1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// Copyright (c) 2021 Anatoly Ikorsky
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.

use super::der;
use byteorder::{BigEndian, ByteOrder};
use num_bigint::BigUint;
use rand::Rng;
use sha1::{Digest, Sha1};

/// Padding operation trait.
pub trait Padding {
    /// Padding operation for `input` bytes, where `k` is the length of modulus in octets.
    fn pub_pad(&mut self, input: impl AsRef<[u8]>, k: usize) -> Vec<u8>;
}

/// Padding, as described in PKCS #1: RSA Encryption Version 1.5 (rfc2313).
#[derive(Debug)]
pub struct Pkcs1Padding<T> {
    rng: T,
}

impl<T> Pkcs1Padding<T> {
    pub fn new(rng: T) -> Self {
        Self { rng }
    }
}

impl<T: Rng> Padding for Pkcs1Padding<T> {
    fn pub_pad(&mut self, input: impl AsRef<[u8]>, k: usize) -> Vec<u8> {
        let input = input.as_ref();
        let input_len = input.len();
        assert!(
            input_len < k - 11,
            "The length of the data D shall not be more than k-11 octets"
        );

        let mut output = vec![0u8; k];

        output[0] = 0x00;
        output[1] = 0x02;
        let ps_len = k - 3 - input_len;

        for i in 0..ps_len {
            let x = loop {
                match self.rng.gen::<u8>() {
                    0x00 => continue,
                    x => break x,
                }
            };
            output[i + 2] = x;
        }

        output[2 + ps_len] = 0x00;
        output[2 + ps_len + 1..].copy_from_slice(input);
        output
    }
}

/// Padding, as described in PKCS #1: RSA Cryptography Specifications Version 2.0 (rfc2437).
#[derive(Debug)]
pub struct Pkcs1OaepPadding<T> {
    rng: T,
}

impl<T> Pkcs1OaepPadding<T> {
    /// Length of a SHA-1 hash digest.
    const HASH_LEN: usize = 20;

    pub fn new(rng: T) -> Self {
        Self { rng }
    }

    /// Mask Generation Function as defined in rfc2437.
    ///
    /// It will use SHA-1 as a hash function.
    fn mgf1(seed: &[u8], len: usize) -> Vec<u8> {
        if len as u64 > 2u64.pow(32) * Self::HASH_LEN as u64 {
            panic!("mask too long");
        }

        fn ceil_div(dividend: usize, divisor: usize) -> usize {
            let mut quotient = dividend / divisor;
            if dividend % divisor > 0 {
                quotient += 1;
            }
            quotient
        }

        let output = (0..ceil_div(len, Self::HASH_LEN))
            .map(|c| {
                let cs = &mut [0u8; 4];
                BigEndian::write_u32(cs, c as u32);
                Sha1::digest([seed, cs].concat()).to_vec()
            })
            .collect::<Vec<Vec<u8>>>()
            .concat();

        output[..len].into()
    }
}

impl<T: Rng> Padding for Pkcs1OaepPadding<T> {
    /// Will pad input according to PKCS #1 v2 with encoding parameters equal to `[]`.
    fn pub_pad(&mut self, input: impl AsRef<[u8]>, k: usize) -> Vec<u8> {
        let input = input.as_ref();
        // 1. Skip because encoding parameters == []
        // 2. If ||M|| > emLen-2hLen-1 then output "message too long" and stop.
        if input.len() > k - 2 * Self::HASH_LEN - 1 {
            panic!("message too long");
        }
        // 3. Generate an octet string PS consisting of emLen-||M||-2hLen-1 zero
        //    octets. The length of PS may be 0.
        let mut ps = vec![0; k - input.len() - 2 * Self::HASH_LEN - 2];
        ps.push(0x01);
        // 4. Let pHash = Hash(P), an octet string of length hLen.
        let p_hash = Sha1::digest([]).to_vec();
        // 5. Concatenate pHash, PS, the message M, and other padding to form a
        //    data block DB as: DB = pHash || PS || 01 || M
        let db = [&*p_hash, &*ps, input].concat();
        // 6. Generate a random octet string seed of length hLen.
        let seed: Vec<_> = (0..Self::HASH_LEN).map(|_| self.rng.gen()).collect();
        // 7. Let dbMask = MGF(seed, emLen-hLen).
        let db_mask = Self::mgf1(&seed, k - Self::HASH_LEN);
        // 8. Let maskedDB = DB \xor dbMask.
        let masked_db: Vec<_> = db.into_iter().zip(db_mask).map(|(a, b)| a ^ b).collect();
        // 9. Let seedMask = MGF(maskedDB, hLen).
        let seed_mask = Self::mgf1(&masked_db, Self::HASH_LEN);
        // 10. Let maskedSeed = seed \xor seedMask.
        let masked_seed: Vec<_> = seed
            .into_iter()
            .zip(seed_mask)
            .map(|(a, b)| a ^ b)
            .collect();
        // 11. Let EM = maskedSeed || maskedDB.
        [&*masked_seed, &*masked_db].concat()
    }
}

#[derive(Debug)]
pub struct PublicKey {
    modulus: BigUint,
    exponent: BigUint,
}

impl PublicKey {
    /// Basic constructor.
    pub fn new(modulus: BigUint, exponent: BigUint) -> PublicKey {
        PublicKey { modulus, exponent }
    }

    /// Will parse public key from pem representation.
    ///
    /// # Panic
    ///
    /// Will panic in case of bad pem data.
    pub fn from_pem(pem_data: impl AsRef<[u8]>) -> PublicKey {
        let (der, file_type) = der::pem_to_der(pem_data);
        let (modulus, exponent) = der::parse_pub_key(&der, file_type);
        PublicKey::new(modulus, exponent)
    }

    /// Returns number of octets in the modulus.
    pub fn num_octets(&self) -> usize {
        (self.modulus.bits() as usize + 6) >> 3
    }

    /// Returns modulus of the public key.
    pub fn modulus(&self) -> &BigUint {
        &self.modulus
    }

    /// Returns exponent of the public key.
    pub fn exponent(&self) -> &BigUint {
        &self.exponent
    }

    /// Will encrypt block with public key.
    ///
    /// # Panic
    ///
    /// Will panic if block is too long for key or padding.
    pub fn encrypt_block(&self, block: impl AsRef<[u8]>, mut pad: impl Padding) -> Vec<u8> {
        let enc_block = pad.pub_pad(block, self.num_octets());
        let enc_int = BigUint::from_bytes_be(&enc_block);
        let rsa = enc_int.modpow(self.exponent(), self.modulus());
        let mut rsa_bytes = rsa.to_bytes_be();
        // is this needed?
        while rsa_bytes.len() < self.num_octets() {
            rsa_bytes.insert(0, 0);
        }
        rsa_bytes
    }
}

#[cfg(test)]
mod tests {
    use std::io::Read;

    use super::*;
    use rand::RngCore;

    const SEED: &[u8; 64] = b"\x03\x2e\x45\x32\x6f\xa8\x59\xa7\x2e\xc2\x35\xac\xff\x92\x9b\x15\xd1\
    \x37\x2e\x30\xb2\x07\x25\x5f\x06\x11\xb8\xf7\x85\xd7\x64\x37\x41\x52\xe0\xac\x00\x9e\x50\x9e\
    \x7b\xa3\x0c\xd2\xf1\x77\x8e\x11\x3b\x64\xe1\x35\xcf\x4e\x22\x92\xc7\x5e\xfe\x52\x88\xed\xfd\
    \xa4";
    const MASK: &[u8; 128] =
        b"\x5f\x8d\xe1\x05\xb5\xe9\x6b\x2e\x49\x0d\xde\xcb\xd1\x47\xdd\x1d\xef\
    \x7e\x3b\x8e\x0e\x6a\x26\xeb\x7b\x95\x6c\xcb\x8b\x3b\xdc\x1c\xa9\x75\xbc\x57\xc3\x98\x9e\x8f\
    \xba\xd3\x1a\x22\x46\x55\xd8\x00\xc4\x69\x54\x84\x0f\xf3\x20\x52\xcd\xf0\xd6\x40\x56\x2b\xdf\
    \xad\xfa\x26\x3c\xfc\xcf\x3c\x52\xb2\x9f\x2a\xf4\xa1\x86\x99\x59\xbc\x77\xf8\x54\xcf\x15\xbd\
    \x7a\x25\x19\x29\x85\xa8\x42\xdb\xff\x8e\x13\xef\xee\x5b\x7e\x7e\x55\xbb\xe4\xd3\x89\x64\x7c\
    \x68\x6a\x9a\x9a\xb3\xfb\x88\x9b\x2d\x77\x67\xd3\x83\x7e\xea\x4e\x0a\x2f\x04";

    /// Replacement for the deprecated `rand::ReadRng`.
    struct Seed<'a>(&'a [u8]);

    impl<'a> RngCore for Seed<'a> {
        fn next_u32(&mut self) -> u32 {
            let mut buf = [0; 4];
            self.fill_bytes(&mut buf);
            u32::from_le_bytes(buf)
        }

        fn next_u64(&mut self) -> u64 {
            let mut buf = [0; 8];
            self.fill_bytes(&mut buf);
            u64::from_le_bytes(buf)
        }

        fn fill_bytes(&mut self, dest: &mut [u8]) {
            self.try_fill_bytes(dest).unwrap_or_else(|err| {
                panic!(
                    "reading random bytes from Read implementation failed; error: {}",
                    err
                )
            });
        }

        fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
            if dest.is_empty() {
                return Ok(());
            }
            self.0.read_exact(dest).map_err(|e| rand::Error::new(e))
        }
    }

    #[test]
    fn mgf1() {
        let mask = Pkcs1OaepPadding::<()>::mgf1(&SEED[..], 128);
        assert_eq!(mask, &MASK[..]);
    }

    #[test]
    fn rsa_pkcs() {
        let modulus = vec![
            0xa8, 0xb3, 0xb2, 0x84, 0xaf, 0x8e, 0xb5, 0x0b, 0x38, 0x70, 0x34, 0xa8, 0x60, 0xf1,
            0x46, 0xc4, 0x91, 0x9f, 0x31, 0x87, 0x63, 0xcd, 0x6c, 0x55, 0x98, 0xc8, 0xae, 0x48,
            0x11, 0xa1, 0xe0, 0xab, 0xc4, 0xc7, 0xe0, 0xb0, 0x82, 0xd6, 0x93, 0xa5, 0xe7, 0xfc,
            0xed, 0x67, 0x5c, 0xf4, 0x66, 0x85, 0x12, 0x77, 0x2c, 0x0c, 0xbc, 0x64, 0xa7, 0x42,
            0xc6, 0xc6, 0x30, 0xf5, 0x33, 0xc8, 0xcc, 0x72, 0xf6, 0x2a, 0xe8, 0x33, 0xc4, 0x0b,
            0xf2, 0x58, 0x42, 0xe9, 0x84, 0xbb, 0x78, 0xbd, 0xbf, 0x97, 0xc0, 0x10, 0x7d, 0x55,
            0xbd, 0xb6, 0x62, 0xf5, 0xc4, 0xe0, 0xfa, 0xb9, 0x84, 0x5c, 0xb5, 0x14, 0x8e, 0xf7,
            0x39, 0x2d, 0xd3, 0xaa, 0xff, 0x93, 0xae, 0x1e, 0x6b, 0x66, 0x7b, 0xb3, 0xd4, 0x24,
            0x76, 0x16, 0xd4, 0xf5, 0xba, 0x10, 0xd4, 0xcf, 0xd2, 0x26, 0xde, 0x88, 0xd3, 0x9f,
            0x16, 0xfb,
        ];
        let exponent = vec![0x01, 0x00, 0x01];

        let msg1 = vec![
            0x66, 0x28, 0x19, 0x4e, 0x12, 0x07, 0x3d, 0xb0, 0x3b, 0xa9, 0x4c, 0xda, 0x9e, 0xf9,
            0x53, 0x23, 0x97, 0xd5, 0x0d, 0xba, 0x79, 0xb9, 0x87, 0x00, 0x4a, 0xfe, 0xfe, 0x34,
        ];
        let seed1 = vec![
            0x01, 0x00, 0x00, 0x00, 0x73, 0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x00, 0xae, 0x00,
            0x00, 0x00, 0x38, 0x00, 0x00, 0x00, 0x75, 0x00, 0x00, 0x00, 0xd5, 0x00, 0x00, 0x00,
            0xf8, 0x00, 0x00, 0x00, 0x71, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xf8, 0x00,
            0x00, 0x00, 0xcc, 0x00, 0x00, 0x00, 0x4f, 0x00, 0x00, 0x00, 0xa9, 0x00, 0x00, 0x00,
            0xb9, 0x00, 0x00, 0x00, 0xbc, 0x00, 0x00, 0x00, 0x15, 0x00, 0x00, 0x00, 0x6b, 0x00,
            0x00, 0x00, 0xb0, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00,
            0xfc, 0x00, 0x00, 0x00, 0xcd, 0x00, 0x00, 0x00, 0xb2, 0x00, 0x00, 0x00, 0xf4, 0x00,
            0x00, 0x00, 0xf1, 0x00, 0x00, 0x00, 0x1e, 0x00, 0x00, 0x00, 0x90, 0x00, 0x00, 0x00,
            0x5b, 0x00, 0x00, 0x00, 0xd3, 0x00, 0x00, 0x00, 0xa1, 0x00, 0x00, 0x00, 0x55, 0x00,
            0x00, 0x00, 0xd3, 0x00, 0x00, 0x00, 0x76, 0x00, 0x00, 0x00, 0xf5, 0x00, 0x00, 0x00,
            0x93, 0x00, 0x00, 0x00, 0xbd, 0x00, 0x00, 0x00, 0x73, 0x00, 0x00, 0x00, 0x04, 0x00,
            0x00, 0x00, 0x21, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x74, 0x00, 0x00, 0x00,
            0xeb, 0x00, 0x00, 0x00, 0xa0, 0x00, 0x00, 0x00, 0x8a, 0x00, 0x00, 0x00, 0x5e, 0x00,
            0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0xbc, 0x00, 0x00, 0x00, 0xcc, 0x00, 0x00, 0x00,
            0xb4, 0x00, 0x00, 0x00, 0xc9, 0x00, 0x00, 0x00, 0xd3, 0x00, 0x00, 0x00, 0x88, 0x00,
            0x00, 0x00, 0x2a, 0x00, 0x00, 0x00, 0x93, 0x00, 0x00, 0x00, 0xa5, 0x00, 0x00, 0x00,
            0x4d, 0x00, 0x00, 0x00, 0xb0, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0xf5, 0x00,
            0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0xd1, 0x00, 0x00, 0x00, 0x63, 0x00, 0x00, 0x00,
            0x38, 0x00, 0x00, 0x00, 0xb6, 0x00, 0x00, 0x00, 0xb7, 0x00, 0x00, 0x00, 0xce, 0x00,
            0x00, 0x00, 0x16, 0x00, 0x00, 0x00, 0xdc, 0x00, 0x00, 0x00, 0x7f, 0x00, 0x00, 0x00,
            0x4b, 0x00, 0x00, 0x00, 0xbf, 0x00, 0x00, 0x00, 0x9a, 0x00, 0x00, 0x00, 0x96, 0x00,
            0x00, 0x00, 0xb5, 0x00, 0x00, 0x00, 0x97, 0x00, 0x00, 0x00, 0x72, 0x00, 0x00, 0x00,
            0xd6, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x6e, 0x00, 0x00, 0x00, 0x97, 0x00,
            0x00, 0x00, 0x47, 0x00, 0x00, 0x00, 0xc7, 0x00, 0x00, 0x00, 0x64, 0x00, 0x00, 0x00,
            0x9b, 0x00, 0x00, 0x00, 0xf9, 0x00, 0x00, 0x00, 0xe0, 0x00, 0x00, 0x00, 0x83, 0x00,
            0x00, 0x00, 0xdb, 0x00, 0x00, 0x00, 0x98, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00,
            0x84, 0x00, 0x00, 0x00, 0xa9, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0x00, 0xab, 0x00,
            0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x6f, 0x00, 0x00, 0x00,
        ];
        let cipher_text1 = vec![
            0x50, 0xb4, 0xc1, 0x41, 0x36, 0xbd, 0x19, 0x8c, 0x2f, 0x3c, 0x3e, 0xd2, 0x43, 0xfc,
            0xe0, 0x36, 0xe1, 0x68, 0xd5, 0x65, 0x17, 0x98, 0x4a, 0x26, 0x3c, 0xd6, 0x64, 0x92,
            0xb8, 0x08, 0x04, 0xf1, 0x69, 0xd2, 0x10, 0xf2, 0xb9, 0xbd, 0xfb, 0x48, 0xb1, 0x2f,
            0x9e, 0xa0, 0x50, 0x09, 0xc7, 0x7d, 0xa2, 0x57, 0xcc, 0x60, 0x0c, 0xce, 0xfe, 0x3a,
            0x62, 0x83, 0x78, 0x9d, 0x8e, 0xa0, 0xe6, 0x07, 0xac, 0x58, 0xe2, 0x69, 0x0e, 0xc4,
            0xeb, 0xc1, 0x01, 0x46, 0xe8, 0xcb, 0xaa, 0x5e, 0xd4, 0xd5, 0xcc, 0xe6, 0xfe, 0x7b,
            0x0f, 0xf9, 0xef, 0xc1, 0xea, 0xbb, 0x56, 0x4d, 0xbf, 0x49, 0x82, 0x85, 0xf4, 0x49,
            0xee, 0x61, 0xdd, 0x7b, 0x42, 0xee, 0x5b, 0x58, 0x92, 0xcb, 0x90, 0x60, 0x1f, 0x30,
            0xcd, 0xa0, 0x7b, 0xf2, 0x64, 0x89, 0x31, 0x0b, 0xcd, 0x23, 0xb5, 0x28, 0xce, 0xab,
            0x3c, 0x31,
        ];

        let public_key = PublicKey::new(
            BigUint::from_bytes_be(&modulus),
            BigUint::from_bytes_be(&exponent),
        );

        let rng = Seed(&*seed1);
        let pad = Pkcs1Padding::new(rng);

        let cipher_text = public_key.encrypt_block(msg1, pad);
        assert_eq!(cipher_text, cipher_text1);
    }

    #[test]
    fn rsa_oaep() {
        let modulus = vec![
            0xbb, 0xf8, 0x2f, 0x09, 0x06, 0x82, 0xce, 0x9c, 0x23, 0x38, 0xac, 0x2b, 0x9d, 0xa8,
            0x71, 0xf7, 0x36, 0x8d, 0x07, 0xee, 0xd4, 0x10, 0x43, 0xa4, 0x40, 0xd6, 0xb6, 0xf0,
            0x74, 0x54, 0xf5, 0x1f, 0xb8, 0xdf, 0xba, 0xaf, 0x03, 0x5c, 0x02, 0xab, 0x61, 0xea,
            0x48, 0xce, 0xeb, 0x6f, 0xcd, 0x48, 0x76, 0xed, 0x52, 0x0d, 0x60, 0xe1, 0xec, 0x46,
            0x19, 0x71, 0x9d, 0x8a, 0x5b, 0x8b, 0x80, 0x7f, 0xaf, 0xb8, 0xe0, 0xa3, 0xdf, 0xc7,
            0x37, 0x72, 0x3e, 0xe6, 0xb4, 0xb7, 0xd9, 0x3a, 0x25, 0x84, 0xee, 0x6a, 0x64, 0x9d,
            0x06, 0x09, 0x53, 0x74, 0x88, 0x34, 0xb2, 0x45, 0x45, 0x98, 0x39, 0x4e, 0xe0, 0xaa,
            0xb1, 0x2d, 0x7b, 0x61, 0xa5, 0x1f, 0x52, 0x7a, 0x9a, 0x41, 0xf6, 0xc1, 0x68, 0x7f,
            0xe2, 0x53, 0x72, 0x98, 0xca, 0x2a, 0x8f, 0x59, 0x46, 0xf8, 0xe5, 0xfd, 0x09, 0x1d,
            0xbd, 0xcb,
        ];
        let exponent = vec![0x11];
        let msg = vec![
            0xd4, 0x36, 0xe9, 0x95, 0x69, 0xfd, 0x32, 0xa7, 0xc8, 0xa0, 0x5b, 0xbc, 0x90, 0xd3,
            0x2c, 0x49,
        ];
        let seed: Vec<u8> = vec![
            0xaa, 0x00, 0x00, 0x00, 0xfd, 0x00, 0x00, 0x00, 0x12, 0x00, 0x00, 0x00, 0xf6, 0x00,
            0x00, 0x00, 0x59, 0x00, 0x00, 0x00, 0xca, 0x00, 0x00, 0x00, 0xe6, 0x00, 0x00, 0x00,
            0x34, 0x00, 0x00, 0x00, 0x89, 0x00, 0x00, 0x00, 0xb4, 0x00, 0x00, 0x00, 0x79, 0x00,
            0x00, 0x00, 0xe5, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x6d, 0x00, 0x00, 0x00,
            0xde, 0x00, 0x00, 0x00, 0xc2, 0x00, 0x00, 0x00, 0xf0, 0x00, 0x00, 0x00, 0x6c, 0x00,
            0x00, 0x00, 0xb5, 0x00, 0x00, 0x00, 0x8f, 0x00, 0x00, 0x00,
        ];
        let correct_cipher_text = vec![
            0x12, 0x53, 0xe0, 0x4d, 0xc0, 0xa5, 0x39, 0x7b, 0xb4, 0x4a, 0x7a, 0xb8, 0x7e, 0x9b,
            0xf2, 0xa0, 0x39, 0xa3, 0x3d, 0x1e, 0x99, 0x6f, 0xc8, 0x2a, 0x94, 0xcc, 0xd3, 0x00,
            0x74, 0xc9, 0x5d, 0xf7, 0x63, 0x72, 0x20, 0x17, 0x06, 0x9e, 0x52, 0x68, 0xda, 0x5d,
            0x1c, 0x0b, 0x4f, 0x87, 0x2c, 0xf6, 0x53, 0xc1, 0x1d, 0xf8, 0x23, 0x14, 0xa6, 0x79,
            0x68, 0xdf, 0xea, 0xe2, 0x8d, 0xef, 0x04, 0xbb, 0x6d, 0x84, 0xb1, 0xc3, 0x1d, 0x65,
            0x4a, 0x19, 0x70, 0xe5, 0x78, 0x3b, 0xd6, 0xeb, 0x96, 0xa0, 0x24, 0xc2, 0xca, 0x2f,
            0x4a, 0x90, 0xfe, 0x9f, 0x2e, 0xf5, 0xc9, 0xc1, 0x40, 0xe5, 0xbb, 0x48, 0xda, 0x95,
            0x36, 0xad, 0x87, 0x00, 0xc8, 0x4f, 0xc9, 0x13, 0x0a, 0xde, 0xa7, 0x4e, 0x55, 0x8d,
            0x51, 0xa7, 0x4d, 0xdf, 0x85, 0xd8, 0xb5, 0x0d, 0xe9, 0x68, 0x38, 0xd6, 0x06, 0x3e,
            0x09, 0x55,
        ];

        let public_key = PublicKey::new(
            BigUint::from_bytes_be(&modulus),
            BigUint::from_bytes_be(&exponent),
        );

        let rng = Seed(&*seed);
        let pad = Pkcs1OaepPadding::new(rng);

        let cipher_text = public_key.encrypt_block(msg, pad);
        assert_eq!(cipher_text, correct_cipher_text);
    }
}