1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Contains structs and methods to build Parquet schema and schema descriptors.

use std::{collections::HashMap, fmt, sync::Arc};

use crate::file::metadata::HeapSize;
use crate::format::SchemaElement;

use crate::basic::{
    ColumnOrder, ConvertedType, LogicalType, Repetition, SortOrder, TimeUnit, Type as PhysicalType,
};
use crate::errors::{ParquetError, Result};

// ----------------------------------------------------------------------
// Parquet Type definitions

/// Type alias for `Arc<Type>`.
pub type TypePtr = Arc<Type>;
/// Type alias for `Arc<SchemaDescriptor>`.
pub type SchemaDescPtr = Arc<SchemaDescriptor>;
/// Type alias for `Arc<ColumnDescriptor>`.
pub type ColumnDescPtr = Arc<ColumnDescriptor>;

/// Representation of a Parquet type.
///
/// Used to describe primitive leaf fields and structs, including top-level schema.
///
/// Note that the top-level schema is represented using [`Type::GroupType`] whose
/// repetition is `None`.
#[derive(Clone, Debug, PartialEq)]
pub enum Type {
    /// Represents a primitive leaf field.
    PrimitiveType {
        /// Basic information about the type.
        basic_info: BasicTypeInfo,
        /// Physical type of this primitive type.
        physical_type: PhysicalType,
        /// Length of this type.
        type_length: i32,
        /// Scale of this type.
        scale: i32,
        /// Precision of this type.
        precision: i32,
    },
    /// Represents a group of fields (similar to struct).
    GroupType {
        /// Basic information about the type.
        basic_info: BasicTypeInfo,
        /// Fields of this group type.
        fields: Vec<TypePtr>,
    },
}

impl HeapSize for Type {
    fn heap_size(&self) -> usize {
        match self {
            Type::PrimitiveType { basic_info, .. } => basic_info.heap_size(),
            Type::GroupType { basic_info, fields } => basic_info.heap_size() + fields.heap_size(),
        }
    }
}

impl Type {
    /// Creates primitive type builder with provided field name and physical type.
    pub fn primitive_type_builder(name: &str, physical_type: PhysicalType) -> PrimitiveTypeBuilder {
        PrimitiveTypeBuilder::new(name, physical_type)
    }

    /// Creates group type builder with provided column name.
    pub fn group_type_builder(name: &str) -> GroupTypeBuilder {
        GroupTypeBuilder::new(name)
    }

    /// Returns [`BasicTypeInfo`] information about the type.
    pub fn get_basic_info(&self) -> &BasicTypeInfo {
        match *self {
            Type::PrimitiveType { ref basic_info, .. } => basic_info,
            Type::GroupType { ref basic_info, .. } => basic_info,
        }
    }

    /// Returns this type's field name.
    pub fn name(&self) -> &str {
        self.get_basic_info().name()
    }

    /// Gets the fields from this group type.
    /// Note that this will panic if called on a non-group type.
    // TODO: should we return `&[&Type]` here?
    pub fn get_fields(&self) -> &[TypePtr] {
        match *self {
            Type::GroupType { ref fields, .. } => &fields[..],
            _ => panic!("Cannot call get_fields() on a non-group type"),
        }
    }

    /// Gets physical type of this primitive type.
    /// Note that this will panic if called on a non-primitive type.
    pub fn get_physical_type(&self) -> PhysicalType {
        match *self {
            Type::PrimitiveType {
                basic_info: _,
                physical_type,
                ..
            } => physical_type,
            _ => panic!("Cannot call get_physical_type() on a non-primitive type"),
        }
    }

    /// Gets precision of this primitive type.
    /// Note that this will panic if called on a non-primitive type.
    pub fn get_precision(&self) -> i32 {
        match *self {
            Type::PrimitiveType { precision, .. } => precision,
            _ => panic!("Cannot call get_precision() on non-primitive type"),
        }
    }

    /// Gets scale of this primitive type.
    /// Note that this will panic if called on a non-primitive type.
    pub fn get_scale(&self) -> i32 {
        match *self {
            Type::PrimitiveType { scale, .. } => scale,
            _ => panic!("Cannot call get_scale() on non-primitive type"),
        }
    }

    /// Checks if `sub_type` schema is part of current schema.
    /// This method can be used to check if projected columns are part of the root schema.
    pub fn check_contains(&self, sub_type: &Type) -> bool {
        // Names match, and repetitions match or not set for both
        let basic_match = self.get_basic_info().name() == sub_type.get_basic_info().name()
            && (self.is_schema() && sub_type.is_schema()
                || !self.is_schema()
                    && !sub_type.is_schema()
                    && self.get_basic_info().repetition()
                        == sub_type.get_basic_info().repetition());

        match *self {
            Type::PrimitiveType { .. } if basic_match && sub_type.is_primitive() => {
                self.get_physical_type() == sub_type.get_physical_type()
            }
            Type::GroupType { .. } if basic_match && sub_type.is_group() => {
                // build hashmap of name -> TypePtr
                let mut field_map = HashMap::new();
                for field in self.get_fields() {
                    field_map.insert(field.name(), field);
                }

                for field in sub_type.get_fields() {
                    if !field_map
                        .get(field.name())
                        .map(|tpe| tpe.check_contains(field))
                        .unwrap_or(false)
                    {
                        return false;
                    }
                }
                true
            }
            _ => false,
        }
    }

    /// Returns `true` if this type is a primitive type, `false` otherwise.
    pub fn is_primitive(&self) -> bool {
        matches!(*self, Type::PrimitiveType { .. })
    }

    /// Returns `true` if this type is a group type, `false` otherwise.
    pub fn is_group(&self) -> bool {
        matches!(*self, Type::GroupType { .. })
    }

    /// Returns `true` if this type is the top-level schema type (message type).
    pub fn is_schema(&self) -> bool {
        match *self {
            Type::GroupType { ref basic_info, .. } => !basic_info.has_repetition(),
            _ => false,
        }
    }

    /// Returns `true` if this type is repeated or optional.
    /// If this type doesn't have repetition defined, we treat it as required.
    pub fn is_optional(&self) -> bool {
        self.get_basic_info().has_repetition()
            && self.get_basic_info().repetition() != Repetition::REQUIRED
    }
}

/// A builder for primitive types. All attributes are optional
/// except the name and physical type.
/// Note that if not specified explicitly, `Repetition::OPTIONAL` is used.
pub struct PrimitiveTypeBuilder<'a> {
    name: &'a str,
    repetition: Repetition,
    physical_type: PhysicalType,
    converted_type: ConvertedType,
    logical_type: Option<LogicalType>,
    length: i32,
    precision: i32,
    scale: i32,
    id: Option<i32>,
}

impl<'a> PrimitiveTypeBuilder<'a> {
    /// Creates new primitive type builder with provided field name and physical type.
    pub fn new(name: &'a str, physical_type: PhysicalType) -> Self {
        Self {
            name,
            repetition: Repetition::OPTIONAL,
            physical_type,
            converted_type: ConvertedType::NONE,
            logical_type: None,
            length: -1,
            precision: -1,
            scale: -1,
            id: None,
        }
    }

    /// Sets [`Repetition`] for this field and returns itself.
    pub fn with_repetition(self, repetition: Repetition) -> Self {
        Self { repetition, ..self }
    }

    /// Sets [`ConvertedType`] for this field and returns itself.
    pub fn with_converted_type(self, converted_type: ConvertedType) -> Self {
        Self {
            converted_type,
            ..self
        }
    }

    /// Sets [`LogicalType`] for this field and returns itself.
    /// If only the logical type is populated for a primitive type, the converted type
    /// will be automatically populated, and can thus be omitted.
    pub fn with_logical_type(self, logical_type: Option<LogicalType>) -> Self {
        Self {
            logical_type,
            ..self
        }
    }

    /// Sets type length and returns itself.
    /// This is only applied to FIXED_LEN_BYTE_ARRAY and INT96 (INTERVAL) types, because
    /// they maintain fixed size underlying byte array.
    /// By default, value is `0`.
    pub fn with_length(self, length: i32) -> Self {
        Self { length, ..self }
    }

    /// Sets precision for Parquet DECIMAL physical type and returns itself.
    /// By default, it equals to `0` and used only for decimal context.
    pub fn with_precision(self, precision: i32) -> Self {
        Self { precision, ..self }
    }

    /// Sets scale for Parquet DECIMAL physical type and returns itself.
    /// By default, it equals to `0` and used only for decimal context.
    pub fn with_scale(self, scale: i32) -> Self {
        Self { scale, ..self }
    }

    /// Sets optional field id and returns itself.
    pub fn with_id(self, id: Option<i32>) -> Self {
        Self { id, ..self }
    }

    /// Creates a new `PrimitiveType` instance from the collected attributes.
    /// Returns `Err` in case of any building conditions are not met.
    pub fn build(self) -> Result<Type> {
        let mut basic_info = BasicTypeInfo {
            name: String::from(self.name),
            repetition: Some(self.repetition),
            converted_type: self.converted_type,
            logical_type: self.logical_type.clone(),
            id: self.id,
        };

        // Check length before logical type, since it is used for logical type validation.
        if self.physical_type == PhysicalType::FIXED_LEN_BYTE_ARRAY && self.length < 0 {
            return Err(general_err!(
                "Invalid FIXED_LEN_BYTE_ARRAY length: {} for field '{}'",
                self.length,
                self.name
            ));
        }

        if let Some(logical_type) = &self.logical_type {
            // If a converted type is populated, check that it is consistent with
            // its logical type
            if self.converted_type != ConvertedType::NONE {
                if ConvertedType::from(self.logical_type.clone()) != self.converted_type {
                    return Err(general_err!(
                        "Logical type {:?} is incompatible with converted type {} for field '{}'",
                        logical_type,
                        self.converted_type,
                        self.name
                    ));
                }
            } else {
                // Populate the converted type for backwards compatibility
                basic_info.converted_type = self.logical_type.clone().into();
            }
            // Check that logical type and physical type are compatible
            match (logical_type, self.physical_type) {
                (LogicalType::Map, _) | (LogicalType::List, _) => {
                    return Err(general_err!(
                        "{:?} cannot be applied to a primitive type for field '{}'",
                        logical_type,
                        self.name
                    ));
                }
                (LogicalType::Enum, PhysicalType::BYTE_ARRAY) => {}
                (LogicalType::Decimal { scale, precision }, _) => {
                    // Check that scale and precision are consistent with legacy values
                    if *scale != self.scale {
                        return Err(general_err!(
                            "DECIMAL logical type scale {} must match self.scale {} for field '{}'",
                            scale,
                            self.scale,
                            self.name
                        ));
                    }
                    if *precision != self.precision {
                        return Err(general_err!(
                            "DECIMAL logical type precision {} must match self.precision {} for field '{}'",
                            precision,
                            self.precision,
                            self.name
                        ));
                    }
                    self.check_decimal_precision_scale()?;
                }
                (LogicalType::Date, PhysicalType::INT32) => {}
                (
                    LogicalType::Time {
                        unit: TimeUnit::MILLIS(_),
                        ..
                    },
                    PhysicalType::INT32,
                ) => {}
                (LogicalType::Time { unit, .. }, PhysicalType::INT64) => {
                    if *unit == TimeUnit::MILLIS(Default::default()) {
                        return Err(general_err!(
                            "Cannot use millisecond unit on INT64 type for field '{}'",
                            self.name
                        ));
                    }
                }
                (LogicalType::Timestamp { .. }, PhysicalType::INT64) => {}
                (LogicalType::Integer { bit_width, .. }, PhysicalType::INT32)
                    if *bit_width <= 32 => {}
                (LogicalType::Integer { bit_width, .. }, PhysicalType::INT64)
                    if *bit_width == 64 => {}
                // Null type
                (LogicalType::Unknown, PhysicalType::INT32) => {}
                (LogicalType::String, PhysicalType::BYTE_ARRAY) => {}
                (LogicalType::Json, PhysicalType::BYTE_ARRAY) => {}
                (LogicalType::Bson, PhysicalType::BYTE_ARRAY) => {}
                (LogicalType::Uuid, PhysicalType::FIXED_LEN_BYTE_ARRAY) if self.length == 16 => {}
                (LogicalType::Uuid, PhysicalType::FIXED_LEN_BYTE_ARRAY) => {
                    return Err(general_err!(
                        "UUID cannot annotate field '{}' because it is not a FIXED_LEN_BYTE_ARRAY(16) field",
                        self.name
                    ))
                }
                (LogicalType::Float16, PhysicalType::FIXED_LEN_BYTE_ARRAY)
                    if self.length == 2 => {}
                (LogicalType::Float16, PhysicalType::FIXED_LEN_BYTE_ARRAY) => {
                    return Err(general_err!(
                        "FLOAT16 cannot annotate field '{}' because it is not a FIXED_LEN_BYTE_ARRAY(2) field",
                        self.name
                    ))
                }
                (a, b) => {
                    return Err(general_err!(
                        "Cannot annotate {:?} from {} for field '{}'",
                        a,
                        b,
                        self.name
                    ))
                }
            }
        }

        match self.converted_type {
            ConvertedType::NONE => {}
            ConvertedType::UTF8 | ConvertedType::BSON | ConvertedType::JSON => {
                if self.physical_type != PhysicalType::BYTE_ARRAY {
                    return Err(general_err!(
                        "{} cannot annotate field '{}' because it is not a BYTE_ARRAY field",
                        self.converted_type,
                        self.name
                    ));
                }
            }
            ConvertedType::DECIMAL => {
                self.check_decimal_precision_scale()?;
            }
            ConvertedType::DATE
            | ConvertedType::TIME_MILLIS
            | ConvertedType::UINT_8
            | ConvertedType::UINT_16
            | ConvertedType::UINT_32
            | ConvertedType::INT_8
            | ConvertedType::INT_16
            | ConvertedType::INT_32 => {
                if self.physical_type != PhysicalType::INT32 {
                    return Err(general_err!(
                        "{} cannot annotate field '{}' because it is not a INT32 field",
                        self.converted_type,
                        self.name
                    ));
                }
            }
            ConvertedType::TIME_MICROS
            | ConvertedType::TIMESTAMP_MILLIS
            | ConvertedType::TIMESTAMP_MICROS
            | ConvertedType::UINT_64
            | ConvertedType::INT_64 => {
                if self.physical_type != PhysicalType::INT64 {
                    return Err(general_err!(
                        "{} cannot annotate field '{}' because it is not a INT64 field",
                        self.converted_type,
                        self.name
                    ));
                }
            }
            ConvertedType::INTERVAL => {
                if self.physical_type != PhysicalType::FIXED_LEN_BYTE_ARRAY || self.length != 12 {
                    return Err(general_err!(
                        "INTERVAL cannot annotate field '{}' because it is not a FIXED_LEN_BYTE_ARRAY(12) field",
                        self.name
                    ));
                }
            }
            ConvertedType::ENUM => {
                if self.physical_type != PhysicalType::BYTE_ARRAY {
                    return Err(general_err!(
                        "ENUM cannot annotate field '{}' because it is not a BYTE_ARRAY field",
                        self.name
                    ));
                }
            }
            _ => {
                return Err(general_err!(
                    "{} cannot be applied to primitive field '{}'",
                    self.converted_type,
                    self.name
                ));
            }
        }

        Ok(Type::PrimitiveType {
            basic_info,
            physical_type: self.physical_type,
            type_length: self.length,
            scale: self.scale,
            precision: self.precision,
        })
    }

    #[inline]
    fn check_decimal_precision_scale(&self) -> Result<()> {
        match self.physical_type {
            PhysicalType::INT32
            | PhysicalType::INT64
            | PhysicalType::BYTE_ARRAY
            | PhysicalType::FIXED_LEN_BYTE_ARRAY => (),
            _ => {
                return Err(general_err!(
                    "DECIMAL can only annotate INT32, INT64, BYTE_ARRAY and FIXED_LEN_BYTE_ARRAY"
                ));
            }
        }

        // Precision is required and must be a non-zero positive integer.
        if self.precision < 1 {
            return Err(general_err!(
                "Invalid DECIMAL precision: {}",
                self.precision
            ));
        }

        // Scale must be zero or a positive integer less than the precision.
        if self.scale < 0 {
            return Err(general_err!("Invalid DECIMAL scale: {}", self.scale));
        }

        if self.scale > self.precision {
            return Err(general_err!(
                "Invalid DECIMAL: scale ({}) cannot be greater than precision \
             ({})",
                self.scale,
                self.precision
            ));
        }

        // Check precision and scale based on physical type limitations.
        match self.physical_type {
            PhysicalType::INT32 => {
                if self.precision > 9 {
                    return Err(general_err!(
                        "Cannot represent INT32 as DECIMAL with precision {}",
                        self.precision
                    ));
                }
            }
            PhysicalType::INT64 => {
                if self.precision > 18 {
                    return Err(general_err!(
                        "Cannot represent INT64 as DECIMAL with precision {}",
                        self.precision
                    ));
                }
            }
            PhysicalType::FIXED_LEN_BYTE_ARRAY => {
                let max_precision = (2f64.powi(8 * self.length - 1) - 1f64).log10().floor() as i32;

                if self.precision > max_precision {
                    return Err(general_err!(
                        "Cannot represent FIXED_LEN_BYTE_ARRAY as DECIMAL with length {} and \
                        precision {}. The max precision can only be {}",
                        self.length,
                        self.precision,
                        max_precision
                    ));
                }
            }
            _ => (), // For BYTE_ARRAY precision is not limited
        }

        Ok(())
    }
}

/// A builder for group types. All attributes are optional except the name.
/// Note that if not specified explicitly, `None` is used as the repetition of the group,
/// which means it is a root (message) type.
pub struct GroupTypeBuilder<'a> {
    name: &'a str,
    repetition: Option<Repetition>,
    converted_type: ConvertedType,
    logical_type: Option<LogicalType>,
    fields: Vec<TypePtr>,
    id: Option<i32>,
}

impl<'a> GroupTypeBuilder<'a> {
    /// Creates new group type builder with provided field name.
    pub fn new(name: &'a str) -> Self {
        Self {
            name,
            repetition: None,
            converted_type: ConvertedType::NONE,
            logical_type: None,
            fields: Vec::new(),
            id: None,
        }
    }

    /// Sets [`Repetition`] for this field and returns itself.
    pub fn with_repetition(mut self, repetition: Repetition) -> Self {
        self.repetition = Some(repetition);
        self
    }

    /// Sets [`ConvertedType`] for this field and returns itself.
    pub fn with_converted_type(self, converted_type: ConvertedType) -> Self {
        Self {
            converted_type,
            ..self
        }
    }

    /// Sets [`LogicalType`] for this field and returns itself.
    pub fn with_logical_type(self, logical_type: Option<LogicalType>) -> Self {
        Self {
            logical_type,
            ..self
        }
    }

    /// Sets a list of fields that should be child nodes of this field.
    /// Returns updated self.
    pub fn with_fields(self, fields: Vec<TypePtr>) -> Self {
        Self { fields, ..self }
    }

    /// Sets optional field id and returns itself.
    pub fn with_id(self, id: Option<i32>) -> Self {
        Self { id, ..self }
    }

    /// Creates a new `GroupType` instance from the gathered attributes.
    pub fn build(self) -> Result<Type> {
        let mut basic_info = BasicTypeInfo {
            name: String::from(self.name),
            repetition: self.repetition,
            converted_type: self.converted_type,
            logical_type: self.logical_type.clone(),
            id: self.id,
        };
        // Populate the converted type if only the logical type is populated
        if self.logical_type.is_some() && self.converted_type == ConvertedType::NONE {
            basic_info.converted_type = self.logical_type.into();
        }
        Ok(Type::GroupType {
            basic_info,
            fields: self.fields,
        })
    }
}

/// Basic type info. This contains information such as the name of the type,
/// the repetition level, the logical type and the kind of the type (group, primitive).
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct BasicTypeInfo {
    name: String,
    repetition: Option<Repetition>,
    converted_type: ConvertedType,
    logical_type: Option<LogicalType>,
    id: Option<i32>,
}

impl HeapSize for BasicTypeInfo {
    fn heap_size(&self) -> usize {
        // no heap allocations in any other subfield
        self.name.heap_size()
    }
}

impl BasicTypeInfo {
    /// Returns field name.
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Returns `true` if type has repetition field set, `false` otherwise.
    /// This is mostly applied to group type, because primitive type always has
    /// repetition set.
    pub fn has_repetition(&self) -> bool {
        self.repetition.is_some()
    }

    /// Returns [`Repetition`] value for the type.
    pub fn repetition(&self) -> Repetition {
        assert!(self.repetition.is_some());
        self.repetition.unwrap()
    }

    /// Returns [`ConvertedType`] value for the type.
    pub fn converted_type(&self) -> ConvertedType {
        self.converted_type
    }

    /// Returns [`LogicalType`] value for the type.
    pub fn logical_type(&self) -> Option<LogicalType> {
        // Unlike ConvertedType, LogicalType cannot implement Copy, thus we clone it
        self.logical_type.clone()
    }

    /// Returns `true` if id is set, `false` otherwise.
    pub fn has_id(&self) -> bool {
        self.id.is_some()
    }

    /// Returns id value for the type.
    pub fn id(&self) -> i32 {
        assert!(self.id.is_some());
        self.id.unwrap()
    }
}

// ----------------------------------------------------------------------
// Parquet descriptor definitions

/// Represents the location of a column in a Parquet schema
///
/// # Example: refer to column named `'my_column'`
/// ```
/// # use parquet::schema::types::ColumnPath;
/// let column_path = ColumnPath::from("my_column");
/// ```
///
/// # Example: refer to column named `c` in a nested struct `{a: {b: {c: ...}}}`
/// ```
/// # use parquet::schema::types::ColumnPath;
/// // form path 'a.b.c'
/// let column_path = ColumnPath::from(vec![
///   String::from("a"),
///   String::from("b"),
///   String::from("c")
/// ]);
/// ```
#[derive(Clone, PartialEq, Debug, Eq, Hash)]
pub struct ColumnPath {
    parts: Vec<String>,
}

impl HeapSize for ColumnPath {
    fn heap_size(&self) -> usize {
        self.parts.heap_size()
    }
}

impl ColumnPath {
    /// Creates new column path from vector of field names.
    pub fn new(parts: Vec<String>) -> Self {
        ColumnPath { parts }
    }

    /// Returns string representation of this column path.
    /// ```rust
    /// use parquet::schema::types::ColumnPath;
    ///
    /// let path = ColumnPath::new(vec!["a".to_string(), "b".to_string(), "c".to_string()]);
    /// assert_eq!(&path.string(), "a.b.c");
    /// ```
    pub fn string(&self) -> String {
        self.parts.join(".")
    }

    /// Appends more components to end of column path.
    /// ```rust
    /// use parquet::schema::types::ColumnPath;
    ///
    /// let mut path = ColumnPath::new(vec!["a".to_string(), "b".to_string(), "c"
    /// .to_string()]);
    /// assert_eq!(&path.string(), "a.b.c");
    ///
    /// path.append(vec!["d".to_string(), "e".to_string()]);
    /// assert_eq!(&path.string(), "a.b.c.d.e");
    /// ```
    pub fn append(&mut self, mut tail: Vec<String>) {
        self.parts.append(&mut tail);
    }

    /// Returns a slice of path components.
    pub fn parts(&self) -> &[String] {
        &self.parts
    }
}

impl fmt::Display for ColumnPath {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self.string())
    }
}

impl From<Vec<String>> for ColumnPath {
    fn from(parts: Vec<String>) -> Self {
        ColumnPath { parts }
    }
}

impl From<&str> for ColumnPath {
    fn from(single_path: &str) -> Self {
        let s = String::from(single_path);
        ColumnPath::from(s)
    }
}

impl From<String> for ColumnPath {
    fn from(single_path: String) -> Self {
        let v = vec![single_path];
        ColumnPath { parts: v }
    }
}

impl AsRef<[String]> for ColumnPath {
    fn as_ref(&self) -> &[String] {
        &self.parts
    }
}

/// Physical type for leaf-level primitive columns.
///
/// Also includes the maximum definition and repetition levels required to
/// re-assemble nested data.
#[derive(Debug, PartialEq)]
pub struct ColumnDescriptor {
    /// The "leaf" primitive type of this column
    primitive_type: TypePtr,

    /// The maximum definition level for this column
    max_def_level: i16,

    /// The maximum repetition level for this column
    max_rep_level: i16,

    /// The path of this column. For instance, "a.b.c.d".
    path: ColumnPath,
}

impl HeapSize for ColumnDescriptor {
    fn heap_size(&self) -> usize {
        self.primitive_type.heap_size() + self.path.heap_size()
    }
}

impl ColumnDescriptor {
    /// Creates new descriptor for leaf-level column.
    pub fn new(
        primitive_type: TypePtr,
        max_def_level: i16,
        max_rep_level: i16,
        path: ColumnPath,
    ) -> Self {
        Self {
            primitive_type,
            max_def_level,
            max_rep_level,
            path,
        }
    }

    /// Returns maximum definition level for this column.
    #[inline]
    pub fn max_def_level(&self) -> i16 {
        self.max_def_level
    }

    /// Returns maximum repetition level for this column.
    #[inline]
    pub fn max_rep_level(&self) -> i16 {
        self.max_rep_level
    }

    /// Returns [`ColumnPath`] for this column.
    pub fn path(&self) -> &ColumnPath {
        &self.path
    }

    /// Returns self type [`Type`] for this leaf column.
    pub fn self_type(&self) -> &Type {
        self.primitive_type.as_ref()
    }

    /// Returns self type [`TypePtr`]  for this leaf
    /// column.
    pub fn self_type_ptr(&self) -> TypePtr {
        self.primitive_type.clone()
    }

    /// Returns column name.
    pub fn name(&self) -> &str {
        self.primitive_type.name()
    }

    /// Returns [`ConvertedType`] for this column.
    pub fn converted_type(&self) -> ConvertedType {
        self.primitive_type.get_basic_info().converted_type()
    }

    /// Returns [`LogicalType`] for this column.
    pub fn logical_type(&self) -> Option<LogicalType> {
        self.primitive_type.get_basic_info().logical_type()
    }

    /// Returns physical type for this column.
    /// Note that it will panic if called on a non-primitive type.
    pub fn physical_type(&self) -> PhysicalType {
        match self.primitive_type.as_ref() {
            Type::PrimitiveType { physical_type, .. } => *physical_type,
            _ => panic!("Expected primitive type!"),
        }
    }

    /// Returns type length for this column.
    /// Note that it will panic if called on a non-primitive type.
    pub fn type_length(&self) -> i32 {
        match self.primitive_type.as_ref() {
            Type::PrimitiveType { type_length, .. } => *type_length,
            _ => panic!("Expected primitive type!"),
        }
    }

    /// Returns type precision for this column.
    /// Note that it will panic if called on a non-primitive type.
    pub fn type_precision(&self) -> i32 {
        match self.primitive_type.as_ref() {
            Type::PrimitiveType { precision, .. } => *precision,
            _ => panic!("Expected primitive type!"),
        }
    }

    /// Returns type scale for this column.
    /// Note that it will panic if called on a non-primitive type.
    pub fn type_scale(&self) -> i32 {
        match self.primitive_type.as_ref() {
            Type::PrimitiveType { scale, .. } => *scale,
            _ => panic!("Expected primitive type!"),
        }
    }

    /// Returns the sort order for this column
    pub fn sort_order(&self) -> SortOrder {
        ColumnOrder::get_sort_order(
            self.logical_type(),
            self.converted_type(),
            self.physical_type(),
        )
    }
}

/// Schema of a Parquet file.
///
/// Encapsulates the file's schema ([`Type`]) and [`ColumnDescriptor`]s for
/// each primitive (leaf) column.
#[derive(PartialEq)]
pub struct SchemaDescriptor {
    /// The top-level logical schema (the "message" type).
    ///
    /// This must be a [`Type::GroupType`] where each field is a root
    /// column type in the schema.
    schema: TypePtr,

    /// The descriptors for the physical type of each leaf column in this schema
    ///
    /// Constructed from `schema` in DFS order.
    leaves: Vec<ColumnDescPtr>,

    /// Mapping from a leaf column's index to the root column index that it
    /// comes from.
    ///
    /// For instance: the leaf `a.b.c.d` would have a link back to `a`:
    /// ```text
    /// -- a  <-----+
    /// -- -- b     |
    /// -- -- -- c  |
    /// -- -- -- -- d
    /// ```
    leaf_to_base: Vec<usize>,
}

impl fmt::Debug for SchemaDescriptor {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Skip leaves and leaf_to_base as they only a cache information already found in `schema`
        f.debug_struct("SchemaDescriptor")
            .field("schema", &self.schema)
            .finish()
    }
}

// Need to implement HeapSize in this module as the fields are private
impl HeapSize for SchemaDescriptor {
    fn heap_size(&self) -> usize {
        self.schema.heap_size() + self.leaves.heap_size() + self.leaf_to_base.heap_size()
    }
}

impl SchemaDescriptor {
    /// Creates new schema descriptor from Parquet schema.
    pub fn new(tp: TypePtr) -> Self {
        assert!(tp.is_group(), "SchemaDescriptor should take a GroupType");
        let mut leaves = vec![];
        let mut leaf_to_base = Vec::new();
        for (root_idx, f) in tp.get_fields().iter().enumerate() {
            let mut path = vec![];
            build_tree(f, root_idx, 0, 0, &mut leaves, &mut leaf_to_base, &mut path);
        }

        Self {
            schema: tp,
            leaves,
            leaf_to_base,
        }
    }

    /// Returns [`ColumnDescriptor`] for a field position.
    pub fn column(&self, i: usize) -> ColumnDescPtr {
        assert!(
            i < self.leaves.len(),
            "Index out of bound: {} not in [0, {})",
            i,
            self.leaves.len()
        );
        self.leaves[i].clone()
    }

    /// Returns slice of [`ColumnDescriptor`].
    pub fn columns(&self) -> &[ColumnDescPtr] {
        &self.leaves
    }

    /// Returns number of leaf-level columns.
    pub fn num_columns(&self) -> usize {
        self.leaves.len()
    }

    /// Returns column root [`Type`] for a leaf position.
    pub fn get_column_root(&self, i: usize) -> &Type {
        let result = self.column_root_of(i);
        result.as_ref()
    }

    /// Returns column root [`Type`] pointer for a leaf position.
    pub fn get_column_root_ptr(&self, i: usize) -> TypePtr {
        let result = self.column_root_of(i);
        result.clone()
    }

    /// Returns the index of the root column for a field position
    pub fn get_column_root_idx(&self, leaf: usize) -> usize {
        assert!(
            leaf < self.leaves.len(),
            "Index out of bound: {} not in [0, {})",
            leaf,
            self.leaves.len()
        );

        *self
            .leaf_to_base
            .get(leaf)
            .unwrap_or_else(|| panic!("Expected a value for index {leaf} but found None"))
    }

    fn column_root_of(&self, i: usize) -> &TypePtr {
        &self.schema.get_fields()[self.get_column_root_idx(i)]
    }

    /// Returns schema as [`Type`].
    pub fn root_schema(&self) -> &Type {
        self.schema.as_ref()
    }

    /// Returns schema as [`TypePtr`] for cheap cloning.
    pub fn root_schema_ptr(&self) -> TypePtr {
        self.schema.clone()
    }

    /// Returns schema name.
    pub fn name(&self) -> &str {
        self.schema.name()
    }
}

fn build_tree<'a>(
    tp: &'a TypePtr,
    root_idx: usize,
    mut max_rep_level: i16,
    mut max_def_level: i16,
    leaves: &mut Vec<ColumnDescPtr>,
    leaf_to_base: &mut Vec<usize>,
    path_so_far: &mut Vec<&'a str>,
) {
    assert!(tp.get_basic_info().has_repetition());

    path_so_far.push(tp.name());
    match tp.get_basic_info().repetition() {
        Repetition::OPTIONAL => {
            max_def_level += 1;
        }
        Repetition::REPEATED => {
            max_def_level += 1;
            max_rep_level += 1;
        }
        _ => {}
    }

    match tp.as_ref() {
        Type::PrimitiveType { .. } => {
            let mut path: Vec<String> = vec![];
            path.extend(path_so_far.iter().copied().map(String::from));
            leaves.push(Arc::new(ColumnDescriptor::new(
                tp.clone(),
                max_def_level,
                max_rep_level,
                ColumnPath::new(path),
            )));
            leaf_to_base.push(root_idx);
        }
        Type::GroupType { ref fields, .. } => {
            for f in fields {
                build_tree(
                    f,
                    root_idx,
                    max_rep_level,
                    max_def_level,
                    leaves,
                    leaf_to_base,
                    path_so_far,
                );
                path_so_far.pop();
            }
        }
    }
}

/// Method to convert from Thrift.
pub fn from_thrift(elements: &[SchemaElement]) -> Result<TypePtr> {
    let mut index = 0;
    let mut schema_nodes = Vec::new();
    while index < elements.len() {
        let t = from_thrift_helper(elements, index)?;
        index = t.0;
        schema_nodes.push(t.1);
    }
    if schema_nodes.len() != 1 {
        return Err(general_err!(
            "Expected exactly one root node, but found {}",
            schema_nodes.len()
        ));
    }

    Ok(schema_nodes.remove(0))
}

/// Constructs a new Type from the `elements`, starting at index `index`.
/// The first result is the starting index for the next Type after this one. If it is
/// equal to `elements.len()`, then this Type is the last one.
/// The second result is the result Type.
fn from_thrift_helper(elements: &[SchemaElement], index: usize) -> Result<(usize, TypePtr)> {
    // Whether or not the current node is root (message type).
    // There is only one message type node in the schema tree.
    let is_root_node = index == 0;

    if index >= elements.len() {
        return Err(general_err!(
            "Index out of bound, index = {}, len = {}",
            index,
            elements.len()
        ));
    }
    let element = &elements[index];
    let converted_type = ConvertedType::try_from(element.converted_type)?;
    // LogicalType is only present in v2 Parquet files. ConvertedType is always
    // populated, regardless of the version of the file (v1 or v2).
    let logical_type = element
        .logical_type
        .as_ref()
        .map(|value| LogicalType::from(value.clone()));
    let field_id = elements[index].field_id;
    match elements[index].num_children {
        // From parquet-format:
        //   The children count is used to construct the nested relationship.
        //   This field is not set when the element is a primitive type
        // Sometimes parquet-cpp sets num_children field to 0 for primitive types, so we
        // have to handle this case too.
        None | Some(0) => {
            // primitive type
            if elements[index].repetition_type.is_none() {
                return Err(general_err!(
                    "Repetition level must be defined for a primitive type"
                ));
            }
            let repetition = Repetition::try_from(elements[index].repetition_type.unwrap())?;
            if let Some(type_) = elements[index].type_ {
                let physical_type = PhysicalType::try_from(type_)?;
                let length = elements[index].type_length.unwrap_or(-1);
                let scale = elements[index].scale.unwrap_or(-1);
                let precision = elements[index].precision.unwrap_or(-1);
                let name = &elements[index].name;
                let builder = Type::primitive_type_builder(name, physical_type)
                    .with_repetition(repetition)
                    .with_converted_type(converted_type)
                    .with_logical_type(logical_type)
                    .with_length(length)
                    .with_precision(precision)
                    .with_scale(scale)
                    .with_id(field_id);
                Ok((index + 1, Arc::new(builder.build()?)))
            } else {
                let mut builder = Type::group_type_builder(&elements[index].name)
                    .with_converted_type(converted_type)
                    .with_logical_type(logical_type)
                    .with_id(field_id);
                if !is_root_node {
                    // Sometimes parquet-cpp and parquet-mr set repetition level REQUIRED or
                    // REPEATED for root node.
                    //
                    // We only set repetition for group types that are not top-level message
                    // type. According to parquet-format:
                    //   Root of the schema does not have a repetition_type.
                    //   All other types must have one.
                    builder = builder.with_repetition(repetition);
                }
                Ok((index + 1, Arc::new(builder.build().unwrap())))
            }
        }
        Some(n) => {
            let repetition = elements[index]
                .repetition_type
                .map(Repetition::try_from)
                .transpose()?;

            let mut fields = vec![];
            let mut next_index = index + 1;
            for _ in 0..n {
                let child_result = from_thrift_helper(elements, next_index)?;
                next_index = child_result.0;
                fields.push(child_result.1);
            }

            let mut builder = Type::group_type_builder(&elements[index].name)
                .with_converted_type(converted_type)
                .with_logical_type(logical_type)
                .with_fields(fields)
                .with_id(field_id);
            if let Some(rep) = repetition {
                // Sometimes parquet-cpp and parquet-mr set repetition level REQUIRED or
                // REPEATED for root node.
                //
                // We only set repetition for group types that are not top-level message
                // type. According to parquet-format:
                //   Root of the schema does not have a repetition_type.
                //   All other types must have one.
                if !is_root_node {
                    builder = builder.with_repetition(rep);
                }
            }
            Ok((next_index, Arc::new(builder.build().unwrap())))
        }
    }
}

/// Method to convert to Thrift.
pub fn to_thrift(schema: &Type) -> Result<Vec<SchemaElement>> {
    if !schema.is_group() {
        return Err(general_err!("Root schema must be Group type"));
    }
    let mut elements: Vec<SchemaElement> = Vec::new();
    to_thrift_helper(schema, &mut elements);
    Ok(elements)
}

/// Constructs list of `SchemaElement` from the schema using depth-first traversal.
/// Here we assume that schema is always valid and starts with group type.
fn to_thrift_helper(schema: &Type, elements: &mut Vec<SchemaElement>) {
    match *schema {
        Type::PrimitiveType {
            ref basic_info,
            physical_type,
            type_length,
            scale,
            precision,
        } => {
            let element = SchemaElement {
                type_: Some(physical_type.into()),
                type_length: if type_length >= 0 {
                    Some(type_length)
                } else {
                    None
                },
                repetition_type: Some(basic_info.repetition().into()),
                name: basic_info.name().to_owned(),
                num_children: None,
                converted_type: basic_info.converted_type().into(),
                scale: if scale >= 0 { Some(scale) } else { None },
                precision: if precision >= 0 {
                    Some(precision)
                } else {
                    None
                },
                field_id: if basic_info.has_id() {
                    Some(basic_info.id())
                } else {
                    None
                },
                logical_type: basic_info.logical_type().map(|value| value.into()),
            };

            elements.push(element);
        }
        Type::GroupType {
            ref basic_info,
            ref fields,
        } => {
            let repetition = if basic_info.has_repetition() {
                Some(basic_info.repetition().into())
            } else {
                None
            };

            let element = SchemaElement {
                type_: None,
                type_length: None,
                repetition_type: repetition,
                name: basic_info.name().to_owned(),
                num_children: Some(fields.len() as i32),
                converted_type: basic_info.converted_type().into(),
                scale: None,
                precision: None,
                field_id: if basic_info.has_id() {
                    Some(basic_info.id())
                } else {
                    None
                },
                logical_type: basic_info.logical_type().map(|value| value.into()),
            };

            elements.push(element);

            // Add child elements for a group
            for field in fields {
                to_thrift_helper(field, elements);
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::schema::parser::parse_message_type;

    // TODO: add tests for v2 types

    #[test]
    fn test_primitive_type() {
        let mut result = Type::primitive_type_builder("foo", PhysicalType::INT32)
            .with_logical_type(Some(LogicalType::Integer {
                bit_width: 32,
                is_signed: true,
            }))
            .with_id(Some(0))
            .build();
        assert!(result.is_ok());

        if let Ok(tp) = result {
            assert!(tp.is_primitive());
            assert!(!tp.is_group());
            let basic_info = tp.get_basic_info();
            assert_eq!(basic_info.repetition(), Repetition::OPTIONAL);
            assert_eq!(
                basic_info.logical_type(),
                Some(LogicalType::Integer {
                    bit_width: 32,
                    is_signed: true
                })
            );
            assert_eq!(basic_info.converted_type(), ConvertedType::INT_32);
            assert_eq!(basic_info.id(), 0);
            match tp {
                Type::PrimitiveType { physical_type, .. } => {
                    assert_eq!(physical_type, PhysicalType::INT32);
                }
                _ => panic!(),
            }
        }

        // Test illegal inputs with logical type
        result = Type::primitive_type_builder("foo", PhysicalType::INT64)
            .with_repetition(Repetition::REPEATED)
            .with_logical_type(Some(LogicalType::Integer {
                is_signed: true,
                bit_width: 8,
            }))
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: Cannot annotate Integer { bit_width: 8, is_signed: true } from INT64 for field 'foo'"
            );
        }

        // Test illegal inputs with converted type
        result = Type::primitive_type_builder("foo", PhysicalType::INT64)
            .with_repetition(Repetition::REPEATED)
            .with_converted_type(ConvertedType::BSON)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: BSON cannot annotate field 'foo' because it is not a BYTE_ARRAY field"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::INT96)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::DECIMAL)
            .with_precision(-1)
            .with_scale(-1)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: DECIMAL can only annotate INT32, INT64, BYTE_ARRAY and FIXED_LEN_BYTE_ARRAY"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_logical_type(Some(LogicalType::Decimal {
                scale: 32,
                precision: 12,
            }))
            .with_precision(-1)
            .with_scale(-1)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: DECIMAL logical type scale 32 must match self.scale -1 for field 'foo'"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::DECIMAL)
            .with_precision(-1)
            .with_scale(-1)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: Invalid DECIMAL precision: -1"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::DECIMAL)
            .with_precision(0)
            .with_scale(-1)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: Invalid DECIMAL precision: 0"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::DECIMAL)
            .with_precision(1)
            .with_scale(-1)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(format!("{e}"), "Parquet error: Invalid DECIMAL scale: -1");
        }

        result = Type::primitive_type_builder("foo", PhysicalType::BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::DECIMAL)
            .with_precision(1)
            .with_scale(2)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: Invalid DECIMAL: scale (2) cannot be greater than precision (1)"
            );
        }

        // It is OK if precision == scale
        result = Type::primitive_type_builder("foo", PhysicalType::BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::DECIMAL)
            .with_precision(1)
            .with_scale(1)
            .build();
        assert!(result.is_ok());

        result = Type::primitive_type_builder("foo", PhysicalType::INT32)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::DECIMAL)
            .with_precision(18)
            .with_scale(2)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: Cannot represent INT32 as DECIMAL with precision 18"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::INT64)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::DECIMAL)
            .with_precision(32)
            .with_scale(2)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: Cannot represent INT64 as DECIMAL with precision 32"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::FIXED_LEN_BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::DECIMAL)
            .with_length(5)
            .with_precision(12)
            .with_scale(2)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: Cannot represent FIXED_LEN_BYTE_ARRAY as DECIMAL with length 5 and precision 12. The max precision can only be 11"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::INT64)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::UINT_8)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: UINT_8 cannot annotate field 'foo' because it is not a INT32 field"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::INT32)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::TIME_MICROS)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: TIME_MICROS cannot annotate field 'foo' because it is not a INT64 field"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::INTERVAL)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: INTERVAL cannot annotate field 'foo' because it is not a FIXED_LEN_BYTE_ARRAY(12) field"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::FIXED_LEN_BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::INTERVAL)
            .with_length(1)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: INTERVAL cannot annotate field 'foo' because it is not a FIXED_LEN_BYTE_ARRAY(12) field"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::INT32)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::ENUM)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: ENUM cannot annotate field 'foo' because it is not a BYTE_ARRAY field"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::INT32)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::MAP)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: MAP cannot be applied to primitive field 'foo'"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::FIXED_LEN_BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::DECIMAL)
            .with_length(-1)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: Invalid FIXED_LEN_BYTE_ARRAY length: -1 for field 'foo'"
            );
        }

        result = Type::primitive_type_builder("foo", PhysicalType::FIXED_LEN_BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_logical_type(Some(LogicalType::Float16))
            .with_length(2)
            .build();
        assert!(result.is_ok());

        // Can't be other than FIXED_LEN_BYTE_ARRAY for physical type
        result = Type::primitive_type_builder("foo", PhysicalType::FLOAT)
            .with_repetition(Repetition::REQUIRED)
            .with_logical_type(Some(LogicalType::Float16))
            .with_length(2)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: Cannot annotate Float16 from FLOAT for field 'foo'"
            );
        }

        // Must have length 2
        result = Type::primitive_type_builder("foo", PhysicalType::FIXED_LEN_BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_logical_type(Some(LogicalType::Float16))
            .with_length(4)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: FLOAT16 cannot annotate field 'foo' because it is not a FIXED_LEN_BYTE_ARRAY(2) field"
            );
        }

        // Must have length 16
        result = Type::primitive_type_builder("foo", PhysicalType::FIXED_LEN_BYTE_ARRAY)
            .with_repetition(Repetition::REQUIRED)
            .with_logical_type(Some(LogicalType::Uuid))
            .with_length(15)
            .build();
        assert!(result.is_err());
        if let Err(e) = result {
            assert_eq!(
                format!("{e}"),
                "Parquet error: UUID cannot annotate field 'foo' because it is not a FIXED_LEN_BYTE_ARRAY(16) field"
            );
        }
    }

    #[test]
    fn test_group_type() {
        let f1 = Type::primitive_type_builder("f1", PhysicalType::INT32)
            .with_converted_type(ConvertedType::INT_32)
            .with_id(Some(0))
            .build();
        assert!(f1.is_ok());
        let f2 = Type::primitive_type_builder("f2", PhysicalType::BYTE_ARRAY)
            .with_converted_type(ConvertedType::UTF8)
            .with_id(Some(1))
            .build();
        assert!(f2.is_ok());

        let fields = vec![Arc::new(f1.unwrap()), Arc::new(f2.unwrap())];

        let result = Type::group_type_builder("foo")
            .with_repetition(Repetition::REPEATED)
            .with_logical_type(Some(LogicalType::List))
            .with_fields(fields)
            .with_id(Some(1))
            .build();
        assert!(result.is_ok());

        let tp = result.unwrap();
        let basic_info = tp.get_basic_info();
        assert!(tp.is_group());
        assert!(!tp.is_primitive());
        assert_eq!(basic_info.repetition(), Repetition::REPEATED);
        assert_eq!(basic_info.logical_type(), Some(LogicalType::List));
        assert_eq!(basic_info.converted_type(), ConvertedType::LIST);
        assert_eq!(basic_info.id(), 1);
        assert_eq!(tp.get_fields().len(), 2);
        assert_eq!(tp.get_fields()[0].name(), "f1");
        assert_eq!(tp.get_fields()[1].name(), "f2");
    }

    #[test]
    fn test_column_descriptor() {
        let result = test_column_descriptor_helper();
        assert!(
            result.is_ok(),
            "Expected result to be OK but got err:\n {}",
            result.unwrap_err()
        );
    }

    fn test_column_descriptor_helper() -> Result<()> {
        let tp = Type::primitive_type_builder("name", PhysicalType::BYTE_ARRAY)
            .with_converted_type(ConvertedType::UTF8)
            .build()?;

        let descr = ColumnDescriptor::new(Arc::new(tp), 4, 1, ColumnPath::from("name"));

        assert_eq!(descr.path(), &ColumnPath::from("name"));
        assert_eq!(descr.converted_type(), ConvertedType::UTF8);
        assert_eq!(descr.physical_type(), PhysicalType::BYTE_ARRAY);
        assert_eq!(descr.max_def_level(), 4);
        assert_eq!(descr.max_rep_level(), 1);
        assert_eq!(descr.name(), "name");
        assert_eq!(descr.type_length(), -1);
        assert_eq!(descr.type_precision(), -1);
        assert_eq!(descr.type_scale(), -1);

        Ok(())
    }

    #[test]
    fn test_schema_descriptor() {
        let result = test_schema_descriptor_helper();
        assert!(
            result.is_ok(),
            "Expected result to be OK but got err:\n {}",
            result.unwrap_err()
        );
    }

    // A helper fn to avoid handling the results from type creation
    fn test_schema_descriptor_helper() -> Result<()> {
        let mut fields = vec![];

        let inta = Type::primitive_type_builder("a", PhysicalType::INT32)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::INT_32)
            .build()?;
        fields.push(Arc::new(inta));
        let intb = Type::primitive_type_builder("b", PhysicalType::INT64)
            .with_converted_type(ConvertedType::INT_64)
            .build()?;
        fields.push(Arc::new(intb));
        let intc = Type::primitive_type_builder("c", PhysicalType::BYTE_ARRAY)
            .with_repetition(Repetition::REPEATED)
            .with_converted_type(ConvertedType::UTF8)
            .build()?;
        fields.push(Arc::new(intc));

        // 3-level list encoding
        let item1 = Type::primitive_type_builder("item1", PhysicalType::INT64)
            .with_repetition(Repetition::REQUIRED)
            .with_converted_type(ConvertedType::INT_64)
            .build()?;
        let item2 = Type::primitive_type_builder("item2", PhysicalType::BOOLEAN).build()?;
        let item3 = Type::primitive_type_builder("item3", PhysicalType::INT32)
            .with_repetition(Repetition::REPEATED)
            .with_converted_type(ConvertedType::INT_32)
            .build()?;
        let list = Type::group_type_builder("records")
            .with_repetition(Repetition::REPEATED)
            .with_converted_type(ConvertedType::LIST)
            .with_fields(vec![Arc::new(item1), Arc::new(item2), Arc::new(item3)])
            .build()?;
        let bag = Type::group_type_builder("bag")
            .with_repetition(Repetition::OPTIONAL)
            .with_fields(vec![Arc::new(list)])
            .build()?;
        fields.push(Arc::new(bag));

        let schema = Type::group_type_builder("schema")
            .with_repetition(Repetition::REPEATED)
            .with_fields(fields)
            .build()?;
        let descr = SchemaDescriptor::new(Arc::new(schema));

        let nleaves = 6;
        assert_eq!(descr.num_columns(), nleaves);

        //                             mdef mrep
        // required int32 a            0    0
        // optional int64 b            1    0
        // repeated byte_array c       1    1
        // optional group bag          1    0
        //   repeated group records    2    1
        //     required int64 item1    2    1
        //     optional boolean item2  3    1
        //     repeated int32 item3    3    2
        let ex_max_def_levels = [0, 1, 1, 2, 3, 3];
        let ex_max_rep_levels = [0, 0, 1, 1, 1, 2];

        for i in 0..nleaves {
            let col = descr.column(i);
            assert_eq!(col.max_def_level(), ex_max_def_levels[i], "{i}");
            assert_eq!(col.max_rep_level(), ex_max_rep_levels[i], "{i}");
        }

        assert_eq!(descr.column(0).path().string(), "a");
        assert_eq!(descr.column(1).path().string(), "b");
        assert_eq!(descr.column(2).path().string(), "c");
        assert_eq!(descr.column(3).path().string(), "bag.records.item1");
        assert_eq!(descr.column(4).path().string(), "bag.records.item2");
        assert_eq!(descr.column(5).path().string(), "bag.records.item3");

        assert_eq!(descr.get_column_root(0).name(), "a");
        assert_eq!(descr.get_column_root(3).name(), "bag");
        assert_eq!(descr.get_column_root(4).name(), "bag");
        assert_eq!(descr.get_column_root(5).name(), "bag");

        Ok(())
    }

    #[test]
    fn test_schema_build_tree_def_rep_levels() {
        let message_type = "
    message spark_schema {
      REQUIRED INT32 a;
      OPTIONAL group b {
        OPTIONAL INT32 _1;
        OPTIONAL INT32 _2;
      }
      OPTIONAL group c (LIST) {
        REPEATED group list {
          OPTIONAL INT32 element;
        }
      }
    }
    ";
        let schema = parse_message_type(message_type).expect("should parse schema");
        let descr = SchemaDescriptor::new(Arc::new(schema));
        // required int32 a
        assert_eq!(descr.column(0).max_def_level(), 0);
        assert_eq!(descr.column(0).max_rep_level(), 0);
        // optional int32 b._1
        assert_eq!(descr.column(1).max_def_level(), 2);
        assert_eq!(descr.column(1).max_rep_level(), 0);
        // optional int32 b._2
        assert_eq!(descr.column(2).max_def_level(), 2);
        assert_eq!(descr.column(2).max_rep_level(), 0);
        // repeated optional int32 c.list.element
        assert_eq!(descr.column(3).max_def_level(), 3);
        assert_eq!(descr.column(3).max_rep_level(), 1);
    }

    #[test]
    #[should_panic(expected = "Cannot call get_physical_type() on a non-primitive type")]
    fn test_get_physical_type_panic() {
        let list = Type::group_type_builder("records")
            .with_repetition(Repetition::REPEATED)
            .build()
            .unwrap();
        list.get_physical_type();
    }

    #[test]
    fn test_get_physical_type_primitive() {
        let f = Type::primitive_type_builder("f", PhysicalType::INT64)
            .build()
            .unwrap();
        assert_eq!(f.get_physical_type(), PhysicalType::INT64);

        let f = Type::primitive_type_builder("f", PhysicalType::BYTE_ARRAY)
            .build()
            .unwrap();
        assert_eq!(f.get_physical_type(), PhysicalType::BYTE_ARRAY);
    }

    #[test]
    fn test_check_contains_primitive_primitive() {
        // OK
        let f1 = Type::primitive_type_builder("f", PhysicalType::INT32)
            .build()
            .unwrap();
        let f2 = Type::primitive_type_builder("f", PhysicalType::INT32)
            .build()
            .unwrap();
        assert!(f1.check_contains(&f2));

        // OK: different logical type does not affect check_contains
        let f1 = Type::primitive_type_builder("f", PhysicalType::INT32)
            .with_converted_type(ConvertedType::UINT_8)
            .build()
            .unwrap();
        let f2 = Type::primitive_type_builder("f", PhysicalType::INT32)
            .with_converted_type(ConvertedType::UINT_16)
            .build()
            .unwrap();
        assert!(f1.check_contains(&f2));

        // KO: different name
        let f1 = Type::primitive_type_builder("f1", PhysicalType::INT32)
            .build()
            .unwrap();
        let f2 = Type::primitive_type_builder("f2", PhysicalType::INT32)
            .build()
            .unwrap();
        assert!(!f1.check_contains(&f2));

        // KO: different type
        let f1 = Type::primitive_type_builder("f", PhysicalType::INT32)
            .build()
            .unwrap();
        let f2 = Type::primitive_type_builder("f", PhysicalType::INT64)
            .build()
            .unwrap();
        assert!(!f1.check_contains(&f2));

        // KO: different repetition
        let f1 = Type::primitive_type_builder("f", PhysicalType::INT32)
            .with_repetition(Repetition::REQUIRED)
            .build()
            .unwrap();
        let f2 = Type::primitive_type_builder("f", PhysicalType::INT32)
            .with_repetition(Repetition::OPTIONAL)
            .build()
            .unwrap();
        assert!(!f1.check_contains(&f2));
    }

    // function to create a new group type for testing
    fn test_new_group_type(name: &str, repetition: Repetition, types: Vec<Type>) -> Type {
        Type::group_type_builder(name)
            .with_repetition(repetition)
            .with_fields(types.into_iter().map(Arc::new).collect())
            .build()
            .unwrap()
    }

    #[test]
    fn test_check_contains_group_group() {
        // OK: should match okay with empty fields
        let f1 = Type::group_type_builder("f").build().unwrap();
        let f2 = Type::group_type_builder("f").build().unwrap();
        assert!(f1.check_contains(&f2));
        assert!(!f1.is_optional());

        // OK: fields match
        let f1 = test_new_group_type(
            "f",
            Repetition::REPEATED,
            vec![
                Type::primitive_type_builder("f1", PhysicalType::INT32)
                    .build()
                    .unwrap(),
                Type::primitive_type_builder("f2", PhysicalType::INT64)
                    .build()
                    .unwrap(),
            ],
        );
        let f2 = test_new_group_type(
            "f",
            Repetition::REPEATED,
            vec![
                Type::primitive_type_builder("f1", PhysicalType::INT32)
                    .build()
                    .unwrap(),
                Type::primitive_type_builder("f2", PhysicalType::INT64)
                    .build()
                    .unwrap(),
            ],
        );
        assert!(f1.check_contains(&f2));

        // OK: subset of fields
        let f1 = test_new_group_type(
            "f",
            Repetition::REPEATED,
            vec![
                Type::primitive_type_builder("f1", PhysicalType::INT32)
                    .build()
                    .unwrap(),
                Type::primitive_type_builder("f2", PhysicalType::INT64)
                    .build()
                    .unwrap(),
            ],
        );
        let f2 = test_new_group_type(
            "f",
            Repetition::REPEATED,
            vec![Type::primitive_type_builder("f2", PhysicalType::INT64)
                .build()
                .unwrap()],
        );
        assert!(f1.check_contains(&f2));

        // KO: different name
        let f1 = Type::group_type_builder("f1").build().unwrap();
        let f2 = Type::group_type_builder("f2").build().unwrap();
        assert!(!f1.check_contains(&f2));

        // KO: different repetition
        let f1 = Type::group_type_builder("f")
            .with_repetition(Repetition::OPTIONAL)
            .build()
            .unwrap();
        let f2 = Type::group_type_builder("f")
            .with_repetition(Repetition::REPEATED)
            .build()
            .unwrap();
        assert!(!f1.check_contains(&f2));

        // KO: different fields
        let f1 = test_new_group_type(
            "f",
            Repetition::REPEATED,
            vec![
                Type::primitive_type_builder("f1", PhysicalType::INT32)
                    .build()
                    .unwrap(),
                Type::primitive_type_builder("f2", PhysicalType::INT64)
                    .build()
                    .unwrap(),
            ],
        );
        let f2 = test_new_group_type(
            "f",
            Repetition::REPEATED,
            vec![
                Type::primitive_type_builder("f1", PhysicalType::INT32)
                    .build()
                    .unwrap(),
                Type::primitive_type_builder("f2", PhysicalType::BOOLEAN)
                    .build()
                    .unwrap(),
            ],
        );
        assert!(!f1.check_contains(&f2));

        // KO: different fields
        let f1 = test_new_group_type(
            "f",
            Repetition::REPEATED,
            vec![
                Type::primitive_type_builder("f1", PhysicalType::INT32)
                    .build()
                    .unwrap(),
                Type::primitive_type_builder("f2", PhysicalType::INT64)
                    .build()
                    .unwrap(),
            ],
        );
        let f2 = test_new_group_type(
            "f",
            Repetition::REPEATED,
            vec![Type::primitive_type_builder("f3", PhysicalType::INT32)
                .build()
                .unwrap()],
        );
        assert!(!f1.check_contains(&f2));
    }

    #[test]
    fn test_check_contains_group_primitive() {
        // KO: should not match
        let f1 = Type::group_type_builder("f").build().unwrap();
        let f2 = Type::primitive_type_builder("f", PhysicalType::INT64)
            .build()
            .unwrap();
        assert!(!f1.check_contains(&f2));
        assert!(!f2.check_contains(&f1));

        // KO: should not match when primitive field is part of group type
        let f1 = test_new_group_type(
            "f",
            Repetition::REPEATED,
            vec![Type::primitive_type_builder("f1", PhysicalType::INT32)
                .build()
                .unwrap()],
        );
        let f2 = Type::primitive_type_builder("f1", PhysicalType::INT32)
            .build()
            .unwrap();
        assert!(!f1.check_contains(&f2));
        assert!(!f2.check_contains(&f1));

        // OK: match nested types
        let f1 = test_new_group_type(
            "a",
            Repetition::REPEATED,
            vec![
                test_new_group_type(
                    "b",
                    Repetition::REPEATED,
                    vec![Type::primitive_type_builder("c", PhysicalType::INT32)
                        .build()
                        .unwrap()],
                ),
                Type::primitive_type_builder("d", PhysicalType::INT64)
                    .build()
                    .unwrap(),
                Type::primitive_type_builder("e", PhysicalType::BOOLEAN)
                    .build()
                    .unwrap(),
            ],
        );
        let f2 = test_new_group_type(
            "a",
            Repetition::REPEATED,
            vec![test_new_group_type(
                "b",
                Repetition::REPEATED,
                vec![Type::primitive_type_builder("c", PhysicalType::INT32)
                    .build()
                    .unwrap()],
            )],
        );
        assert!(f1.check_contains(&f2)); // should match
        assert!(!f2.check_contains(&f1)); // should fail
    }

    #[test]
    fn test_schema_type_thrift_conversion_err() {
        let schema = Type::primitive_type_builder("col", PhysicalType::INT32)
            .build()
            .unwrap();
        let thrift_schema = to_thrift(&schema);
        assert!(thrift_schema.is_err());
        if let Err(e) = thrift_schema {
            assert_eq!(
                format!("{e}"),
                "Parquet error: Root schema must be Group type"
            );
        }
    }

    #[test]
    fn test_schema_type_thrift_conversion() {
        let message_type = "
    message conversions {
      REQUIRED INT64 id;
      OPTIONAL FIXED_LEN_BYTE_ARRAY (2) f16 (FLOAT16);
      OPTIONAL group int_array_Array (LIST) {
        REPEATED group list {
          OPTIONAL group element (LIST) {
            REPEATED group list {
              OPTIONAL INT32 element;
            }
          }
        }
      }
      OPTIONAL group int_map (MAP) {
        REPEATED group map (MAP_KEY_VALUE) {
          REQUIRED BYTE_ARRAY key (UTF8);
          OPTIONAL INT32 value;
        }
      }
      OPTIONAL group int_Map_Array (LIST) {
        REPEATED group list {
          OPTIONAL group g (MAP) {
            REPEATED group map (MAP_KEY_VALUE) {
              REQUIRED BYTE_ARRAY key (UTF8);
              OPTIONAL group value {
                OPTIONAL group H {
                  OPTIONAL group i (LIST) {
                    REPEATED group list {
                      OPTIONAL DOUBLE element;
                    }
                  }
                }
              }
            }
          }
        }
      }
      OPTIONAL group nested_struct {
        OPTIONAL INT32 A;
        OPTIONAL group b (LIST) {
          REPEATED group list {
            REQUIRED FIXED_LEN_BYTE_ARRAY (16) element;
          }
        }
      }
    }
    ";
        let expected_schema = parse_message_type(message_type).unwrap();
        let thrift_schema = to_thrift(&expected_schema).unwrap();
        let result_schema = from_thrift(&thrift_schema).unwrap();
        assert_eq!(result_schema, Arc::new(expected_schema));
    }

    #[test]
    fn test_schema_type_thrift_conversion_decimal() {
        let message_type = "
    message decimals {
      OPTIONAL INT32 field0;
      OPTIONAL INT64 field1 (DECIMAL (18, 2));
      OPTIONAL FIXED_LEN_BYTE_ARRAY (16) field2 (DECIMAL (38, 18));
      OPTIONAL BYTE_ARRAY field3 (DECIMAL (9));
    }
    ";
        let expected_schema = parse_message_type(message_type).unwrap();
        let thrift_schema = to_thrift(&expected_schema).unwrap();
        let result_schema = from_thrift(&thrift_schema).unwrap();
        assert_eq!(result_schema, Arc::new(expected_schema));
    }

    // Tests schema conversion from thrift, when num_children is set to Some(0) for a
    // primitive type.
    #[test]
    fn test_schema_from_thrift_with_num_children_set() {
        // schema definition written by parquet-cpp version 1.3.2-SNAPSHOT
        let message_type = "
    message schema {
      OPTIONAL BYTE_ARRAY id (UTF8);
      OPTIONAL BYTE_ARRAY name (UTF8);
      OPTIONAL BYTE_ARRAY message (UTF8);
      OPTIONAL INT32 type (UINT_8);
      OPTIONAL INT64 author_time (TIMESTAMP_MILLIS);
      OPTIONAL INT64 __index_level_0__;
    }
    ";

        let expected_schema = parse_message_type(message_type).unwrap();
        let mut thrift_schema = to_thrift(&expected_schema).unwrap();
        // Change all of None to Some(0)
        for elem in &mut thrift_schema[..] {
            if elem.num_children.is_none() {
                elem.num_children = Some(0);
            }
        }

        let result_schema = from_thrift(&thrift_schema).unwrap();
        assert_eq!(result_schema, Arc::new(expected_schema));
    }

    // Sometimes parquet-cpp sets repetition level for the root node, which is against
    // the format definition, but we need to handle it by setting it back to None.
    #[test]
    fn test_schema_from_thrift_root_has_repetition() {
        // schema definition written by parquet-cpp version 1.3.2-SNAPSHOT
        let message_type = "
    message schema {
      OPTIONAL BYTE_ARRAY a (UTF8);
      OPTIONAL INT32 b (UINT_8);
    }
    ";

        let expected_schema = parse_message_type(message_type).unwrap();
        let mut thrift_schema = to_thrift(&expected_schema).unwrap();
        thrift_schema[0].repetition_type = Some(Repetition::REQUIRED.into());

        let result_schema = from_thrift(&thrift_schema).unwrap();
        assert_eq!(result_schema, Arc::new(expected_schema));
    }

    #[test]
    fn test_schema_from_thrift_group_has_no_child() {
        let message_type = "message schema {}";

        let expected_schema = parse_message_type(message_type).unwrap();
        let mut thrift_schema = to_thrift(&expected_schema).unwrap();
        thrift_schema[0].repetition_type = Some(Repetition::REQUIRED.into());

        let result_schema = from_thrift(&thrift_schema).unwrap();
        assert_eq!(result_schema, Arc::new(expected_schema));
    }
}