1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Macros needed by the `mz_lowertest` crate.
//!
//! TODO: eliminate macros in favor of using `walkabout`?

use proc_macro::TokenStream;
use quote::{quote, ToTokens};
use syn::{parse, Data, DeriveInput, Fields};

/// Types defined outside of Materialize used to build test objects.
const EXTERNAL_TYPES: &[&str] = &["String", "FixedOffset", "Tz", "NaiveDateTime", "Regex"];
const SUPPORTED_ANGLE_TYPES: &[&str] = &["Vec", "Box", "Option"];

/// Macro generating an implementation for the trait MzReflect
#[proc_macro_derive(MzReflect, attributes(mzreflect))]
pub fn mzreflect_derive(input: TokenStream) -> TokenStream {
    // The intended trait implementation is
    // ```
    // impl MzReflect for #name {
    //    /// Adds the information required to create an object of this type
    //    /// to `enum_dict` if it is an enum and to `struct_dict` if it is a
    //    /// struct.
    //    fn add_to_reflected_type_info(
    //        rti: &mut mz_lowertest::ReflectedTypeInfo
    //    )
    //    {
    //       // if the object is an enum
    //       if rti.enum_dict.contains_key(#name) { return; }
    //       use std::collections::BTreeMap;
    //       let mut result = BTreeMap::new();
    //       // repeat line below for all variants
    //       result.insert(variant_name, (<field_names>, <field_types>));
    //       rti.enum_dist.insert(<enum_name>, result);
    //
    //       // if the object is a struct
    //       if rti.struct_dict.contains_key(#name) { return ; }
    //       rti.struct_dict.insert(#name, (<field_names>, <field_types>));
    //
    //       // for all object types, repeat line below for each field type
    //       // that should be recursively added to the reflected type info
    //       <field_type>::add_reflect_type_info(enum_dict, struct_dict);
    //    }
    // }
    // ```
    let ast: DeriveInput = parse(input).unwrap();

    let object_name = &ast.ident;
    let object_name_as_string = object_name.to_string();
    let mut referenced_types = Vec::new();
    let add_object_info = if let Data::Enum(enumdata) = &ast.data {
        let variants = enumdata
            .variants
            .iter()
            .map(|v| {
                let variant_name = v.ident.to_string();
                let (names, types_as_string, mut types_as_syn) = get_fields_names_types(&v.fields);
                referenced_types.append(&mut types_as_syn);
                quote! {
                    result.insert(#variant_name, (vec![#(#names),*], vec![#(#types_as_string),*]));
                }
            })
            .collect::<Vec<_>>();
        quote! {
            if rti.enum_dict.contains_key(#object_name_as_string) { return; }
            use std::collections::BTreeMap;
            let mut result = BTreeMap::new();
            #(#variants)*
            rti.enum_dict.insert(#object_name_as_string, result);
        }
    } else if let Data::Struct(structdata) = &ast.data {
        let (names, types_as_string, mut types_as_syn) = get_fields_names_types(&structdata.fields);
        referenced_types.append(&mut types_as_syn);
        quote! {
            if rti.struct_dict.contains_key(#object_name_as_string) { return; }
            rti.struct_dict.insert(#object_name_as_string,
                (vec![#(#names),*], vec![#(#types_as_string),*]));
        }
    } else {
        unreachable!("Not a struct or enum")
    };

    let referenced_types = referenced_types
        .into_iter()
        .flat_map(extract_reflected_type)
        .map(|typ| quote! { #typ::add_to_reflected_type_info(rti); })
        .collect::<Vec<_>>();

    let gen = quote! {
      impl mz_lowertest::MzReflect for #object_name {
        fn add_to_reflected_type_info(
            rti: &mut mz_lowertest::ReflectedTypeInfo
        )
        {
           #add_object_info
           #(#referenced_types)*
        }
      }
    };
    gen.into()
}

/* #region Helper methods */

/// Gets the names and the types of the fields of an enum variant or struct.
///
/// The result has three parts:
/// 1. The names of the fields. If the fields are unnamed, this is empty.
/// 2. The types of the fields as strings.
/// 3. The types of the fields as [syn::Type]
///
/// Fields with the attribute `#[mzreflect(ignore)]` are not returned.
fn get_fields_names_types(f: &syn::Fields) -> (Vec<String>, Vec<String>, Vec<&syn::Type>) {
    match f {
        Fields::Named(named_fields) => {
            let (names, types): (Vec<_>, Vec<_>) = named_fields
                .named
                .iter()
                .flat_map(get_field_name_type)
                .unzip();
            let (types_as_string, types_as_syn) = types.into_iter().unzip();
            (names, types_as_string, types_as_syn)
        }
        Fields::Unnamed(unnamed_fields) => {
            let (types_as_string, types_as_syn): (Vec<_>, Vec<_>) = unnamed_fields
                .unnamed
                .iter()
                .flat_map(get_field_name_type)
                .map(|(_, (type_as_string, type_as_syn))| (type_as_string, type_as_syn))
                .unzip();
            (Vec::new(), types_as_string, types_as_syn)
        }
        Fields::Unit => (Vec::new(), Vec::new(), Vec::new()),
    }
}

/// Gets the name and the type of a field of an enum variant or struct.
///
/// The result has three parts:
/// 1. The name of the field. If the field is unnamed, this is empty.
/// 2. The type of the field as a string.
/// 3. The type of the field as [syn::Type].
///
/// Returns None if the field has the attribute `#[mzreflect(ignore)]`.
fn get_field_name_type(f: &syn::Field) -> Option<(String, (String, &syn::Type))> {
    for attr in f.attrs.iter() {
        if let Ok(syn::Meta::List(meta_list)) = attr.parse_meta() {
            if meta_list.path.segments.last().unwrap().ident == "mzreflect" {
                for nested_meta in meta_list.nested.iter() {
                    if let syn::NestedMeta::Meta(syn::Meta::Path(path)) = nested_meta {
                        if path.segments.last().unwrap().ident == "ignore" {
                            return None;
                        }
                    }
                }
            }
        }
    }
    let name = if let Some(name) = f.ident.as_ref() {
        name.to_string()
    } else {
        "".to_string()
    };
    Some((name, (get_type_as_string(&f.ty), &f.ty)))
}

/// Gets the type name from the [`syn::Type`] object
fn get_type_as_string(t: &syn::Type) -> String {
    // convert type back into a token stream and then into a string
    let mut token_stream = proc_macro2::TokenStream::new();
    t.to_tokens(&mut token_stream);
    token_stream.to_string()
}

/// If `t` is a supported type, extracts from `t` types defined in a
/// Materialize package.
///
/// Returns an empty vector if `t` is of an unsupported type.
///
/// Supported types are:
/// A plain path type A -> extracts A
/// `Box<A>`, `Vec<A>`, `Option<A>`, `[A]` -> extracts A
/// Tuple (A, (B, C)) -> extracts A, B, C.
/// Remove A, B, C from expected results if they are primitive types or listed
/// in [EXTERNAL_TYPES].
fn extract_reflected_type(t: &syn::Type) -> Vec<&syn::Type> {
    match t {
        syn::Type::Group(tg) => {
            return extract_reflected_type(&tg.elem);
        }
        syn::Type::Path(tp) => {
            let last_segment = tp.path.segments.last().unwrap();
            let type_name = last_segment.ident.to_string();
            match &last_segment.arguments {
                syn::PathArguments::None => {
                    if EXTERNAL_TYPES.contains(&&type_name[..])
                        || type_name.starts_with(|c: char| c.is_lowercase())
                    {
                        // Ignore primitive types and types
                        return Vec::new();
                    } else {
                        return vec![t];
                    }
                }
                syn::PathArguments::AngleBracketed(args) => {
                    if SUPPORTED_ANGLE_TYPES.contains(&&type_name[..]) {
                        return args
                            .args
                            .iter()
                            .flat_map(|arg| {
                                if let syn::GenericArgument::Type(typ) = arg {
                                    extract_reflected_type(typ)
                                } else {
                                    Vec::new()
                                }
                            })
                            .collect::<Vec<_>>();
                    }
                }
                _ => {}
            }
        }
        syn::Type::Tuple(tt) => {
            return tt
                .elems
                .iter()
                .flat_map(extract_reflected_type)
                .collect::<Vec<_>>();
        }
        syn::Type::Slice(ts) => {
            return extract_reflected_type(&ts.elem);
        }
        _ => {}
    }
    Vec::new()
}

/* #endregion */