tokio/process/
mod.rs

1//! An implementation of asynchronous process management for Tokio.
2//!
3//! This module provides a [`Command`] struct that imitates the interface of the
4//! [`std::process::Command`] type in the standard library, but provides asynchronous versions of
5//! functions that create processes. These functions (`spawn`, `status`, `output` and their
6//! variants) return "future aware" types that interoperate with Tokio. The asynchronous process
7//! support is provided through signal handling on Unix and system APIs on Windows.
8//!
9//! [`std::process::Command`]: std::process::Command
10//!
11//! # Examples
12//!
13//! Here's an example program which will spawn `echo hello world` and then wait
14//! for it complete.
15//!
16//! ```no_run
17//! use tokio::process::Command;
18//!
19//! #[tokio::main]
20//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
21//!     // The usage is similar as with the standard library's `Command` type
22//!     let mut child = Command::new("echo")
23//!         .arg("hello")
24//!         .arg("world")
25//!         .spawn()
26//!         .expect("failed to spawn");
27//!
28//!     // Await until the command completes
29//!     let status = child.wait().await?;
30//!     println!("the command exited with: {}", status);
31//!     Ok(())
32//! }
33//! ```
34//!
35//! Next, let's take a look at an example where we not only spawn `echo hello
36//! world` but we also capture its output.
37//!
38//! ```no_run
39//! use tokio::process::Command;
40//!
41//! #[tokio::main]
42//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
43//!     // Like above, but use `output` which returns a future instead of
44//!     // immediately returning the `Child`.
45//!     let output = Command::new("echo").arg("hello").arg("world")
46//!                         .output();
47//!
48//!     let output = output.await?;
49//!
50//!     assert!(output.status.success());
51//!     assert_eq!(output.stdout, b"hello world\n");
52//!     Ok(())
53//! }
54//! ```
55//!
56//! We can also read input line by line.
57//!
58//! ```no_run
59//! use tokio::io::{BufReader, AsyncBufReadExt};
60//! use tokio::process::Command;
61//!
62//! use std::process::Stdio;
63//!
64//! #[tokio::main]
65//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
66//!     let mut cmd = Command::new("cat");
67//!
68//!     // Specify that we want the command's standard output piped back to us.
69//!     // By default, standard input/output/error will be inherited from the
70//!     // current process (for example, this means that standard input will
71//!     // come from the keyboard and standard output/error will go directly to
72//!     // the terminal if this process is invoked from the command line).
73//!     cmd.stdout(Stdio::piped());
74//!
75//!     let mut child = cmd.spawn()
76//!         .expect("failed to spawn command");
77//!
78//!     let stdout = child.stdout.take()
79//!         .expect("child did not have a handle to stdout");
80//!
81//!     let mut reader = BufReader::new(stdout).lines();
82//!
83//!     // Ensure the child process is spawned in the runtime so it can
84//!     // make progress on its own while we await for any output.
85//!     tokio::spawn(async move {
86//!         let status = child.wait().await
87//!             .expect("child process encountered an error");
88//!
89//!         println!("child status was: {}", status);
90//!     });
91//!
92//!     while let Some(line) = reader.next_line().await? {
93//!         println!("Line: {}", line);
94//!     }
95//!
96//!     Ok(())
97//! }
98//! ```
99//!
100//! Here is another example using `sort` writing into the child process
101//! standard input, capturing the output of the sorted text.
102//!
103//! ```no_run
104//! use tokio::io::AsyncWriteExt;
105//! use tokio::process::Command;
106//!
107//! use std::process::Stdio;
108//!
109//! #[tokio::main]
110//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
111//!     let mut cmd = Command::new("sort");
112//!
113//!     // Specifying that we want pipe both the output and the input.
114//!     // Similarly to capturing the output, by configuring the pipe
115//!     // to stdin it can now be used as an asynchronous writer.
116//!     cmd.stdout(Stdio::piped());
117//!     cmd.stdin(Stdio::piped());
118//!
119//!     let mut child = cmd.spawn().expect("failed to spawn command");
120//!
121//!     // These are the animals we want to sort
122//!     let animals: &[&str] = &["dog", "bird", "frog", "cat", "fish"];
123//!
124//!     let mut stdin = child
125//!         .stdin
126//!         .take()
127//!         .expect("child did not have a handle to stdin");
128//!
129//!     // Write our animals to the child process
130//!     // Note that the behavior of `sort` is to buffer _all input_ before writing any output.
131//!     // In the general sense, it is recommended to write to the child in a separate task as
132//!     // awaiting its exit (or output) to avoid deadlocks (for example, the child tries to write
133//!     // some output but gets stuck waiting on the parent to read from it, meanwhile the parent
134//!     // is stuck waiting to write its input completely before reading the output).
135//!     stdin
136//!         .write(animals.join("\n").as_bytes())
137//!         .await
138//!         .expect("could not write to stdin");
139//!
140//!     // We drop the handle here which signals EOF to the child process.
141//!     // This tells the child process that it there is no more data on the pipe.
142//!     drop(stdin);
143//!
144//!     let op = child.wait_with_output().await?;
145//!
146//!     // Results should come back in sorted order
147//!     assert_eq!(op.stdout, "bird\ncat\ndog\nfish\nfrog\n".as_bytes());
148//!
149//!     Ok(())
150//! }
151//! ```
152//!
153//! With some coordination, we can also pipe the output of one command into
154//! another.
155//!
156//! ```no_run
157//! use tokio::join;
158//! use tokio::process::Command;
159//! use std::process::Stdio;
160//!
161//! #[tokio::main]
162//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
163//!     let mut echo = Command::new("echo")
164//!         .arg("hello world!")
165//!         .stdout(Stdio::piped())
166//!         .spawn()
167//!         .expect("failed to spawn echo");
168//!
169//!     let tr_stdin: Stdio = echo
170//!         .stdout
171//!         .take()
172//!         .unwrap()
173//!         .try_into()
174//!         .expect("failed to convert to Stdio");
175//!
176//!     let tr = Command::new("tr")
177//!         .arg("a-z")
178//!         .arg("A-Z")
179//!         .stdin(tr_stdin)
180//!         .stdout(Stdio::piped())
181//!         .spawn()
182//!         .expect("failed to spawn tr");
183//!
184//!     let (echo_result, tr_output) = join!(echo.wait(), tr.wait_with_output());
185//!
186//!     assert!(echo_result.unwrap().success());
187//!
188//!     let tr_output = tr_output.expect("failed to await tr");
189//!     assert!(tr_output.status.success());
190//!
191//!     assert_eq!(tr_output.stdout, b"HELLO WORLD!\n");
192//!
193//!     Ok(())
194//! }
195//! ```
196//!
197//! # Caveats
198//!
199//! ## Dropping/Cancellation
200//!
201//! Similar to the behavior to the standard library, and unlike the futures
202//! paradigm of dropping-implies-cancellation, a spawned process will, by
203//! default, continue to execute even after the `Child` handle has been dropped.
204//!
205//! The [`Command::kill_on_drop`] method can be used to modify this behavior
206//! and kill the child process if the `Child` wrapper is dropped before it
207//! has exited.
208//!
209//! ## Unix Processes
210//!
211//! On Unix platforms processes must be "reaped" by their parent process after
212//! they have exited in order to release all OS resources. A child process which
213//! has exited, but has not yet been reaped by its parent is considered a "zombie"
214//! process. Such processes continue to count against limits imposed by the system,
215//! and having too many zombie processes present can prevent additional processes
216//! from being spawned.
217//!
218//! The tokio runtime will, on a best-effort basis, attempt to reap and clean up
219//! any process which it has spawned. No additional guarantees are made with regard to
220//! how quickly or how often this procedure will take place.
221//!
222//! It is recommended to avoid dropping a [`Child`] process handle before it has been
223//! fully `await`ed if stricter cleanup guarantees are required.
224//!
225//! [`Command`]: crate::process::Command
226//! [`Command::kill_on_drop`]: crate::process::Command::kill_on_drop
227//! [`Child`]: crate::process::Child
228
229#[path = "unix/mod.rs"]
230#[cfg(unix)]
231mod imp;
232
233#[cfg(unix)]
234pub(crate) mod unix {
235    pub(crate) use super::imp::*;
236}
237
238#[path = "windows.rs"]
239#[cfg(windows)]
240mod imp;
241
242mod kill;
243
244use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
245use crate::process::kill::Kill;
246
247use std::ffi::OsStr;
248use std::future::Future;
249use std::io;
250use std::path::Path;
251use std::pin::Pin;
252use std::process::{Command as StdCommand, ExitStatus, Output, Stdio};
253use std::task::{ready, Context, Poll};
254
255#[cfg(unix)]
256use std::os::unix::process::CommandExt;
257#[cfg(windows)]
258use std::os::windows::process::CommandExt;
259
260cfg_windows! {
261    use crate::os::windows::io::{AsRawHandle, RawHandle};
262}
263
264/// This structure mimics the API of [`std::process::Command`] found in the standard library, but
265/// replaces functions that create a process with an asynchronous variant. The main provided
266/// asynchronous functions are [spawn](Command::spawn), [status](Command::status), and
267/// [output](Command::output).
268///
269/// `Command` uses asynchronous versions of some `std` types (for example [`Child`]).
270///
271/// [`std::process::Command`]: std::process::Command
272/// [`Child`]: struct@Child
273#[derive(Debug)]
274pub struct Command {
275    std: StdCommand,
276    kill_on_drop: bool,
277}
278
279pub(crate) struct SpawnedChild {
280    child: imp::Child,
281    stdin: Option<imp::ChildStdio>,
282    stdout: Option<imp::ChildStdio>,
283    stderr: Option<imp::ChildStdio>,
284}
285
286impl Command {
287    /// Constructs a new `Command` for launching the program at
288    /// path `program`, with the following default configuration:
289    ///
290    /// * No arguments to the program
291    /// * Inherit the current process's environment
292    /// * Inherit the current process's working directory
293    /// * Inherit stdin/stdout/stderr for `spawn` or `status`, but create pipes for `output`
294    ///
295    /// Builder methods are provided to change these defaults and
296    /// otherwise configure the process.
297    ///
298    /// If `program` is not an absolute path, the `PATH` will be searched in
299    /// an OS-defined way.
300    ///
301    /// The search path to be used may be controlled by setting the
302    /// `PATH` environment variable on the Command,
303    /// but this has some implementation limitations on Windows
304    /// (see issue [rust-lang/rust#37519]).
305    ///
306    /// # Examples
307    ///
308    /// Basic usage:
309    ///
310    /// ```no_run
311    /// use tokio::process::Command;
312    /// let mut command = Command::new("sh");
313    /// # let _ = command.output(); // assert borrow checker
314    /// ```
315    ///
316    /// [rust-lang/rust#37519]: https://github.com/rust-lang/rust/issues/37519
317    pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
318        Self::from(StdCommand::new(program))
319    }
320
321    /// Cheaply convert to a `&std::process::Command` for places where the type from the standard
322    /// library is expected.
323    pub fn as_std(&self) -> &StdCommand {
324        &self.std
325    }
326
327    /// Cheaply convert to a `&mut std::process::Command` for places where the type from the
328    /// standard library is expected.
329    pub fn as_std_mut(&mut self) -> &mut StdCommand {
330        &mut self.std
331    }
332
333    /// Cheaply convert into a `std::process::Command`.
334    ///
335    /// Note that Tokio specific options will be lost. Currently, this only applies to [`kill_on_drop`].
336    ///
337    /// [`kill_on_drop`]: Command::kill_on_drop
338    pub fn into_std(self) -> StdCommand {
339        self.std
340    }
341
342    /// Adds an argument to pass to the program.
343    ///
344    /// Only one argument can be passed per use. So instead of:
345    ///
346    /// ```no_run
347    /// let mut command = tokio::process::Command::new("sh");
348    /// command.arg("-C /path/to/repo");
349    ///
350    /// # let _ = command.output(); // assert borrow checker
351    /// ```
352    ///
353    /// usage would be:
354    ///
355    /// ```no_run
356    /// let mut command = tokio::process::Command::new("sh");
357    /// command.arg("-C");
358    /// command.arg("/path/to/repo");
359    ///
360    /// # let _ = command.output(); // assert borrow checker
361    /// ```
362    ///
363    /// To pass multiple arguments see [`args`].
364    ///
365    /// [`args`]: method@Self::args
366    ///
367    /// # Examples
368    ///
369    /// Basic usage:
370    ///
371    /// ```no_run
372    /// # async fn test() { // allow using await
373    /// use tokio::process::Command;
374    ///
375    /// let output = Command::new("ls")
376    ///         .arg("-l")
377    ///         .arg("-a")
378    ///         .output().await.unwrap();
379    /// # }
380    ///
381    /// ```
382    pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
383        self.std.arg(arg);
384        self
385    }
386
387    /// Adds multiple arguments to pass to the program.
388    ///
389    /// To pass a single argument see [`arg`].
390    ///
391    /// [`arg`]: method@Self::arg
392    ///
393    /// # Examples
394    ///
395    /// Basic usage:
396    ///
397    /// ```no_run
398    /// # async fn test() { // allow using await
399    /// use tokio::process::Command;
400    ///
401    /// let output = Command::new("ls")
402    ///         .args(&["-l", "-a"])
403    ///         .output().await.unwrap();
404    /// # }
405    /// ```
406    pub fn args<I, S>(&mut self, args: I) -> &mut Command
407    where
408        I: IntoIterator<Item = S>,
409        S: AsRef<OsStr>,
410    {
411        self.std.args(args);
412        self
413    }
414
415    cfg_windows! {
416        /// Append literal text to the command line without any quoting or escaping.
417        ///
418        /// This is useful for passing arguments to `cmd.exe /c`, which doesn't follow
419        /// `CommandLineToArgvW` escaping rules.
420        pub fn raw_arg<S: AsRef<OsStr>>(&mut self, text_to_append_as_is: S) -> &mut Command {
421            self.std.raw_arg(text_to_append_as_is);
422            self
423        }
424    }
425
426    /// Inserts or updates an environment variable mapping.
427    ///
428    /// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
429    /// and case-sensitive on all other platforms.
430    ///
431    /// # Examples
432    ///
433    /// Basic usage:
434    ///
435    /// ```no_run
436    /// # async fn test() { // allow using await
437    /// use tokio::process::Command;
438    ///
439    /// let output = Command::new("ls")
440    ///         .env("PATH", "/bin")
441    ///         .output().await.unwrap();
442    /// # }
443    /// ```
444    pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
445    where
446        K: AsRef<OsStr>,
447        V: AsRef<OsStr>,
448    {
449        self.std.env(key, val);
450        self
451    }
452
453    /// Adds or updates multiple environment variable mappings.
454    ///
455    /// # Examples
456    ///
457    /// Basic usage:
458    ///
459    /// ```no_run
460    /// # async fn test() { // allow using await
461    /// use tokio::process::Command;
462    /// use std::process::{Stdio};
463    /// use std::env;
464    /// use std::collections::HashMap;
465    ///
466    /// let filtered_env : HashMap<String, String> =
467    ///     env::vars().filter(|&(ref k, _)|
468    ///         k == "TERM" || k == "TZ" || k == "LANG" || k == "PATH"
469    ///     ).collect();
470    ///
471    /// let output = Command::new("printenv")
472    ///         .stdin(Stdio::null())
473    ///         .stdout(Stdio::inherit())
474    ///         .env_clear()
475    ///         .envs(&filtered_env)
476    ///         .output().await.unwrap();
477    /// # }
478    /// ```
479    pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command
480    where
481        I: IntoIterator<Item = (K, V)>,
482        K: AsRef<OsStr>,
483        V: AsRef<OsStr>,
484    {
485        self.std.envs(vars);
486        self
487    }
488
489    /// Removes an environment variable mapping.
490    ///
491    /// # Examples
492    ///
493    /// Basic usage:
494    ///
495    /// ```no_run
496    /// # async fn test() { // allow using await
497    /// use tokio::process::Command;
498    ///
499    /// let output = Command::new("ls")
500    ///         .env_remove("PATH")
501    ///         .output().await.unwrap();
502    /// # }
503    /// ```
504    pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
505        self.std.env_remove(key);
506        self
507    }
508
509    /// Clears the entire environment map for the child process.
510    ///
511    /// # Examples
512    ///
513    /// Basic usage:
514    ///
515    /// ```no_run
516    /// # async fn test() { // allow using await
517    /// use tokio::process::Command;
518    ///
519    /// let output = Command::new("ls")
520    ///         .env_clear()
521    ///         .output().await.unwrap();
522    /// # }
523    /// ```
524    pub fn env_clear(&mut self) -> &mut Command {
525        self.std.env_clear();
526        self
527    }
528
529    /// Sets the working directory for the child process.
530    ///
531    /// # Platform-specific behavior
532    ///
533    /// If the program path is relative (e.g., `"./script.sh"`), it's ambiguous
534    /// whether it should be interpreted relative to the parent's working
535    /// directory or relative to `current_dir`. The behavior in this case is
536    /// platform specific and unstable, and it's recommended to use
537    /// [`canonicalize`] to get an absolute program path instead.
538    ///
539    /// [`canonicalize`]: crate::fs::canonicalize()
540    ///
541    /// # Examples
542    ///
543    /// Basic usage:
544    ///
545    /// ```no_run
546    /// # async fn test() { // allow using await
547    /// use tokio::process::Command;
548    ///
549    /// let output = Command::new("ls")
550    ///         .current_dir("/bin")
551    ///         .output().await.unwrap();
552    /// # }
553    /// ```
554    pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command {
555        self.std.current_dir(dir);
556        self
557    }
558
559    /// Sets configuration for the child process's standard input (stdin) handle.
560    ///
561    /// Defaults to [`inherit`].
562    ///
563    /// [`inherit`]: std::process::Stdio::inherit
564    ///
565    /// # Examples
566    ///
567    /// Basic usage:
568    ///
569    /// ```no_run
570    /// # async fn test() { // allow using await
571    /// use std::process::{Stdio};
572    /// use tokio::process::Command;
573    ///
574    /// let output = Command::new("ls")
575    ///         .stdin(Stdio::null())
576    ///         .output().await.unwrap();
577    /// # }
578    /// ```
579    pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
580        self.std.stdin(cfg);
581        self
582    }
583
584    /// Sets configuration for the child process's standard output (stdout) handle.
585    ///
586    /// Defaults to [`inherit`] when used with `spawn` or `status`, and
587    /// defaults to [`piped`] when used with `output`.
588    ///
589    /// [`inherit`]: std::process::Stdio::inherit
590    /// [`piped`]: std::process::Stdio::piped
591    ///
592    /// # Examples
593    ///
594    /// Basic usage:
595    ///
596    /// ```no_run
597    /// # async fn test() { // allow using await
598    /// use tokio::process::Command;
599    /// use std::process::Stdio;
600    ///
601    /// let output = Command::new("ls")
602    ///         .stdout(Stdio::null())
603    ///         .output().await.unwrap();
604    /// # }
605    /// ```
606    pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
607        self.std.stdout(cfg);
608        self
609    }
610
611    /// Sets configuration for the child process's standard error (stderr) handle.
612    ///
613    /// Defaults to [`inherit`] when used with `spawn` or `status`, and
614    /// defaults to [`piped`] when used with `output`.
615    ///
616    /// [`inherit`]: std::process::Stdio::inherit
617    /// [`piped`]: std::process::Stdio::piped
618    ///
619    /// # Examples
620    ///
621    /// Basic usage:
622    ///
623    /// ```no_run
624    /// # async fn test() { // allow using await
625    /// use tokio::process::Command;
626    /// use std::process::{Stdio};
627    ///
628    /// let output = Command::new("ls")
629    ///         .stderr(Stdio::null())
630    ///         .output().await.unwrap();
631    /// # }
632    /// ```
633    pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
634        self.std.stderr(cfg);
635        self
636    }
637
638    /// Controls whether a `kill` operation should be invoked on a spawned child
639    /// process when its corresponding `Child` handle is dropped.
640    ///
641    /// By default, this value is assumed to be `false`, meaning the next spawned
642    /// process will not be killed on drop, similar to the behavior of the standard
643    /// library.
644    ///
645    /// # Caveats
646    ///
647    /// On Unix platforms processes must be "reaped" by their parent process after
648    /// they have exited in order to release all OS resources. A child process which
649    /// has exited, but has not yet been reaped by its parent is considered a "zombie"
650    /// process. Such processes continue to count against limits imposed by the system,
651    /// and having too many zombie processes present can prevent additional processes
652    /// from being spawned.
653    ///
654    /// Although issuing a `kill` signal to the child process is a synchronous
655    /// operation, the resulting zombie process cannot be `.await`ed inside of the
656    /// destructor to avoid blocking other tasks. The tokio runtime will, on a
657    /// best-effort basis, attempt to reap and clean up such processes in the
658    /// background, but no additional guarantees are made with regard to
659    /// how quickly or how often this procedure will take place.
660    ///
661    /// If stronger guarantees are required, it is recommended to avoid dropping
662    /// a [`Child`] handle where possible, and instead utilize `child.wait().await`
663    /// or `child.kill().await` where possible.
664    pub fn kill_on_drop(&mut self, kill_on_drop: bool) -> &mut Command {
665        self.kill_on_drop = kill_on_drop;
666        self
667    }
668
669    cfg_windows! {
670        /// Sets the [process creation flags][1] to be passed to `CreateProcess`.
671        ///
672        /// These will always be ORed with `CREATE_UNICODE_ENVIRONMENT`.
673        ///
674        /// [1]: https://msdn.microsoft.com/en-us/library/windows/desktop/ms684863(v=vs.85).aspx
675        pub fn creation_flags(&mut self, flags: u32) -> &mut Command {
676            self.std.creation_flags(flags);
677            self
678        }
679    }
680
681    /// Sets the child process's user ID. This translates to a
682    /// `setuid` call in the child process. Failure in the `setuid`
683    /// call will cause the spawn to fail.
684    #[cfg(unix)]
685    #[cfg_attr(docsrs, doc(cfg(unix)))]
686    pub fn uid(&mut self, id: u32) -> &mut Command {
687        #[cfg(target_os = "nto")]
688        let id = id as i32;
689        self.std.uid(id);
690        self
691    }
692
693    /// Similar to `uid` but sets the group ID of the child process. This has
694    /// the same semantics as the `uid` field.
695    #[cfg(unix)]
696    #[cfg_attr(docsrs, doc(cfg(unix)))]
697    pub fn gid(&mut self, id: u32) -> &mut Command {
698        #[cfg(target_os = "nto")]
699        let id = id as i32;
700        self.std.gid(id);
701        self
702    }
703
704    /// Sets executable argument.
705    ///
706    /// Set the first process argument, `argv[0]`, to something other than the
707    /// default executable path.
708    #[cfg(unix)]
709    #[cfg_attr(docsrs, doc(cfg(unix)))]
710    pub fn arg0<S>(&mut self, arg: S) -> &mut Command
711    where
712        S: AsRef<OsStr>,
713    {
714        self.std.arg0(arg);
715        self
716    }
717
718    /// Schedules a closure to be run just before the `exec` function is
719    /// invoked.
720    ///
721    /// The closure is allowed to return an I/O error whose OS error code will
722    /// be communicated back to the parent and returned as an error from when
723    /// the spawn was requested.
724    ///
725    /// Multiple closures can be registered and they will be called in order of
726    /// their registration. If a closure returns `Err` then no further closures
727    /// will be called and the spawn operation will immediately return with a
728    /// failure.
729    ///
730    /// # Safety
731    ///
732    /// This closure will be run in the context of the child process after a
733    /// `fork`. This primarily means that any modifications made to memory on
734    /// behalf of this closure will **not** be visible to the parent process.
735    /// This is often a very constrained environment where normal operations
736    /// like `malloc` or acquiring a mutex are not guaranteed to work (due to
737    /// other threads perhaps still running when the `fork` was run).
738    ///
739    /// This also means that all resources such as file descriptors and
740    /// memory-mapped regions got duplicated. It is your responsibility to make
741    /// sure that the closure does not violate library invariants by making
742    /// invalid use of these duplicates.
743    ///
744    /// When this closure is run, aspects such as the stdio file descriptors and
745    /// working directory have successfully been changed, so output to these
746    /// locations may not appear where intended.
747    #[cfg(unix)]
748    #[cfg_attr(docsrs, doc(cfg(unix)))]
749    pub unsafe fn pre_exec<F>(&mut self, f: F) -> &mut Command
750    where
751        F: FnMut() -> io::Result<()> + Send + Sync + 'static,
752    {
753        self.std.pre_exec(f);
754        self
755    }
756
757    /// Sets the process group ID (PGID) of the child process. Equivalent to a
758    /// `setpgid` call in the child process, but may be more efficient.
759    ///
760    /// Process groups determine which processes receive signals.
761    ///
762    /// # Examples
763    ///
764    /// Pressing Ctrl-C in a terminal will send `SIGINT` to all processes
765    /// in the current foreground process group. By spawning the `sleep`
766    /// subprocess in a new process group, it will not receive `SIGINT`
767    /// from the terminal.
768    ///
769    /// The parent process could install a [signal handler] and manage the
770    /// process on its own terms.
771    ///
772    /// A process group ID of 0 will use the process ID as the PGID.
773    ///
774    /// ```no_run
775    /// # async fn test() { // allow using await
776    /// use tokio::process::Command;
777    ///
778    /// let output = Command::new("sleep")
779    ///     .arg("10")
780    ///     .process_group(0)
781    ///     .output()
782    ///     .await
783    ///     .unwrap();
784    /// # }
785    /// ```
786    ///
787    /// [signal handler]: crate::signal
788    #[cfg(unix)]
789    #[cfg_attr(docsrs, doc(cfg(unix)))]
790    pub fn process_group(&mut self, pgroup: i32) -> &mut Command {
791        self.std.process_group(pgroup);
792        self
793    }
794
795    /// Executes the command as a child process, returning a handle to it.
796    ///
797    /// By default, stdin, stdout and stderr are inherited from the parent.
798    ///
799    /// This method will spawn the child process synchronously and return a
800    /// handle to a future-aware child process. The `Child` returned implements
801    /// `Future` itself to acquire the `ExitStatus` of the child, and otherwise
802    /// the `Child` has methods to acquire handles to the stdin, stdout, and
803    /// stderr streams.
804    ///
805    /// All I/O this child does will be associated with the current default
806    /// event loop.
807    ///
808    /// # Examples
809    ///
810    /// Basic usage:
811    ///
812    /// ```no_run
813    /// # if cfg!(miri) { return } // No `pidfd_spawnp` in miri.
814    /// use tokio::process::Command;
815    ///
816    /// async fn run_ls() -> std::process::ExitStatus {
817    ///     Command::new("ls")
818    ///         .spawn()
819    ///         .expect("ls command failed to start")
820    ///         .wait()
821    ///         .await
822    ///         .expect("ls command failed to run")
823    /// }
824    /// ```
825    ///
826    /// # Caveats
827    ///
828    /// ## Dropping/Cancellation
829    ///
830    /// Similar to the behavior to the standard library, and unlike the futures
831    /// paradigm of dropping-implies-cancellation, a spawned process will, by
832    /// default, continue to execute even after the `Child` handle has been dropped.
833    ///
834    /// The [`Command::kill_on_drop`] method can be used to modify this behavior
835    /// and kill the child process if the `Child` wrapper is dropped before it
836    /// has exited.
837    ///
838    /// ## Unix Processes
839    ///
840    /// On Unix platforms processes must be "reaped" by their parent process after
841    /// they have exited in order to release all OS resources. A child process which
842    /// has exited, but has not yet been reaped by its parent is considered a "zombie"
843    /// process. Such processes continue to count against limits imposed by the system,
844    /// and having too many zombie processes present can prevent additional processes
845    /// from being spawned.
846    ///
847    /// The tokio runtime will, on a best-effort basis, attempt to reap and clean up
848    /// any process which it has spawned. No additional guarantees are made with regard to
849    /// how quickly or how often this procedure will take place.
850    ///
851    /// It is recommended to avoid dropping a [`Child`] process handle before it has been
852    /// fully `await`ed if stricter cleanup guarantees are required.
853    ///
854    /// [`Command`]: crate::process::Command
855    /// [`Command::kill_on_drop`]: crate::process::Command::kill_on_drop
856    /// [`Child`]: crate::process::Child
857    ///
858    /// # Errors
859    ///
860    /// On Unix platforms this method will fail with `std::io::ErrorKind::WouldBlock`
861    /// if the system process limit is reached (which includes other applications
862    /// running on the system).
863    pub fn spawn(&mut self) -> io::Result<Child> {
864        imp::spawn_child(&mut self.std).map(|spawned_child| Child {
865            child: FusedChild::Child(ChildDropGuard {
866                inner: spawned_child.child,
867                kill_on_drop: self.kill_on_drop,
868            }),
869            stdin: spawned_child.stdin.map(|inner| ChildStdin { inner }),
870            stdout: spawned_child.stdout.map(|inner| ChildStdout { inner }),
871            stderr: spawned_child.stderr.map(|inner| ChildStderr { inner }),
872        })
873    }
874
875    /// Executes the command as a child process, waiting for it to finish and
876    /// collecting its exit status.
877    ///
878    /// By default, stdin, stdout and stderr are inherited from the parent.
879    /// If any input/output handles are set to a pipe then they will be immediately
880    /// closed after the child is spawned.
881    ///
882    /// All I/O this child does will be associated with the current default
883    /// event loop.
884    ///
885    /// The destructor of the future returned by this function will kill
886    /// the child if [`kill_on_drop`] is set to true.
887    ///
888    /// [`kill_on_drop`]: fn@Self::kill_on_drop
889    ///
890    /// # Errors
891    ///
892    /// This future will return an error if the child process cannot be spawned
893    /// or if there is an error while awaiting its status.
894    ///
895    /// On Unix platforms this method will fail with `std::io::ErrorKind::WouldBlock`
896    /// if the system process limit is reached (which includes other applications
897    /// running on the system).
898    ///
899    /// # Examples
900    ///
901    /// Basic usage:
902    ///
903    /// ```no_run
904    /// use tokio::process::Command;
905    ///
906    /// async fn run_ls() -> std::process::ExitStatus {
907    ///     Command::new("ls")
908    ///         .status()
909    ///         .await
910    ///         .expect("ls command failed to run")
911    /// }
912    /// ```
913    pub fn status(&mut self) -> impl Future<Output = io::Result<ExitStatus>> {
914        let child = self.spawn();
915
916        async {
917            let mut child = child?;
918
919            // Ensure we close any stdio handles so we can't deadlock
920            // waiting on the child which may be waiting to read/write
921            // to a pipe we're holding.
922            child.stdin.take();
923            child.stdout.take();
924            child.stderr.take();
925
926            child.wait().await
927        }
928    }
929
930    /// Executes the command as a child process, waiting for it to finish and
931    /// collecting all of its output.
932    ///
933    /// > **Note**: this method, unlike the standard library, will
934    /// > unconditionally configure the stdout/stderr handles to be pipes, even
935    /// > if they have been previously configured. If this is not desired then
936    /// > the `spawn` method should be used in combination with the
937    /// > `wait_with_output` method on child.
938    ///
939    /// This method will return a future representing the collection of the
940    /// child process's stdout/stderr. It will resolve to
941    /// the `Output` type in the standard library, containing `stdout` and
942    /// `stderr` as `Vec<u8>` along with an `ExitStatus` representing how the
943    /// process exited.
944    ///
945    /// All I/O this child does will be associated with the current default
946    /// event loop.
947    ///
948    /// The destructor of the future returned by this function will kill
949    /// the child if [`kill_on_drop`] is set to true.
950    ///
951    /// [`kill_on_drop`]: fn@Self::kill_on_drop
952    ///
953    /// # Errors
954    ///
955    /// This future will return an error if the child process cannot be spawned
956    /// or if there is an error while awaiting its status.
957    ///
958    /// On Unix platforms this method will fail with `std::io::ErrorKind::WouldBlock`
959    /// if the system process limit is reached (which includes other applications
960    /// running on the system).
961    /// # Examples
962    ///
963    /// Basic usage:
964    ///
965    /// ```no_run
966    /// use tokio::process::Command;
967    ///
968    /// async fn run_ls() {
969    ///     let output: std::process::Output = Command::new("ls")
970    ///         .output()
971    ///         .await
972    ///         .expect("ls command failed to run");
973    ///     println!("stderr of ls: {:?}", output.stderr);
974    /// }
975    /// ```
976    pub fn output(&mut self) -> impl Future<Output = io::Result<Output>> {
977        self.std.stdout(Stdio::piped());
978        self.std.stderr(Stdio::piped());
979
980        let child = self.spawn();
981
982        async { child?.wait_with_output().await }
983    }
984
985    /// Returns the boolean value that was previously set by [`Command::kill_on_drop`].
986    ///
987    /// Note that if you have not previously called [`Command::kill_on_drop`], the
988    /// default value of `false` will be returned here.
989    ///
990    /// # Examples
991    ///
992    /// ```
993    /// use tokio::process::Command;
994    ///
995    /// let mut cmd = Command::new("echo");
996    /// assert!(!cmd.get_kill_on_drop());
997    ///
998    /// cmd.kill_on_drop(true);
999    /// assert!(cmd.get_kill_on_drop());
1000    /// ```
1001    pub fn get_kill_on_drop(&self) -> bool {
1002        self.kill_on_drop
1003    }
1004}
1005
1006impl From<StdCommand> for Command {
1007    fn from(std: StdCommand) -> Command {
1008        Command {
1009            std,
1010            kill_on_drop: false,
1011        }
1012    }
1013}
1014
1015/// A drop guard which can ensure the child process is killed on drop if specified.
1016#[derive(Debug)]
1017struct ChildDropGuard<T: Kill> {
1018    inner: T,
1019    kill_on_drop: bool,
1020}
1021
1022impl<T: Kill> Kill for ChildDropGuard<T> {
1023    fn kill(&mut self) -> io::Result<()> {
1024        let ret = self.inner.kill();
1025
1026        if ret.is_ok() {
1027            self.kill_on_drop = false;
1028        }
1029
1030        ret
1031    }
1032}
1033
1034impl<T: Kill> Drop for ChildDropGuard<T> {
1035    fn drop(&mut self) {
1036        if self.kill_on_drop {
1037            drop(self.kill());
1038        }
1039    }
1040}
1041
1042impl<T, E, F> Future for ChildDropGuard<F>
1043where
1044    F: Future<Output = Result<T, E>> + Kill + Unpin,
1045{
1046    type Output = Result<T, E>;
1047
1048    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1049        ready!(crate::trace::trace_leaf(cx));
1050        // Keep track of task budget
1051        let coop = ready!(crate::task::coop::poll_proceed(cx));
1052
1053        let ret = Pin::new(&mut self.inner).poll(cx);
1054
1055        if let Poll::Ready(Ok(_)) = ret {
1056            // Avoid the overhead of trying to kill a reaped process
1057            self.kill_on_drop = false;
1058        }
1059
1060        if ret.is_ready() {
1061            coop.made_progress();
1062        }
1063
1064        ret
1065    }
1066}
1067
1068/// Keeps track of the exit status of a child process without worrying about
1069/// polling the underlying futures even after they have completed.
1070#[derive(Debug)]
1071enum FusedChild {
1072    Child(ChildDropGuard<imp::Child>),
1073    Done(ExitStatus),
1074}
1075
1076/// Representation of a child process spawned onto an event loop.
1077///
1078/// # Caveats
1079/// Similar to the behavior to the standard library, and unlike the futures
1080/// paradigm of dropping-implies-cancellation, a spawned process will, by
1081/// default, continue to execute even after the `Child` handle has been dropped.
1082///
1083/// The `Command::kill_on_drop` method can be used to modify this behavior
1084/// and kill the child process if the `Child` wrapper is dropped before it
1085/// has exited.
1086#[derive(Debug)]
1087pub struct Child {
1088    child: FusedChild,
1089
1090    /// The handle for writing to the child's standard input (stdin), if it has
1091    /// been captured. To avoid partially moving the `child` and thus blocking
1092    /// yourself from calling functions on `child` while using `stdin`, you might
1093    /// find it helpful to do:
1094    ///
1095    /// ```no_run
1096    /// # let mut child = tokio::process::Command::new("echo").spawn().unwrap();
1097    /// let stdin = child.stdin.take().unwrap();
1098    /// ```
1099    pub stdin: Option<ChildStdin>,
1100
1101    /// The handle for reading from the child's standard output (stdout), if it
1102    /// has been captured. You might find it helpful to do
1103    ///
1104    /// ```no_run
1105    /// # let mut child = tokio::process::Command::new("echo").spawn().unwrap();
1106    /// let stdout = child.stdout.take().unwrap();
1107    /// ```
1108    ///
1109    /// to avoid partially moving the `child` and thus blocking yourself from calling
1110    /// functions on `child` while using `stdout`.
1111    pub stdout: Option<ChildStdout>,
1112
1113    /// The handle for reading from the child's standard error (stderr), if it
1114    /// has been captured. You might find it helpful to do
1115    ///
1116    /// ```no_run
1117    /// # let mut child = tokio::process::Command::new("echo").spawn().unwrap();
1118    /// let stderr = child.stderr.take().unwrap();
1119    /// ```
1120    ///
1121    /// to avoid partially moving the `child` and thus blocking yourself from calling
1122    /// functions on `child` while using `stderr`.
1123    pub stderr: Option<ChildStderr>,
1124}
1125
1126impl Child {
1127    /// Returns the OS-assigned process identifier associated with this child
1128    /// while it is still running.
1129    ///
1130    /// Once the child has been polled to completion this will return `None`.
1131    /// This is done to avoid confusion on platforms like Unix where the OS
1132    /// identifier could be reused once the process has completed.
1133    pub fn id(&self) -> Option<u32> {
1134        match &self.child {
1135            FusedChild::Child(child) => Some(child.inner.id()),
1136            FusedChild::Done(_) => None,
1137        }
1138    }
1139
1140    cfg_windows! {
1141        /// Extracts the raw handle of the process associated with this child while
1142        /// it is still running. Returns `None` if the child has exited.
1143        pub fn raw_handle(&self) -> Option<RawHandle> {
1144            match &self.child {
1145                FusedChild::Child(c) => Some(c.inner.as_raw_handle()),
1146                FusedChild::Done(_) => None,
1147            }
1148        }
1149    }
1150
1151    /// Attempts to force the child to exit, but does not wait for the request
1152    /// to take effect.
1153    ///
1154    /// On Unix platforms, this is the equivalent to sending a `SIGKILL`. Note
1155    /// that on Unix platforms it is possible for a zombie process to remain
1156    /// after a kill is sent; to avoid this, the caller should ensure that either
1157    /// `child.wait().await` or `child.try_wait()` is invoked successfully.
1158    pub fn start_kill(&mut self) -> io::Result<()> {
1159        match &mut self.child {
1160            FusedChild::Child(child) => child.kill(),
1161            FusedChild::Done(_) => Ok(()),
1162        }
1163    }
1164
1165    /// Forces the child to exit.
1166    ///
1167    /// This is equivalent to sending a `SIGKILL` on unix platforms
1168    /// followed by [`wait`](Child::wait).
1169    ///
1170    /// Note: std version of [`Child::kill`](std::process::Child::kill) does not `wait`.
1171    /// For an equivalent of `Child::kill` in the standard library,
1172    /// use [`start_kill`](Child::start_kill).
1173    ///
1174    /// # Examples
1175    ///
1176    /// If the child has to be killed remotely, it is possible to do it using
1177    /// a combination of the select! macro and a `oneshot` channel. In the following
1178    /// example, the child will run until completion unless a message is sent on
1179    /// the `oneshot` channel. If that happens, the child is killed immediately
1180    /// using the `.kill()` method.
1181    ///
1182    /// ```no_run
1183    /// use tokio::process::Command;
1184    /// use tokio::sync::oneshot::channel;
1185    ///
1186    /// #[tokio::main]
1187    /// async fn main() {
1188    ///     let (send, recv) = channel::<()>();
1189    ///     let mut child = Command::new("sleep").arg("1").spawn().unwrap();
1190    ///     tokio::spawn(async move { send.send(()) });
1191    ///     tokio::select! {
1192    ///         _ = child.wait() => {}
1193    ///         _ = recv => child.kill().await.expect("kill failed"),
1194    ///     }
1195    /// }
1196    /// ```
1197    ///
1198    /// You can also interact with the child's standard I/O. For example, you can
1199    /// read its stdout while waiting for it to exit.
1200    ///
1201    /// ```no_run
1202    /// # use std::process::Stdio;
1203    /// #
1204    /// # use tokio::io::AsyncReadExt;
1205    /// # use tokio::process::Command;
1206    /// # use tokio::sync::oneshot::channel;
1207    ///
1208    /// #[tokio::main]
1209    /// async fn main() {
1210    ///     let (_tx, rx) = channel::<()>();
1211    ///
1212    ///     let mut child = Command::new("echo")
1213    ///         .arg("Hello World!")
1214    ///         .stdout(Stdio::piped())
1215    ///         .spawn()
1216    ///         .unwrap();
1217    ///
1218    ///     let mut stdout = child.stdout.take().expect("stdout is not captured");
1219    ///
1220    ///     let read_stdout = tokio::spawn(async move {
1221    ///         let mut buff = Vec::new();
1222    ///         let _ = stdout.read_to_end(&mut buff).await;
1223    ///
1224    ///         buff
1225    ///     });
1226    ///
1227    ///     tokio::select! {
1228    ///         _ = child.wait() => {}
1229    ///         _ = rx => { child.kill().await.expect("kill failed") },
1230    ///     }
1231    ///
1232    ///     let buff = read_stdout.await.unwrap();
1233    ///
1234    ///     assert_eq!(buff, b"Hello World!\n");
1235    /// }
1236    /// ```
1237    pub async fn kill(&mut self) -> io::Result<()> {
1238        self.start_kill()?;
1239        self.wait().await?;
1240        Ok(())
1241    }
1242
1243    /// Waits for the child to exit completely, returning the status that it
1244    /// exited with. This function will continue to have the same return value
1245    /// after it has been called at least once.
1246    ///
1247    /// The stdin handle to the child process, if any, will be closed
1248    /// before waiting. This helps avoid deadlock: it ensures that the
1249    /// child does not block waiting for input from the parent, while
1250    /// the parent waits for the child to exit.
1251    ///
1252    /// If the caller wishes to explicitly control when the child's stdin
1253    /// handle is closed, they may `.take()` it before calling `.wait()`:
1254    ///
1255    /// # Cancel safety
1256    ///
1257    /// This function is cancel safe.
1258    ///
1259    /// ```
1260    /// # if cfg!(miri) { return } // No `pidfd_spawnp` in miri.
1261    /// # #[cfg(not(unix))]fn main(){}
1262    /// # #[cfg(unix)]
1263    /// use tokio::io::AsyncWriteExt;
1264    /// # #[cfg(unix)]
1265    /// use tokio::process::Command;
1266    /// # #[cfg(unix)]
1267    /// use std::process::Stdio;
1268    ///
1269    /// # #[cfg(unix)]
1270    /// #[tokio::main]
1271    /// async fn main() {
1272    ///     let mut child = Command::new("cat")
1273    ///         .stdin(Stdio::piped())
1274    ///         .spawn()
1275    ///         .unwrap();
1276    ///
1277    ///     let mut stdin = child.stdin.take().unwrap();
1278    ///     tokio::spawn(async move {
1279    ///         // do something with stdin here...
1280    ///         stdin.write_all(b"hello world\n").await.unwrap();
1281    ///
1282    ///         // then drop when finished
1283    ///         drop(stdin);
1284    ///     });
1285    ///
1286    ///     // wait for the process to complete
1287    ///     let _ = child.wait().await;
1288    /// }
1289    /// ```
1290    pub async fn wait(&mut self) -> io::Result<ExitStatus> {
1291        // Ensure stdin is closed so the child isn't stuck waiting on
1292        // input while the parent is waiting for it to exit.
1293        drop(self.stdin.take());
1294
1295        match &mut self.child {
1296            FusedChild::Done(exit) => Ok(*exit),
1297            FusedChild::Child(child) => {
1298                let ret = child.await;
1299
1300                if let Ok(exit) = ret {
1301                    self.child = FusedChild::Done(exit);
1302                }
1303
1304                ret
1305            }
1306        }
1307    }
1308
1309    /// Attempts to collect the exit status of the child if it has already
1310    /// exited.
1311    ///
1312    /// This function will not block the calling thread and will only
1313    /// check to see if the child process has exited or not. If the child has
1314    /// exited then on Unix the process ID is reaped. This function is
1315    /// guaranteed to repeatedly return a successful exit status so long as the
1316    /// child has already exited.
1317    ///
1318    /// If the child has exited, then `Ok(Some(status))` is returned. If the
1319    /// exit status is not available at this time then `Ok(None)` is returned.
1320    /// If an error occurs, then that error is returned.
1321    ///
1322    /// Note that unlike `wait`, this function will not attempt to drop stdin,
1323    /// nor will it wake the current task if the child exits.
1324    pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
1325        match &mut self.child {
1326            FusedChild::Done(exit) => Ok(Some(*exit)),
1327            FusedChild::Child(guard) => {
1328                let ret = guard.inner.try_wait();
1329
1330                if let Ok(Some(exit)) = ret {
1331                    // Avoid the overhead of trying to kill a reaped process
1332                    guard.kill_on_drop = false;
1333                    self.child = FusedChild::Done(exit);
1334                }
1335
1336                ret
1337            }
1338        }
1339    }
1340
1341    /// Returns a future that will resolve to an `Output`, containing the exit
1342    /// status, stdout, and stderr of the child process.
1343    ///
1344    /// The returned future will simultaneously waits for the child to exit and
1345    /// collect all remaining output on the stdout/stderr handles, returning an
1346    /// `Output` instance.
1347    ///
1348    /// The stdin handle to the child process, if any, will be closed before
1349    /// waiting. This helps avoid deadlock: it ensures that the child does not
1350    /// block waiting for input from the parent, while the parent waits for the
1351    /// child to exit.
1352    ///
1353    /// By default, stdin, stdout and stderr are inherited from the parent. In
1354    /// order to capture the output into this `Output` it is necessary to create
1355    /// new pipes between parent and child. Use `stdout(Stdio::piped())` or
1356    /// `stderr(Stdio::piped())`, respectively, when creating a `Command`.
1357    pub async fn wait_with_output(mut self) -> io::Result<Output> {
1358        use crate::future::try_join3;
1359
1360        async fn read_to_end<A: AsyncRead + Unpin>(io: &mut Option<A>) -> io::Result<Vec<u8>> {
1361            let mut vec = Vec::new();
1362            if let Some(io) = io.as_mut() {
1363                crate::io::util::read_to_end(io, &mut vec).await?;
1364            }
1365            Ok(vec)
1366        }
1367
1368        let mut stdout_pipe = self.stdout.take();
1369        let mut stderr_pipe = self.stderr.take();
1370
1371        let stdout_fut = read_to_end(&mut stdout_pipe);
1372        let stderr_fut = read_to_end(&mut stderr_pipe);
1373
1374        let (status, stdout, stderr) = try_join3(self.wait(), stdout_fut, stderr_fut).await?;
1375
1376        // Drop happens after `try_join` due to <https://github.com/tokio-rs/tokio/issues/4309>
1377        drop(stdout_pipe);
1378        drop(stderr_pipe);
1379
1380        Ok(Output {
1381            status,
1382            stdout,
1383            stderr,
1384        })
1385    }
1386}
1387
1388/// The standard input stream for spawned children.
1389///
1390/// This type implements the `AsyncWrite` trait to pass data to the stdin
1391/// handle of a child process asynchronously.
1392#[derive(Debug)]
1393pub struct ChildStdin {
1394    inner: imp::ChildStdio,
1395}
1396
1397/// The standard output stream for spawned children.
1398///
1399/// This type implements the `AsyncRead` trait to read data from the stdout
1400/// handle of a child process asynchronously.
1401#[derive(Debug)]
1402pub struct ChildStdout {
1403    inner: imp::ChildStdio,
1404}
1405
1406/// The standard error stream for spawned children.
1407///
1408/// This type implements the `AsyncRead` trait to read data from the stderr
1409/// handle of a child process asynchronously.
1410#[derive(Debug)]
1411pub struct ChildStderr {
1412    inner: imp::ChildStdio,
1413}
1414
1415impl ChildStdin {
1416    /// Creates an asynchronous `ChildStdin` from a synchronous one.
1417    ///
1418    /// # Errors
1419    ///
1420    /// This method may fail if an error is encountered when setting the pipe to
1421    /// non-blocking mode, or when registering the pipe with the runtime's IO
1422    /// driver.
1423    pub fn from_std(inner: std::process::ChildStdin) -> io::Result<Self> {
1424        Ok(Self {
1425            inner: imp::stdio(inner)?,
1426        })
1427    }
1428}
1429
1430impl ChildStdout {
1431    /// Creates an asynchronous `ChildStdout` from a synchronous one.
1432    ///
1433    /// # Errors
1434    ///
1435    /// This method may fail if an error is encountered when setting the pipe to
1436    /// non-blocking mode, or when registering the pipe with the runtime's IO
1437    /// driver.
1438    pub fn from_std(inner: std::process::ChildStdout) -> io::Result<Self> {
1439        Ok(Self {
1440            inner: imp::stdio(inner)?,
1441        })
1442    }
1443}
1444
1445impl ChildStderr {
1446    /// Creates an asynchronous `ChildStderr` from a synchronous one.
1447    ///
1448    /// # Errors
1449    ///
1450    /// This method may fail if an error is encountered when setting the pipe to
1451    /// non-blocking mode, or when registering the pipe with the runtime's IO
1452    /// driver.
1453    pub fn from_std(inner: std::process::ChildStderr) -> io::Result<Self> {
1454        Ok(Self {
1455            inner: imp::stdio(inner)?,
1456        })
1457    }
1458}
1459
1460impl AsyncWrite for ChildStdin {
1461    fn poll_write(
1462        mut self: Pin<&mut Self>,
1463        cx: &mut Context<'_>,
1464        buf: &[u8],
1465    ) -> Poll<io::Result<usize>> {
1466        Pin::new(&mut self.inner).poll_write(cx, buf)
1467    }
1468
1469    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
1470        Pin::new(&mut self.inner).poll_flush(cx)
1471    }
1472
1473    fn poll_shutdown(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
1474        Pin::new(&mut self.inner).poll_shutdown(cx)
1475    }
1476
1477    fn poll_write_vectored(
1478        mut self: Pin<&mut Self>,
1479        cx: &mut Context<'_>,
1480        bufs: &[io::IoSlice<'_>],
1481    ) -> Poll<Result<usize, io::Error>> {
1482        Pin::new(&mut self.inner).poll_write_vectored(cx, bufs)
1483    }
1484
1485    fn is_write_vectored(&self) -> bool {
1486        self.inner.is_write_vectored()
1487    }
1488}
1489
1490impl AsyncRead for ChildStdout {
1491    fn poll_read(
1492        mut self: Pin<&mut Self>,
1493        cx: &mut Context<'_>,
1494        buf: &mut ReadBuf<'_>,
1495    ) -> Poll<io::Result<()>> {
1496        Pin::new(&mut self.inner).poll_read(cx, buf)
1497    }
1498}
1499
1500impl AsyncRead for ChildStderr {
1501    fn poll_read(
1502        mut self: Pin<&mut Self>,
1503        cx: &mut Context<'_>,
1504        buf: &mut ReadBuf<'_>,
1505    ) -> Poll<io::Result<()>> {
1506        Pin::new(&mut self.inner).poll_read(cx, buf)
1507    }
1508}
1509
1510impl TryInto<Stdio> for ChildStdin {
1511    type Error = io::Error;
1512
1513    fn try_into(self) -> Result<Stdio, Self::Error> {
1514        imp::convert_to_stdio(self.inner)
1515    }
1516}
1517
1518impl TryInto<Stdio> for ChildStdout {
1519    type Error = io::Error;
1520
1521    fn try_into(self) -> Result<Stdio, Self::Error> {
1522        imp::convert_to_stdio(self.inner)
1523    }
1524}
1525
1526impl TryInto<Stdio> for ChildStderr {
1527    type Error = io::Error;
1528
1529    fn try_into(self) -> Result<Stdio, Self::Error> {
1530        imp::convert_to_stdio(self.inner)
1531    }
1532}
1533
1534#[cfg(unix)]
1535#[cfg_attr(docsrs, doc(cfg(unix)))]
1536mod sys {
1537    use std::{
1538        io,
1539        os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd},
1540    };
1541
1542    use super::{ChildStderr, ChildStdin, ChildStdout};
1543
1544    macro_rules! impl_traits {
1545        ($type:ty) => {
1546            impl $type {
1547                /// Convert into [`OwnedFd`].
1548                pub fn into_owned_fd(self) -> io::Result<OwnedFd> {
1549                    self.inner.into_owned_fd()
1550                }
1551            }
1552
1553            impl AsRawFd for $type {
1554                fn as_raw_fd(&self) -> RawFd {
1555                    self.inner.as_raw_fd()
1556                }
1557            }
1558
1559            impl AsFd for $type {
1560                fn as_fd(&self) -> BorrowedFd<'_> {
1561                    unsafe { BorrowedFd::borrow_raw(self.as_raw_fd()) }
1562                }
1563            }
1564        };
1565    }
1566
1567    impl_traits!(ChildStdin);
1568    impl_traits!(ChildStdout);
1569    impl_traits!(ChildStderr);
1570}
1571
1572#[cfg(any(windows, docsrs))]
1573#[cfg_attr(docsrs, doc(cfg(windows)))]
1574mod windows {
1575    use super::*;
1576    use crate::os::windows::io::{AsHandle, AsRawHandle, BorrowedHandle, OwnedHandle, RawHandle};
1577
1578    #[cfg(not(docsrs))]
1579    macro_rules! impl_traits {
1580        ($type:ty) => {
1581            impl $type {
1582                /// Convert into [`OwnedHandle`].
1583                pub fn into_owned_handle(self) -> io::Result<OwnedHandle> {
1584                    self.inner.into_owned_handle()
1585                }
1586            }
1587
1588            impl AsRawHandle for $type {
1589                fn as_raw_handle(&self) -> RawHandle {
1590                    self.inner.as_raw_handle()
1591                }
1592            }
1593
1594            impl AsHandle for $type {
1595                fn as_handle(&self) -> BorrowedHandle<'_> {
1596                    unsafe { BorrowedHandle::borrow_raw(self.as_raw_handle()) }
1597                }
1598            }
1599        };
1600    }
1601
1602    #[cfg(docsrs)]
1603    macro_rules! impl_traits {
1604        ($type:ty) => {
1605            impl $type {
1606                /// Convert into [`OwnedHandle`].
1607                pub fn into_owned_handle(self) -> io::Result<OwnedHandle> {
1608                    todo!("For doc generation only")
1609                }
1610            }
1611
1612            impl AsRawHandle for $type {
1613                fn as_raw_handle(&self) -> RawHandle {
1614                    todo!("For doc generation only")
1615                }
1616            }
1617
1618            impl AsHandle for $type {
1619                fn as_handle(&self) -> BorrowedHandle<'_> {
1620                    todo!("For doc generation only")
1621                }
1622            }
1623        };
1624    }
1625
1626    impl_traits!(ChildStdin);
1627    impl_traits!(ChildStdout);
1628    impl_traits!(ChildStderr);
1629}
1630
1631#[cfg(all(test, not(loom)))]
1632mod test {
1633    use super::kill::Kill;
1634    use super::ChildDropGuard;
1635
1636    use futures::future::FutureExt;
1637    use std::future::Future;
1638    use std::io;
1639    use std::pin::Pin;
1640    use std::task::{Context, Poll};
1641
1642    struct Mock {
1643        num_kills: usize,
1644        num_polls: usize,
1645        poll_result: Poll<Result<(), ()>>,
1646    }
1647
1648    impl Mock {
1649        fn new() -> Self {
1650            Self::with_result(Poll::Pending)
1651        }
1652
1653        fn with_result(result: Poll<Result<(), ()>>) -> Self {
1654            Self {
1655                num_kills: 0,
1656                num_polls: 0,
1657                poll_result: result,
1658            }
1659        }
1660    }
1661
1662    impl Kill for Mock {
1663        fn kill(&mut self) -> io::Result<()> {
1664            self.num_kills += 1;
1665            Ok(())
1666        }
1667    }
1668
1669    impl Future for Mock {
1670        type Output = Result<(), ()>;
1671
1672        fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
1673            let inner = Pin::get_mut(self);
1674            inner.num_polls += 1;
1675            inner.poll_result
1676        }
1677    }
1678
1679    #[test]
1680    fn kills_on_drop_if_specified() {
1681        let mut mock = Mock::new();
1682
1683        {
1684            let guard = ChildDropGuard {
1685                inner: &mut mock,
1686                kill_on_drop: true,
1687            };
1688            drop(guard);
1689        }
1690
1691        assert_eq!(1, mock.num_kills);
1692        assert_eq!(0, mock.num_polls);
1693    }
1694
1695    #[test]
1696    fn no_kill_on_drop_by_default() {
1697        let mut mock = Mock::new();
1698
1699        {
1700            let guard = ChildDropGuard {
1701                inner: &mut mock,
1702                kill_on_drop: false,
1703            };
1704            drop(guard);
1705        }
1706
1707        assert_eq!(0, mock.num_kills);
1708        assert_eq!(0, mock.num_polls);
1709    }
1710
1711    #[test]
1712    fn no_kill_if_already_killed() {
1713        let mut mock = Mock::new();
1714
1715        {
1716            let mut guard = ChildDropGuard {
1717                inner: &mut mock,
1718                kill_on_drop: true,
1719            };
1720            let _ = guard.kill();
1721            drop(guard);
1722        }
1723
1724        assert_eq!(1, mock.num_kills);
1725        assert_eq!(0, mock.num_polls);
1726    }
1727
1728    #[test]
1729    fn no_kill_if_reaped() {
1730        let mut mock_pending = Mock::with_result(Poll::Pending);
1731        let mut mock_reaped = Mock::with_result(Poll::Ready(Ok(())));
1732        let mut mock_err = Mock::with_result(Poll::Ready(Err(())));
1733
1734        let waker = futures::task::noop_waker();
1735        let mut context = Context::from_waker(&waker);
1736        {
1737            let mut guard = ChildDropGuard {
1738                inner: &mut mock_pending,
1739                kill_on_drop: true,
1740            };
1741            let _ = guard.poll_unpin(&mut context);
1742
1743            let mut guard = ChildDropGuard {
1744                inner: &mut mock_reaped,
1745                kill_on_drop: true,
1746            };
1747            let _ = guard.poll_unpin(&mut context);
1748
1749            let mut guard = ChildDropGuard {
1750                inner: &mut mock_err,
1751                kill_on_drop: true,
1752            };
1753            let _ = guard.poll_unpin(&mut context);
1754        }
1755
1756        assert_eq!(1, mock_pending.num_kills);
1757        assert_eq!(1, mock_pending.num_polls);
1758
1759        assert_eq!(0, mock_reaped.num_kills);
1760        assert_eq!(1, mock_reaped.num_polls);
1761
1762        assert_eq!(1, mock_err.num_kills);
1763        assert_eq!(1, mock_err.num_polls);
1764    }
1765}