1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! ID generation utilities.

use hibitset::BitSet;
use std::borrow::Borrow;
use std::fmt;
use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::{AddAssign, Sub};
use std::sync::{Arc, Mutex};
use uuid::Uuid;

use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};

use crate::cast::CastFrom;

/// Manages the allocation of unique IDs.
#[derive(Debug, Default, Clone)]
pub struct Gen<Id: From<u64> + Default> {
    id: u64,
    phantom: PhantomData<Id>,
}

impl<Id: From<u64> + Default> Gen<Id> {
    /// Allocates a new identifier of type `Id` and advances the generator.
    pub fn allocate_id(&mut self) -> Id {
        let id = self.id;
        self.id += 1;
        id.into()
    }
}

/// A generator of u64-bit IDs.
pub type IdGen = Gen<u64>;

/// IdAllocator common traits.
pub trait IdGenerator:
    From<u8> + AddAssign + Sub + PartialOrd + Copy + Eq + Hash + Ord + serde::Serialize + fmt::Display
{
}

impl<T> IdGenerator for T where
    T: From<u8>
        + AddAssign
        + Sub
        + PartialOrd
        + Copy
        + Eq
        + Hash
        + Ord
        + serde::Serialize
        + fmt::Display
{
}

/// Manages allocation of numeric IDs.
#[derive(Debug, Clone)]
pub struct IdAllocator<A: IdAllocatorInner>(pub Arc<Mutex<A>>);

/// Common trait for id allocators.
pub trait IdAllocatorInner: std::fmt::Debug + Send {
    /// Name of the allocator.
    const NAME: &'static str;
    /// Construct an allocator with the given range. Returned ids will be OR'd with `mask`. `mask`
    /// must not have any bits that could be set by a number <= `max`.
    fn new(min: u32, max: u32, mask: u32) -> Self;
    /// Allocate a new id.
    fn alloc(&mut self) -> Option<u32>;
    /// Deallocate a used id, making it available for reuse.
    fn remove(&mut self, id: u32);
}

/// IdAllocator using a HiBitSet.
#[derive(Debug, Clone)]
pub struct IdAllocatorInnerBitSet {
    next: StdRng,
    min: u32,
    max: u32,
    mask: u32,
    used: BitSet,
}

impl IdAllocatorInner for IdAllocatorInnerBitSet {
    const NAME: &'static str = "hibitset";

    fn new(min: u32, max: u32, mask: u32) -> Self {
        let total = usize::cast_from(max - min);
        assert!(total < BitSet::BITS_PER_USIZE.pow(4));
        IdAllocatorInnerBitSet {
            next: StdRng::from_entropy(),
            min,
            max,
            mask,
            used: BitSet::new(),
        }
    }

    fn alloc(&mut self) -> Option<u32> {
        let range = self.min..=self.max;
        let init = self.next.gen_range(range);
        let mut next = init;
        loop {
            // Because hibitset has a hard maximum of 64**4 (~16 million), subtract the min in case
            // max is above that. This is safe because we already asserted above that `max - min <
            // 64**4`.
            let stored = next - self.min;
            if !self.used.add(stored) {
                assert!(
                    next & self.mask == 0,
                    "chosen ID must not intersect with mask:\n{:#034b}\n{:#034b}",
                    next,
                    self.mask
                );
                return Some(next | self.mask);
            }
            // Existing value, increment and try again. Wrap once we hit max back to min.
            next = if next == self.max { self.min } else { next + 1 };
            // We fully wrapped around. BitSet doesn't have a rank or count method, so we can't
            // compute this early.
            if next == init {
                return None;
            }
        }
    }

    fn remove(&mut self, id: u32) {
        let id = (!self.mask) & id;
        let stored = id - self.min;
        self.used.remove(stored);
    }
}

impl<A: IdAllocatorInner> IdAllocator<A> {
    /// Creates a new `IdAllocator` that will assign IDs between `min` and
    /// `max`, both inclusive.
    pub fn new(min: u32, max: u32, mask: u32) -> IdAllocator<A> {
        assert!(min <= max);
        if mask != 0 && max > 0 {
            // mask_check is all 1s in any bit set by all numbers >= max. Assert that the mask
            // doesn't share any bits with those.
            let mask_check = (1 << (max.ilog2() + 1)) - 1;
            assert_eq!(mask & mask_check, 0, "max and mask share bits");
        }
        let inner = A::new(min, max, mask);
        IdAllocator(Arc::new(Mutex::new(inner)))
    }

    /// Allocates a new ID randomly distributed between min and max.
    ///
    /// Returns `None` if the allocator is exhausted.
    ///
    /// The ID associated with the [`IdHandle`] will be freed when all of the
    /// outstanding [`IdHandle`]s have been dropped.
    pub fn alloc(&self) -> Option<IdHandle<u32, A>> {
        let inner = Arc::new(internal::IdHandleInner::new(self)?);
        Some(IdHandle::Dynamic(inner))
    }

    // Attempt to allocate a new ID. We want the ID to be randomly distributed in the range. To do
    // this, choose a random candidate. Check if it's already in the used set, and increment in a
    // loop until an unused slot is found. Ideally we could ask used set what its next used or
    // unused id is after some given X, but that's not part of the API. This means that when the
    // range is large and the used set is near full, we will spend a lot of cycles looking for an
    // open slot. However, we limit the number of connections to the thousands, and connection IDs
    // have 20 bits (~1 million) of space, so it is not currently possible to enter that state.
    fn alloc_internal(&self) -> Option<u32> {
        let mut inner = self.0.lock().expect("lock poisoned");
        inner.alloc()
    }

    fn free_internal(&self, id: u32) {
        let mut inner = self.0.lock().expect("lock poisoned");
        inner.remove(id);
    }
}

/// A clone-able owned reference to an ID.
///
/// Once all of the [`IdHandle`]s referencing an ID have been dropped, we will then free the ID
/// for later re-use.
#[derive(Debug)]
pub enum IdHandle<T, A: IdAllocatorInner> {
    /// An ID "allocated" at compile time.
    ///
    /// Note: It is *entirely* up to the caller to make sure the provided ID is
    /// not used by a dynamic ID allocator.
    Static(T),
    /// An ID allocated at runtime, gets freed once all handles have been dropped.
    Dynamic(Arc<internal::IdHandleInner<T, A>>),
}

impl<T: Clone, A: IdAllocatorInner> Clone for IdHandle<T, A> {
    fn clone(&self) -> Self {
        match self {
            IdHandle::Static(t) => IdHandle::Static(t.clone()),
            IdHandle::Dynamic(handle) => IdHandle::Dynamic(Arc::clone(handle)),
        }
    }
}

impl<T: IdGenerator, A: IdAllocatorInner> IdHandle<T, A> {
    /// Returns the raw ID inside of this handle.
    ///
    /// Use with caution! It is easy for a raw ID to outlive the handle from
    /// which it came. You are responsible for ensuring that your use of the raw
    /// ID does not lead to ID reuse bugs.
    pub fn unhandled(&self) -> T {
        *self.borrow()
    }
}

impl<T: IdGenerator, A: IdAllocatorInner> PartialEq for IdHandle<T, A> {
    fn eq(&self, other: &Self) -> bool {
        self.unhandled() == other.unhandled()
    }
}
impl<T: IdGenerator, A: IdAllocatorInner> Eq for IdHandle<T, A> {}

impl<T: IdGenerator, A: IdAllocatorInner> PartialOrd for IdHandle<T, A> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl<T: IdGenerator, A: IdAllocatorInner> Ord for IdHandle<T, A> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.unhandled().cmp(&other.unhandled())
    }
}

impl<T, A: IdAllocatorInner> Borrow<T> for IdHandle<T, A> {
    fn borrow(&self) -> &T {
        match self {
            IdHandle::Static(id) => id,
            IdHandle::Dynamic(inner) => &inner.id,
        }
    }
}

impl<T: IdGenerator, A: IdAllocatorInner> fmt::Display for IdHandle<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.unhandled().fmt(f)
    }
}

impl<T: IdGenerator, A: IdAllocatorInner> serde::Serialize for IdHandle<T, A> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        self.unhandled().serialize(serializer)
    }
}

mod internal {
    use std::sync::Arc;

    use crate::cast::CastFrom;
    use crate::id_gen::{IdAllocator, IdAllocatorInner};

    #[derive(Debug)]
    pub struct IdHandleInner<T, A: IdAllocatorInner> {
        /// A handle to the [`IdAllocator`] used to allocated the provided id.
        pub(super) allocator: IdAllocator<A>,
        /// The actual ID that was allocated.
        pub(super) id: T,
        stored: u32,
    }

    impl<T, A: IdAllocatorInner> IdHandleInner<T, A>
    where
        T: CastFrom<u32>,
    {
        pub fn new(allocator: &IdAllocator<A>) -> Option<Self> {
            let stored = allocator.alloc_internal()?;
            Some(IdHandleInner {
                allocator: IdAllocator(Arc::clone(&allocator.0)),
                id: T::cast_from(stored),
                stored,
            })
        }
    }

    impl<T, A: IdAllocatorInner> Drop for IdHandleInner<T, A> {
        fn drop(&mut self) {
            // Release our ID for later re-use.
            self.allocator.free_internal(self.stored);
        }
    }
}

/// Number of bits the org id is offset into a connection id.
pub const ORG_ID_OFFSET: usize = 19;

/// Max (inclusive) connection id that can be produced.
pub const MAX_ORG_ID: u32 = (1 << ORG_ID_OFFSET) - 1;

/// Extracts the lower 12 bits from an org id. These are later used as the [31, 20] bits of a
/// connection id to help route cancellation requests.
pub fn org_id_conn_bits(uuid: &Uuid) -> u32 {
    let lower = uuid.as_u128();
    let lower = (lower & 0xFFF) << ORG_ID_OFFSET;
    let lower: u32 = lower.try_into().expect("must fit");
    lower
}

/// Returns the portion of the org's UUID present in connection id.
pub fn conn_id_org_uuid(conn_id: u32) -> String {
    const UPPER: [char; 16] = [
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F',
    ];

    // Extract UUID from conn_id: upper 12 bits excluding the first.
    let orgid = usize::try_from((conn_id >> ORG_ID_OFFSET) & 0xFFF).expect("must cast");
    // Convert the bits into a 3 char string and inject into the resolver template.
    let mut dst = String::with_capacity(3);
    dst.push(UPPER[(orgid >> 8) & 0xf]);
    dst.push(UPPER[(orgid >> 4) & 0xf]);
    dst.push(UPPER[orgid & 0xf]);
    dst
}

/// Generate a random temporary ID.
///
/// Concretely we generate a UUIDv4 and return the last 12 characters for maximum uniqueness.
///
/// Note: the reason we use the last 12 characters is because the bits 6, 7, and 12 - 15
/// are all hard coded <https://www.rfc-editor.org/rfc/rfc4122#section-4.4>.
/// ```
/// use mz_ore::id_gen::temp_id;
///
/// let temp = temp_id();
/// assert_eq!(temp.len(), 12);
/// assert!(temp.is_ascii());
/// ```
pub fn temp_id() -> String {
    let temp_uuid = uuid::Uuid::new_v4().as_hyphenated().to_string();
    temp_uuid.chars().rev().take_while(|c| *c != '-').collect()
}

#[cfg(test)]
mod tests {
    use std::collections::BTreeMap;

    use super::*;

    #[crate::test]
    fn test_conn_org() {
        let uuid = Uuid::parse_str("9e37ec59-56f4-450a-acbd-18ff14f10ca8").unwrap();
        let lower = org_id_conn_bits(&uuid);
        let org_lower_uuid = conn_id_org_uuid(lower);
        assert_eq!(org_lower_uuid, "CA8");
    }

    #[crate::test]
    fn test_id_gen() {
        test_ad_allocator::<IdAllocatorInnerBitSet>();
    }

    // Test masks and maxs that intersect panic.
    #[crate::test]
    #[should_panic]
    fn test_mask_intersect<A: IdAllocatorInner>() {
        let env_lower = org_id_conn_bits(&uuid::Uuid::from_u128(u128::MAX));
        let ida = IdAllocator::<IdAllocatorInnerBitSet>::new(
            1 << ORG_ID_OFFSET,
            1 << ORG_ID_OFFSET,
            env_lower,
        );
        let id = ida.alloc().unwrap();
        assert_eq!(id.unhandled(), (0xfff << ORG_ID_OFFSET) | MAX_ORG_ID);
    }

    fn test_ad_allocator<A: IdAllocatorInner>() {
        test_id_alloc::<A>();
        test_static_id_sorting::<A>();
        test_id_reuse::<A>();
        test_display::<A>();
        test_map_lookup::<A>();
        test_serialization::<A>();
        test_mask::<A>();
        test_mask_envd::<A>();
    }

    fn test_mask<A: IdAllocatorInner>() {
        let ida = IdAllocator::<A>::new(1, 1, 0xfff << 20);
        let id = ida.alloc().unwrap();
        assert_eq!(id.unhandled(), (0xfff << 20) | 1);
    }

    // Test that the random conn id and and uuid each with all bits set don't intersect.
    fn test_mask_envd<A: IdAllocatorInner>() {
        let env_lower = org_id_conn_bits(&uuid::Uuid::from_u128(u128::MAX));
        let ida = IdAllocator::<A>::new(MAX_ORG_ID, MAX_ORG_ID, env_lower);
        let id = ida.alloc().unwrap();
        assert_eq!(id.unhandled(), (0xfff << ORG_ID_OFFSET) | MAX_ORG_ID);
    }

    fn test_id_alloc<A: IdAllocatorInner>() {
        let ida = IdAllocator::<A>::new(3, 5, 0);
        let id3 = ida.alloc().unwrap();
        let id4 = ida.alloc().unwrap();
        let id5 = ida.alloc().unwrap();
        assert_ne!(id3, id4);
        assert_ne!(id3, id5);
        assert_ne!(id4, id5);
        drop(id4);
        let _id4 = ida.alloc().unwrap();
        drop(id5);
        drop(id3);
        let _id5 = ida.alloc().unwrap();
        let _id3 = ida.alloc().unwrap();
        match ida.alloc() {
            Some(id) => panic!(
                "id allocator returned {}, not expected id exhaustion error",
                id
            ),
            None => (),
        }
    }

    fn test_static_id_sorting<A: IdAllocatorInner>() {
        let ida = IdAllocator::<A>::new(0, 0, 0);
        let id0 = ida.alloc().unwrap();
        let id1 = IdHandle::Static(1);
        assert!(id0 < id1);

        let ida = IdAllocator::<A>::new(1, 1, 0);
        let id0 = IdHandle::Static(0);
        let id1 = ida.alloc().unwrap();
        assert!(id0 < id1);
    }

    fn test_id_reuse<A: IdAllocatorInner>() {
        let allocator = IdAllocator::<A>::new(10, 11, 0);

        let id_a = allocator.alloc().unwrap();
        let a = id_a.unhandled();
        let id_a_clone = id_a.clone();
        // a should not get freed.
        drop(id_a);

        // There are only two slots, so trying to allocate 2 more should fail the second time.
        let _id_b = allocator.alloc().unwrap();
        assert!(allocator.alloc().is_none());

        // a should get freed since all outstanding references have been dropped.
        drop(id_a_clone);

        // We should re-use a.
        let id_c = allocator.alloc().unwrap();
        assert_eq!(id_c.unhandled(), a);
    }

    fn test_display<A: IdAllocatorInner>() {
        let allocator = IdAllocator::<A>::new(65_000, 65_000, 0);

        let id_a = allocator.alloc().unwrap();
        assert_eq!(id_a.unhandled(), 65_000);

        // An IdHandle should use the inner type's Display impl.
        let id_display = format!("{id_a}");
        let val_display = format!("{}", id_a.unhandled());

        assert_eq!(id_display, val_display);
    }

    fn test_map_lookup<A: IdAllocatorInner>() {
        let allocator = IdAllocator::<A>::new(99, 101, 0);

        let id_a = allocator.alloc().unwrap();
        let a = id_a.unhandled();

        let mut btree = BTreeMap::new();
        btree.insert(id_a, "hello world");

        // We should be able to lookup an IdHandle, based on just the value.
        let entry = btree.remove(&a).unwrap();
        assert_eq!(entry, "hello world");

        assert!(btree.is_empty());
    }

    fn test_serialization<A: IdAllocatorInner>() {
        let allocator = IdAllocator::<A>::new(42, 42, 0);

        let id_a = allocator.alloc().unwrap();
        assert_eq!(id_a.unhandled(), 42);

        // An IdHandle should serialize the same as the inner value.
        let id_json = serde_json::to_string(&id_a).unwrap();
        let val_json = serde_json::to_string(&id_a.unhandled()).unwrap();

        assert_eq!(id_json, val_json);
    }
}