1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Hoist literal values from maps wherever possible.
//!
//! This transform specifically looks for `MirRelationExpr::Map` operators
//! where any of the `ScalarExpr` expressions are literals. Whenever it
//! can, it lifts those expressions through or around operators.
//!
//! The main feature of this operator is that it allows transformations
//! to locally change the shape of operators, presenting fewer columns
//! when they are unused and replacing them with mapped default values.
//! The mapped default values can then be lifted and ideally absorbed.
//! This type of transformation is difficult to make otherwise, as it
//! is not easy to locally change the shape of relations.
use std::collections::BTreeMap;
use itertools::{zip_eq, Itertools};
use mz_expr::visit::Visit;
use mz_expr::JoinImplementation::IndexedFilter;
use mz_expr::{Id, JoinInputMapper, MirRelationExpr, MirScalarExpr, RECURSION_LIMIT};
use mz_ore::stack::{CheckedRecursion, RecursionGuard};
use mz_repr::{Row, RowPacker};
use crate::TransformCtx;
/// Hoist literal values from maps wherever possible.
#[derive(Debug)]
pub struct LiteralLifting {
recursion_guard: RecursionGuard,
}
impl Default for LiteralLifting {
fn default() -> LiteralLifting {
LiteralLifting {
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
}
impl CheckedRecursion for LiteralLifting {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl crate::Transform for LiteralLifting {
fn name(&self) -> &'static str {
"LiteralLifting"
}
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "literal_lifting")
)]
fn actually_perform_transform(
&self,
relation: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), crate::TransformError> {
let literals = self.action(relation, &mut BTreeMap::new())?;
if !literals.is_empty() {
// Literals return up the root should be re-installed.
*relation = relation.take_dangerous().map(literals);
}
mz_repr::explain::trace_plan(&*relation);
Ok(())
}
}
impl LiteralLifting {
/// Hoist literal values from maps wherever possible.
///
/// Returns a list of literal scalar expressions that must be appended
/// to the result before it can be correctly used. The intent is that
/// this action extracts a maximal set of literals from `relation`,
/// which can then often be propagated further up and inlined in any
/// expressions as it goes.
///
/// In several cases, we only manage to extract literals from the final
/// columns. But in those cases where it is possible, permutations are
/// used to move all of the literals to the final columns, and then rely
/// on projection hoisting to allow the these literals to move up the AST.
///
/// TODO: The literals from the final columns are returned as the result
/// of this method, whereas literals in intermediate columns are extracted
/// using permutations. The reason for this different treatment is that in
/// some cases it is not possible to remove the projection of the
/// permutation, preventing the lifting of a literal that could otherwise
/// be lifted, the following example being of them:
///
/// %0 =
/// | Constant (1, 2, 3) (2, 2, 3)
///
/// %1 =
/// | Constant (4, 3, 3) (4, 5, 3)
///
/// %2 =
/// | Union %0 %1
///
/// If final literals weren't treated differently, the example above would
/// lead to the following transformed plan:
///
/// %0 =
/// | Constant (1) (2)
/// | Map 2, 3
/// | Project (#0..#2)
///
/// %1 =
/// | Constant (3) (5)
/// | Map 4, 3
/// | Project (#1, #0, #2)
///
/// %2 =
/// | Union %0 %1
///
/// Since the union branches have different projections, they cannot be
/// removed, preventing literal 3 from being lifted further.
///
/// In theory, all literals could be treated in the same way if this method
/// returned both a list of literals and a projection vector, making the
/// caller have to deal with the reshuffling.
/// (see <https://github.com/MaterializeInc/database-issues/issues/2055>)
///
pub fn action(
&self,
relation: &mut MirRelationExpr,
// Map from names to literals required for appending.
gets: &mut BTreeMap<Id, Vec<MirScalarExpr>>,
) -> Result<Vec<MirScalarExpr>, crate::TransformError> {
self.checked_recur(|_| {
match relation {
MirRelationExpr::Constant { rows, typ } => {
// From the back to the front, check if all values are identical.
let mut the_same = vec![true; typ.arity()];
if let Ok([(row, _cnt), rows @ ..]) = rows.as_deref_mut() {
let mut data = row.unpack();
assert_eq!(the_same.len(), data.len());
for (row, _cnt) in rows.iter() {
let other = row.unpack();
assert_eq!(the_same.len(), other.len());
for index in 0..the_same.len() {
the_same[index] = the_same[index] && (data[index] == other[index]);
}
}
let mut literals = Vec::new();
while the_same.last() == Some(&true) {
the_same.pop();
let datum = data.pop().unwrap();
let typum = typ.column_types.pop().unwrap();
literals.push(MirScalarExpr::literal_ok(datum, typum.scalar_type));
}
literals.reverse();
// Any subset of constant values can be extracted with a permute.
let remaining_common_literals = the_same.iter().filter(|e| **e).count();
if remaining_common_literals > 0 {
let final_arity = the_same.len() - remaining_common_literals;
let mut projected_literals = Vec::new();
let mut projection = Vec::new();
let mut new_column_types = Vec::new();
for (i, sameness) in the_same.iter().enumerate() {
if *sameness {
projection.push(final_arity + projected_literals.len());
projected_literals.push(MirScalarExpr::literal_ok(
data[i],
typ.column_types[i].scalar_type.clone(),
));
} else {
projection.push(new_column_types.len());
new_column_types.push(typ.column_types[i].clone());
}
}
typ.column_types = new_column_types;
// Tidy up the type information of `relation`.
for key in typ.keys.iter_mut() {
*key = key
.iter()
.filter(|x| !the_same.get(**x).unwrap_or(&true))
.map(|x| projection[*x])
.collect::<Vec<usize>>();
}
typ.keys.sort();
typ.keys.dedup();
let remove_extracted_literals = |row: &mut Row| {
let mut new_row = Row::default();
let mut packer = new_row.packer();
let data = row.unpack();
for i in 0..the_same.len() {
if !the_same[i] {
packer.push(data[i]);
}
}
*row = new_row;
};
remove_extracted_literals(row);
for (row, _cnt) in rows.iter_mut() {
remove_extracted_literals(row);
}
*relation = relation
.take_dangerous()
.map(projected_literals)
.project(projection);
} else if !literals.is_empty() {
// Tidy up the type information of `relation`.
for key in typ.keys.iter_mut() {
key.retain(|k| k < &data.len());
}
typ.keys.sort();
typ.keys.dedup();
RowPacker::for_existing_row(row).truncate_datums(typ.arity());
for (row, _cnt) in rows.iter_mut() {
RowPacker::for_existing_row(row).truncate_datums(typ.arity());
}
}
Ok(literals)
} else {
Ok(Vec::new())
}
}
MirRelationExpr::Get { id, typ, .. } => {
// A get expression may need to have literal expressions appended to it.
let literals = gets.get(id).cloned().unwrap_or_else(Vec::new);
if !literals.is_empty() {
// Correct the type of the `Get`, which has fewer columns,
// and not the same fields in its keys. It is ok to remove
// any columns from the keys, as them being literals meant
// that their distinctness was not what made anything a key.
for _ in 0..literals.len() {
typ.column_types.pop();
}
let columns = typ.column_types.len();
for key in typ.keys.iter_mut() {
key.retain(|k| k < &columns);
}
typ.keys.sort();
typ.keys.dedup();
}
Ok(literals)
}
MirRelationExpr::Let { id, value, body } => {
// Any literals appended to the `value` should be used
// at corresponding `Get`s throughout the `body`.
let literals = self.action(value, gets)?;
let id = Id::Local(*id);
if !literals.is_empty() {
let prior = gets.insert(id, literals);
assert!(!prior.is_some());
}
let result = self.action(body, gets);
gets.remove(&id);
result
}
MirRelationExpr::LetRec {
ids,
values,
limits: _,
body,
} => {
let recursive_ids = MirRelationExpr::recursive_ids(ids, values);
// Extend the context with empty `literals` vectors for all
// recursive IDs.
for local_id in ids.iter() {
if recursive_ids.contains(local_id) {
let literals = vec![];
let prior = gets.insert(Id::Local(*local_id), literals);
assert!(!prior.is_some());
}
}
// Descend into values and extend the context with their
// `literals` results.
for (local_id, value) in zip_eq(ids.iter(), values.iter_mut()) {
let literals = self.action(value, gets)?;
if recursive_ids.contains(local_id) {
// Literals lifted from a recursive binding should
// be re-installed at the top of the value.
if !literals.is_empty() {
*value = value.take_dangerous().map(literals);
}
} else {
// Literals lifted from a non-recursive binding can
// propagate to its call sites.
let prior = gets.insert(Id::Local(*local_id), literals);
assert!(!prior.is_some());
}
}
// Descend into body.
let result = self.action(body, gets)?;
// Remove all enclosing IDs from the context before
// returning the result.
for id in ids.iter() {
gets.remove(&Id::Local(*id));
}
Ok(result)
}
MirRelationExpr::Project { input, outputs } => {
// We do not want to lift literals around projections.
// Projections are the highest lifted operator and lifting
// literals around projections could cause us to fail to
// reach a fixed point under the transformations.
let mut literals = self.action(input, gets)?;
if !literals.is_empty() {
let input_arity = input.arity();
// For each input literal contains a vector with the `output` positions
// that references it. By putting data into a Vec and sorting, we
// guarantee a reliable order.
let mut used_literals = outputs
.iter()
.enumerate()
.filter(|(_, x)| **x >= input_arity)
.map(|(out_col, old_in_col)| (old_in_col - input_arity, out_col))
// group them to avoid adding duplicated literals
.into_group_map()
.drain()
.collect::<Vec<_>>();
if used_literals.len() != literals.len() {
used_literals.sort();
// Discard literals that are not projected
literals = used_literals
.iter()
.map(|(old_in_col, _)| literals[*old_in_col].clone())
.collect::<Vec<_>>();
// Update the references to the literal in `output`
for (new_in_col, (_old_in_col, out_cols)) in
used_literals.iter().enumerate()
{
for out_col in out_cols {
outputs[*out_col] = input_arity + new_in_col;
}
}
}
// If the literals need to be re-interleaved,
// we don't have much choice but to install a
// Map operator to do that under the project.
// Ideally this doesn't happen much, as projects
// get lifted too.
if !literals.is_empty() {
**input = input.take_dangerous().map(literals);
}
}
// Policy: Do not lift literals around projects.
Ok(Vec::new())
}
MirRelationExpr::Map { input, scalars } => {
let mut literals = self.action(input, gets)?;
// Make the map properly formed again.
literals.extend(scalars.iter().cloned());
*scalars = literals;
// Strip off literals at the end of `scalars`.
let mut result = Vec::new();
while scalars.last().map(|e| e.is_literal()) == Some(true) {
result.push(scalars.pop().unwrap());
}
result.reverse();
if scalars.is_empty() {
*relation = input.take_dangerous();
} else {
// Permute columns to put literals at end, if any, hope project lifted.
let literal_count = scalars.iter().filter(|e| e.is_literal()).count();
if literal_count != 0 {
let input_arity = input.arity();
let first_literal_id = input_arity + scalars.len() - literal_count;
let mut new_scalars = Vec::new();
let mut projected_literals = Vec::new();
let mut projection = (0..input_arity).collect::<Vec<usize>>();
for scalar in scalars.iter_mut() {
if scalar.is_literal() {
projection.push(first_literal_id + projected_literals.len());
projected_literals.push(scalar.clone());
} else {
let mut cloned_scalar = scalar.clone();
// Propagate literals through expressions and remap columns.
cloned_scalar.visit_mut_post(&mut |e| {
if let MirScalarExpr::Column(old_id) = e {
let new_id = projection[*old_id];
if new_id >= first_literal_id {
*e = projected_literals[new_id - first_literal_id]
.clone();
} else {
*old_id = new_id;
}
}
})?;
projection.push(input_arity + new_scalars.len());
new_scalars.push(cloned_scalar);
}
}
new_scalars.extend(projected_literals);
*relation = input.take_dangerous().map(new_scalars).project(projection);
}
}
Ok(result)
}
MirRelationExpr::FlatMap { input, func, exprs } => {
let literals = self.action(input, gets)?;
if !literals.is_empty() {
let input_arity = input.arity();
for expr in exprs.iter_mut() {
expr.visit_mut_post(&mut |e| {
if let MirScalarExpr::Column(c) = e {
if *c >= input_arity {
*e = literals[*c - input_arity].clone();
}
}
})?;
}
// Permute the literals around the columns added by FlatMap
let mut projection = (0..input_arity).collect::<Vec<usize>>();
let func_arity = func.output_arity();
projection
.extend((0..literals.len()).map(|x| input_arity + func_arity + x));
projection.extend((0..func_arity).map(|x| input_arity + x));
*relation = relation.take_dangerous().map(literals).project(projection);
}
Ok(Vec::new())
}
MirRelationExpr::Filter { input, predicates } => {
let literals = self.action(input, gets)?;
if !literals.is_empty() {
// We should be able to instantiate all uses of `literals`
// in predicates and then lift the `map` around the filter.
let input_arity = input.arity();
for expr in predicates.iter_mut() {
expr.visit_mut_post(&mut |e| {
if let MirScalarExpr::Column(c) = e {
if *c >= input_arity {
*e = literals[*c - input_arity].clone();
}
}
})?;
}
}
Ok(literals)
}
MirRelationExpr::Join {
inputs,
equivalences,
implementation,
} => {
if !matches!(implementation, IndexedFilter(..)) {
// before lifting, save the original shape of the inputs
let old_input_mapper = JoinInputMapper::new(inputs);
// lift literals from each input
let mut input_literals = Vec::new();
for mut input in inputs.iter_mut() {
let literals = self.action(input, gets)?;
// Do not propagate error literals beyond join inputs, since that may result
// in them being propagated to other inputs of the join and evaluated when
// they should not.
if literals.iter().any(|l| l.is_literal_err()) {
// Push the literal errors beyond any arrangement since otherwise JoinImplementation
// would add another arrangement on top leading to an infinite loop/stack overflow.
if let MirRelationExpr::ArrangeBy { input, .. } = &mut input {
**input = input.take_dangerous().map(literals);
} else {
*input = input.take_dangerous().map(literals);
}
input_literals.push(Vec::new());
} else {
input_literals.push(literals);
}
}
if input_literals.iter().any(|l| !l.is_empty()) {
*implementation = mz_expr::JoinImplementation::Unimplemented;
// We should be able to install any literals in the
// equivalence relations, and then lift all literals
// around the join using a project to re-order columns.
// Visit each expression in each equivalence class to either
// inline literals or update column references.
let new_input_mapper = JoinInputMapper::new(inputs);
for equivalence in equivalences.iter_mut() {
for expr in equivalence.iter_mut() {
expr.visit_mut_post(&mut |e| {
if let MirScalarExpr::Column(c) = e {
let (col, input) =
old_input_mapper.map_column_to_local(*c);
if col >= new_input_mapper.input_arity(input) {
// the column refers to a literal that
// has been promoted. inline it
*e = input_literals[input]
[col - new_input_mapper.input_arity(input)]
.clone()
} else {
// localize to the new join
*c = new_input_mapper
.map_column_to_global(col, input);
}
}
})?;
}
}
// We now determine a projection to shovel around all of
// the columns that puts the literals last. Where this is optional
// for other operators, it is mandatory here if we want to lift the
// literals through the join.
// The first literal column number starts at the last column
// of the new join. Increment the column number as literals
// get added.
let mut literal_column_number = new_input_mapper.total_columns();
let mut projection = Vec::new();
for input in 0..old_input_mapper.total_inputs() {
for column in old_input_mapper.local_columns(input) {
if column >= new_input_mapper.input_arity(input) {
projection.push(literal_column_number);
literal_column_number += 1;
} else {
projection.push(
new_input_mapper.map_column_to_global(column, input),
);
}
}
}
let literals = input_literals.into_iter().flatten().collect::<Vec<_>>();
// Bubble up literals if the projection is the
// identity.
if projection.iter().enumerate().all(|(col, &pos)| col == pos) {
return Ok(literals);
}
// Otherwise add map(literals) + project(projection)
// and bubble up an empty literals vector.
*relation = relation.take_dangerous().map(literals).project(projection);
}
}
Ok(Vec::new())
}
MirRelationExpr::Reduce {
input,
group_key,
aggregates,
monotonic: _,
expected_group_size: _,
} => {
let literals = self.action(input, gets)?;
if !literals.is_empty() {
// Reduce absorbs maps, and we should inline literals.
let input_arity = input.arity();
// Inline literals into group key expressions.
for expr in group_key.iter_mut() {
expr.visit_mut_post(&mut |e| {
if let MirScalarExpr::Column(c) = e {
if *c >= input_arity {
*e = literals[*c - input_arity].clone();
}
}
})?;
}
// Inline literals into aggregate value selector expressions.
for aggr in aggregates.iter_mut() {
aggr.expr.visit_mut_post(&mut |e| {
if let MirScalarExpr::Column(c) = e {
if *c >= input_arity {
*e = literals[*c - input_arity].clone();
}
}
})?;
}
}
let eval_constant_aggr = |aggr: &mz_expr::AggregateExpr| {
let temp = mz_repr::RowArena::new();
let mut eval = aggr.expr.eval(&[], &temp);
if let Ok(param) = eval {
eval = Ok(aggr.func.eval(Some(param), &temp));
}
MirScalarExpr::literal(
eval,
// This type information should be available in the `a.expr` literal,
// but extracting it with pattern matching seems awkward.
aggr.func.output_type(aggr.expr.typ(&[])).scalar_type,
)
};
// The only literals we think we can lift are those that are
// independent of the number of records; things like `Any`, `All`,
// `Min`, and `Max`.
let mut result = Vec::new();
while aggregates.last().map(|a| a.is_constant()) == Some(true) {
let aggr = aggregates.pop().unwrap();
result.push(eval_constant_aggr(&aggr));
}
if aggregates.is_empty() {
while group_key.last().map(|k| k.is_literal()) == Some(true) {
let key = group_key.pop().unwrap();
result.push(key);
}
}
result.reverse();
// Add a Map operator with the remaining literals so that they are lifted in
// the next invocation of this transform.
let non_literal_keys = group_key.iter().filter(|x| !x.is_literal()).count();
let non_constant_aggr = aggregates.iter().filter(|x| !x.is_constant()).count();
if non_literal_keys != group_key.len() || non_constant_aggr != aggregates.len()
{
let first_projected_literal: usize = non_literal_keys + non_constant_aggr;
let mut projection = Vec::new();
let mut projected_literals = Vec::new();
let mut new_group_key = Vec::new();
for key in group_key.drain(..) {
if key.is_literal() {
projection.push(first_projected_literal + projected_literals.len());
projected_literals.push(key);
} else {
projection.push(new_group_key.len());
new_group_key.push(key);
}
}
// The new group key without literals
*group_key = new_group_key;
let mut new_aggregates = Vec::new();
for aggr in aggregates.drain(..) {
if aggr.is_constant() {
projection.push(first_projected_literal + projected_literals.len());
projected_literals.push(eval_constant_aggr(&aggr));
} else {
projection.push(group_key.len() + new_aggregates.len());
new_aggregates.push(aggr);
}
}
// The new aggregates without constant ones
*aggregates = new_aggregates;
*relation = relation
.take_dangerous()
.map(projected_literals)
.project(projection);
}
Ok(result)
}
MirRelationExpr::TopK {
input,
group_key,
order_key,
limit,
offset: _,
monotonic: _,
expected_group_size: _,
} => {
let literals = self.action(input, gets)?;
if !literals.is_empty() {
// We should be able to lift literals out, as they affect neither
// grouping nor ordering. We should discard grouping and ordering
// that references the columns, though.
let input_arity = input.arity();
group_key.retain(|c| *c < input_arity);
order_key.retain(|o| o.column < input_arity);
// Inline literals into the limit expression.
if let Some(limit) = limit {
limit.visit_mut_post(&mut |e| {
if let MirScalarExpr::Column(c) = e {
if *c >= input_arity {
*e = literals[*c - input_arity].clone();
}
}
})?;
}
}
Ok(literals)
}
MirRelationExpr::Negate { input } => {
// Literals can just be lifted out of negate.
self.action(input, gets)
}
MirRelationExpr::Threshold { input } => {
// Literals can just be lifted out of threshold.
self.action(input, gets)
}
MirRelationExpr::Union { base, inputs } => {
let mut base_literals = self.action(base, gets)?;
let mut input_literals = vec![];
for input in inputs.iter_mut() {
input_literals.push(self.action(input, gets)?)
}
// We need to find the longest common suffix between all the arms of the union.
let mut suffix = Vec::new();
while !base_literals.is_empty()
&& input_literals
.iter()
.all(|lits| lits.last() == base_literals.last())
{
// Every arm agrees on the last value, so push it onto the shared suffix and
// remove it from each arm.
suffix.push(base_literals.last().unwrap().clone());
base_literals.pop();
for lits in input_literals.iter_mut() {
lits.pop();
}
}
// Because we pushed stuff onto the vector like a stack, we need to reverse it now.
suffix.reverse();
// Any remaining literals for each expression must be appended to that expression,
// while the shared suffix is returned to continue traveling upwards.
if !base_literals.is_empty() {
**base = base.take_dangerous().map(base_literals);
}
for (input, literals) in inputs.iter_mut().zip_eq(input_literals) {
if !literals.is_empty() {
*input = input.take_dangerous().map(literals);
}
}
Ok(suffix)
}
MirRelationExpr::ArrangeBy { input, keys } => {
// TODO(frank): Not sure if this is the right behavior,
// as we disrupt the set of used arrangements. Though,
// we are probably most likely to use arranged `Get`
// operators rather than those decorated with maps.
let literals = self.action(input, gets)?;
if !literals.is_empty() {
let input_arity = input.arity();
for key in keys.iter_mut() {
for expr in key.iter_mut() {
expr.visit_mut_post(&mut |e| {
if let MirScalarExpr::Column(c) = e {
if *c >= input_arity {
*e = literals[*c - input_arity].clone();
}
}
})?;
}
}
}
Ok(literals)
}
}
})
}
}