interface (FFI)
    pub fn into_mut(mut self) -> Either<Self, MutableBitmap> {
        match (
            self.offset,
            Arc::get_mut(&mut self.bytes).and_then(|b| b.get_vec()),
        ) {
            (0, Some(v)) => {
                let data = std::mem::take(v);
                Either::Right(MutableBitmap::from_vec(data, self.length))
            }
            _ => Either::Left(self),
        }
    }

    /// Converts this [`Bitmap`] into a [`MutableBitmap`], cloning its internal
    /// buffer if required (clone-on-write).
    pub fn make_mut(self) -> MutableBitmap {
        match self.into_mut() {
            Either::Left(data) => {
                if data.offset > 0 {
                    // re-align the bits (remove the offset)
                    let chunks = data.chunks::<u64>();
                    let remainder = chunks.remainder();
                    let vec = chunk_iter_to_vec(chunks.chain(std::iter::once(remainder)));
                    MutableBitmap::from_vec(vec, data.length)
                } else {
                    MutableBitmap::from_vec(data.bytes.as_ref().to_vec(), data.length)
                }
            }
            Either::Right(data) => data,
        }
    }

    /// Initializes an new [`Bitmap`] filled with unset values.
    #[inline]
    pub fn new_zeroed(length: usize) -> Self {
        MutableBitmap::from_len_zeroed(length).into()
    }

    /// Counts the nulls (unset bits) starting from `offset` bits and for `length` bits.
    #[inline]
    pub fn null_count_range(&self, offset: usize, length: usize) -> usize {
        count_zeros(&self.bytes, self.offset + offset, length)
    }

    /// Creates a new [`Bitmap`] from a slice and length.
    /// # Panic
    /// Panics iff `length <= bytes.len() * 8`
    #[inline]
    pub fn from_u8_slice<T: AsRef<[u8]>>(slice: T, length: usize) -> Self {
        Bitmap::try_new(slice.as_ref().to_vec(), length).unwrap()
    }

    /// Alias for `Bitmap::try_new().unwrap()`
    /// This function is `O(1)`
    /// # Panic
    /// This function panics iff `length <= bytes.len() * 8`
    #[inline]
    pub fn from_u8_vec(vec: Vec<u8>, length: usize) -> Self {
        Bitmap::try_new(vec, length).unwrap()
    }

    /// Returns whether the bit at position `i` is set.
    #[inline]
    pub fn get(&self, i: usize) -> Option<bool> {
        if i < self.len() {
            Some(unsafe { self.get_bit_unchecked(i) })
        } else {
            None
        }
    }
}

impl<P: AsRef<[bool]>> From<P> for Bitmap {
    fn from(slice: P) -> Self {
        Self::from_trusted_len_iter(slice.as_ref().iter().copied())
    }
}

impl FromIterator<bool> for Bitmap {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = bool>,
    {
        MutableBitmap::from_iter(iter).into()
    }
}

impl Bitmap {
    /// Creates a new [`Bitmap`] from an iterator of booleans.
    /// # Safety
    /// The iterator must report an accurate length.
    #[inline]
    pub unsafe fn from_trusted_len_iter_unchecked<I: Iterator<Item = bool>>(iterator: I) -> Self {
        MutableBitmap::from_trusted_len_iter_unchecked(iterator).into()
    }

    /// Creates a new [`Bitmap`] from an iterator of booleans.
    #[inline]
    pub fn from_trusted_len_iter<I: TrustedLen<Item = bool>>(iterator: I) -> Self {
        MutableBitmap::from_trusted_len_iter(iterator).into()
    }

    /// Creates a new [`Bitmap`] from a fallible iterator of booleans.
    #[inline]
    pub fn try_from_trusted_len_iter<E, I: TrustedLen<Item = std::result::Result<bool, E>>>(
        iterator: I,
    ) -> std::result::Result<Self, E> {
        Ok(MutableBitmap::try_from_trusted_len_iter(iterator)?.into())
    }

    /// Creates a new [`Bitmap`] from a fallible iterator of booleans.
    /// # Safety
    /// The iterator must report an accurate length.
    #[inline]
    pub unsafe fn try_from_trusted_len_iter_unchecked<
        E,
        I: Iterator<Item = std::result::Result<bool, E>>,
    >(
        iterator: I,
    ) -> std::result::Result<Self, E> {
        Ok(MutableBitmap::try_from_trusted_len_iter_unchecked(iterator)?.into())
    }
}

impl<'a> IntoIterator for &'a Bitmap {
    type Item = bool;
    type IntoIter = BitmapIter<'a>;

    fn into_iter(self) -> Self::IntoIter {
        BitmapIter::<'a>::new(&self.bytes, self.offset, self.length)
    }
}

impl IntoIterator for Bitmap {
    type Item = bool;
    type IntoIter = IntoIter;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter::new(self)
    }
}