1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Macros needed by the `mz_lowertest` crate.
//!
//! TODO: eliminate macros in favor of using `walkabout`?
use proc_macro::TokenStream;
use quote::{quote, ToTokens};
use syn::{parse, Data, DeriveInput, Fields};
/// Types defined outside of Materialize used to build test objects.
const EXTERNAL_TYPES: &[&str] = &["String", "FixedOffset", "Tz", "NaiveDateTime", "Regex"];
const SUPPORTED_ANGLE_TYPES: &[&str] = &["Vec", "Box", "Option"];
/// Macro generating an implementation for the trait MzReflect
#[proc_macro_derive(MzReflect, attributes(mzreflect))]
pub fn mzreflect_derive(input: TokenStream) -> TokenStream {
// The intended trait implementation is
// ```
// impl MzReflect for #name {
// /// Adds the information required to create an object of this type
// /// to `enum_dict` if it is an enum and to `struct_dict` if it is a
// /// struct.
// fn add_to_reflected_type_info(
// rti: &mut mz_lowertest::ReflectedTypeInfo
// )
// {
// // if the object is an enum
// if rti.enum_dict.contains_key(#name) { return; }
// use std::collections::BTreeMap;
// let mut result = BTreeMap::new();
// // repeat line below for all variants
// result.insert(variant_name, (<field_names>, <field_types>));
// rti.enum_dist.insert(<enum_name>, result);
//
// // if the object is a struct
// if rti.struct_dict.contains_key(#name) { return ; }
// rti.struct_dict.insert(#name, (<field_names>, <field_types>));
//
// // for all object types, repeat line below for each field type
// // that should be recursively added to the reflected type info
// <field_type>::add_reflect_type_info(enum_dict, struct_dict);
// }
// }
// ```
let ast: DeriveInput = parse(input).unwrap();
let object_name = &ast.ident;
let object_name_as_string = object_name.to_string();
let mut referenced_types = Vec::new();
let add_object_info = if let Data::Enum(enumdata) = &ast.data {
let variants = enumdata
.variants
.iter()
.map(|v| {
let variant_name = v.ident.to_string();
let (names, types_as_string, mut types_as_syn) = get_fields_names_types(&v.fields);
referenced_types.append(&mut types_as_syn);
quote! {
result.insert(#variant_name, (vec![#(#names),*], vec![#(#types_as_string),*]));
}
})
.collect::<Vec<_>>();
quote! {
if rti.enum_dict.contains_key(#object_name_as_string) { return; }
use std::collections::BTreeMap;
let mut result = BTreeMap::new();
#(#variants)*
rti.enum_dict.insert(#object_name_as_string, result);
}
} else if let Data::Struct(structdata) = &ast.data {
let (names, types_as_string, mut types_as_syn) = get_fields_names_types(&structdata.fields);
referenced_types.append(&mut types_as_syn);
quote! {
if rti.struct_dict.contains_key(#object_name_as_string) { return; }
rti.struct_dict.insert(#object_name_as_string,
(vec![#(#names),*], vec![#(#types_as_string),*]));
}
} else {
unreachable!("Not a struct or enum")
};
let referenced_types = referenced_types
.into_iter()
.flat_map(extract_reflected_type)
.map(|typ| quote! { #typ::add_to_reflected_type_info(rti); })
.collect::<Vec<_>>();
let gen = quote! {
impl mz_lowertest::MzReflect for #object_name {
fn add_to_reflected_type_info(
rti: &mut mz_lowertest::ReflectedTypeInfo
)
{
#add_object_info
#(#referenced_types)*
}
}
};
gen.into()
}
/* #region Helper methods */
/// Gets the names and the types of the fields of an enum variant or struct.
///
/// The result has three parts:
/// 1. The names of the fields. If the fields are unnamed, this is empty.
/// 2. The types of the fields as strings.
/// 3. The types of the fields as [syn::Type]
///
/// Fields with the attribute `#[mzreflect(ignore)]` are not returned.
fn get_fields_names_types(f: &syn::Fields) -> (Vec<String>, Vec<String>, Vec<&syn::Type>) {
match f {
Fields::Named(named_fields) => {
let (names, types): (Vec<_>, Vec<_>) = named_fields
.named
.iter()
.flat_map(get_field_name_type)
.unzip();
let (types_as_string, types_as_syn) = types.into_iter().unzip();
(names, types_as_string, types_as_syn)
}
Fields::Unnamed(unnamed_fields) => {
let (types_as_string, types_as_syn): (Vec<_>, Vec<_>) = unnamed_fields
.unnamed
.iter()
.flat_map(get_field_name_type)
.map(|(_, (type_as_string, type_as_syn))| (type_as_string, type_as_syn))
.unzip();
(Vec::new(), types_as_string, types_as_syn)
}
Fields::Unit => (Vec::new(), Vec::new(), Vec::new()),
}
}
/// Gets the name and the type of a field of an enum variant or struct.
///
/// The result has three parts:
/// 1. The name of the field. If the field is unnamed, this is empty.
/// 2. The type of the field as a string.
/// 3. The type of the field as [syn::Type].
///
/// Returns None if the field has the attribute `#[mzreflect(ignore)]`.
fn get_field_name_type(f: &syn::Field) -> Option<(String, (String, &syn::Type))> {
for attr in f.attrs.iter() {
if let Ok(syn::Meta::List(meta_list)) = attr.parse_meta() {
if meta_list.path.segments.last().unwrap().ident == "mzreflect" {
for nested_meta in meta_list.nested.iter() {
if let syn::NestedMeta::Meta(syn::Meta::Path(path)) = nested_meta {
if path.segments.last().unwrap().ident == "ignore" {
return None;
}
}
}
}
}
}
let name = if let Some(name) = f.ident.as_ref() {
name.to_string()
} else {
"".to_string()
};
Some((name, (get_type_as_string(&f.ty), &f.ty)))
}
/// Gets the type name from the [`syn::Type`] object
fn get_type_as_string(t: &syn::Type) -> String {
// convert type back into a token stream and then into a string
let mut token_stream = proc_macro2::TokenStream::new();
t.to_tokens(&mut token_stream);
token_stream.to_string()
}
/// If `t` is a supported type, extracts from `t` types defined in a
/// Materialize package.
///
/// Returns an empty vector if `t` is of an unsupported type.
///
/// Supported types are:
/// A plain path type A -> extracts A
/// `Box<A>`, `Vec<A>`, `Option<A>`, `[A]` -> extracts A
/// Tuple (A, (B, C)) -> extracts A, B, C.
/// Remove A, B, C from expected results if they are primitive types or listed
/// in [EXTERNAL_TYPES].
fn extract_reflected_type(t: &syn::Type) -> Vec<&syn::Type> {
match t {
syn::Type::Group(tg) => {
return extract_reflected_type(&tg.elem);
}
syn::Type::Path(tp) => {
let last_segment = tp.path.segments.last().unwrap();
let type_name = last_segment.ident.to_string();
match &last_segment.arguments {
syn::PathArguments::None => {
if EXTERNAL_TYPES.contains(&&type_name[..])
|| type_name.starts_with(|c: char| c.is_lowercase())
{
// Ignore primitive types and types
return Vec::new();
} else {
return vec![t];
}
}
syn::PathArguments::AngleBracketed(args) => {
if SUPPORTED_ANGLE_TYPES.contains(&&type_name[..]) {
return args
.args
.iter()
.flat_map(|arg| {
if let syn::GenericArgument::Type(typ) = arg {
extract_reflected_type(typ)
} else {
Vec::new()
}
})
.collect::<Vec<_>>();
}
}
_ => {}
}
}
syn::Type::Tuple(tt) => {
return tt
.elems
.iter()
.flat_map(extract_reflected_type)
.collect::<Vec<_>>();
}
syn::Type::Slice(ts) => {
return extract_reflected_type(&ts.elem);
}
_ => {}
}
Vec::new()
}
/* #endregion */