mz_persist_client/
cache.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! A cache of [PersistClient]s indexed by [PersistLocation]s.

use std::any::Any;
use std::collections::btree_map::Entry;
use std::collections::BTreeMap;
use std::fmt::Debug;
use std::future::Future;
use std::sync::{Arc, RwLock, TryLockError, Weak};
use std::time::{Duration, Instant};

use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use mz_ore::instrument;
use mz_ore::metrics::MetricsRegistry;
use mz_ore::task::{AbortOnDropHandle, JoinHandle};
use mz_ore::url::SensitiveUrl;
use mz_persist::cfg::{BlobConfig, ConsensusConfig};
use mz_persist::location::{
    Blob, Consensus, ExternalError, Tasked, VersionedData, BLOB_GET_LIVENESS_KEY,
    CONSENSUS_HEAD_LIVENESS_KEY,
};
use mz_persist_types::{Codec, Codec64};
use timely::progress::Timestamp;
use tokio::sync::{Mutex, OnceCell};
use tracing::debug;

use crate::async_runtime::IsolatedRuntime;
use crate::error::{CodecConcreteType, CodecMismatch};
use crate::internal::cache::BlobMemCache;
use crate::internal::machine::retry_external;
use crate::internal::metrics::{LockMetrics, Metrics, MetricsBlob, MetricsConsensus, ShardMetrics};
use crate::internal::state::TypedState;
use crate::internal::watch::StateWatchNotifier;
use crate::rpc::{PubSubClientConnection, PubSubSender, ShardSubscriptionToken};
use crate::schema::SchemaCacheMaps;
use crate::{Diagnostics, PersistClient, PersistConfig, PersistLocation, ShardId};

/// A cache of [PersistClient]s indexed by [PersistLocation]s.
///
/// There should be at most one of these per process. All production
/// PersistClients should be created through this cache.
///
/// This is because, in production, persist is heavily limited by the number of
/// server-side Postgres/Aurora connections. This cache allows PersistClients to
/// share, for example, these Postgres connections.
#[derive(Debug)]
pub struct PersistClientCache {
    /// The tunable knobs for persist.
    pub cfg: PersistConfig,
    pub(crate) metrics: Arc<Metrics>,
    blob_by_uri: Mutex<BTreeMap<SensitiveUrl, (RttLatencyTask, Arc<dyn Blob>)>>,
    consensus_by_uri: Mutex<BTreeMap<SensitiveUrl, (RttLatencyTask, Arc<dyn Consensus>)>>,
    isolated_runtime: Arc<IsolatedRuntime>,
    pub(crate) state_cache: Arc<StateCache>,
    pubsub_sender: Arc<dyn PubSubSender>,
    _pubsub_receiver_task: JoinHandle<()>,
}

#[derive(Debug)]
struct RttLatencyTask(#[allow(dead_code)] AbortOnDropHandle<()>);

impl PersistClientCache {
    /// Returns a new [PersistClientCache].
    pub fn new<F>(cfg: PersistConfig, registry: &MetricsRegistry, pubsub: F) -> Self
    where
        F: FnOnce(&PersistConfig, Arc<Metrics>) -> PubSubClientConnection,
    {
        let metrics = Arc::new(Metrics::new(&cfg, registry));
        let pubsub_client = pubsub(&cfg, Arc::clone(&metrics));

        let state_cache = Arc::new(StateCache::new(
            &cfg,
            Arc::clone(&metrics),
            Arc::clone(&pubsub_client.sender),
        ));
        let _pubsub_receiver_task = crate::rpc::subscribe_state_cache_to_pubsub(
            Arc::clone(&state_cache),
            pubsub_client.receiver,
        );
        let isolated_runtime = IsolatedRuntime::new(cfg.isolated_runtime_worker_threads);

        PersistClientCache {
            cfg,
            metrics,
            blob_by_uri: Mutex::new(BTreeMap::new()),
            consensus_by_uri: Mutex::new(BTreeMap::new()),
            isolated_runtime: Arc::new(isolated_runtime),
            state_cache,
            pubsub_sender: pubsub_client.sender,
            _pubsub_receiver_task,
        }
    }

    /// A test helper that returns a [PersistClientCache] disconnected from
    /// metrics.
    pub fn new_no_metrics() -> Self {
        Self::new(
            PersistConfig::new_for_tests(),
            &MetricsRegistry::new(),
            |_, _| PubSubClientConnection::noop(),
        )
    }

    /// Returns the [PersistConfig] being used by this cache.
    pub fn cfg(&self) -> &PersistConfig {
        &self.cfg
    }

    /// Returns persist `Metrics`.
    pub fn metrics(&self) -> &Arc<Metrics> {
        &self.metrics
    }

    /// Returns `ShardMetrics` for the given shard.
    pub fn shard_metrics(&self, shard_id: &ShardId, name: &str) -> Arc<ShardMetrics> {
        self.metrics.shards.shard(shard_id, name)
    }

    /// Clears the state cache, allowing for tests with disconnected states.
    ///
    /// Only exposed for testing.
    pub fn clear_state_cache(&mut self) {
        self.state_cache = Arc::new(StateCache::new(
            &self.cfg,
            Arc::clone(&self.metrics),
            Arc::clone(&self.pubsub_sender),
        ))
    }

    /// Returns a new [PersistClient] for interfacing with persist shards made
    /// durable to the given [PersistLocation].
    ///
    /// The same `location` may be used concurrently from multiple processes.
    #[instrument(level = "debug")]
    pub async fn open(&self, location: PersistLocation) -> Result<PersistClient, ExternalError> {
        let blob = self.open_blob(location.blob_uri).await?;
        let consensus = self.open_consensus(location.consensus_uri).await?;
        PersistClient::new(
            self.cfg.clone(),
            blob,
            consensus,
            Arc::clone(&self.metrics),
            Arc::clone(&self.isolated_runtime),
            Arc::clone(&self.state_cache),
            Arc::clone(&self.pubsub_sender),
        )
    }

    // No sense in measuring rtt latencies more often than this.
    const PROMETHEUS_SCRAPE_INTERVAL: Duration = Duration::from_secs(60);

    async fn open_consensus(
        &self,
        consensus_uri: SensitiveUrl,
    ) -> Result<Arc<dyn Consensus>, ExternalError> {
        let mut consensus_by_uri = self.consensus_by_uri.lock().await;
        let consensus = match consensus_by_uri.entry(consensus_uri) {
            Entry::Occupied(x) => Arc::clone(&x.get().1),
            Entry::Vacant(x) => {
                // Intentionally hold the lock, so we don't double connect under
                // concurrency.
                let consensus = ConsensusConfig::try_from(
                    x.key(),
                    Box::new(self.cfg.clone()),
                    self.metrics.postgres_consensus.clone(),
                )?;
                let consensus =
                    retry_external(&self.metrics.retries.external.consensus_open, || {
                        consensus.clone().open()
                    })
                    .await;
                let consensus =
                    Arc::new(MetricsConsensus::new(consensus, Arc::clone(&self.metrics)));
                let consensus = Arc::new(Tasked(consensus));
                let task = consensus_rtt_latency_task(
                    Arc::clone(&consensus),
                    Arc::clone(&self.metrics),
                    Self::PROMETHEUS_SCRAPE_INTERVAL,
                )
                .await;
                Arc::clone(
                    &x.insert((RttLatencyTask(task.abort_on_drop()), consensus))
                        .1,
                )
            }
        };
        Ok(consensus)
    }

    async fn open_blob(&self, blob_uri: SensitiveUrl) -> Result<Arc<dyn Blob>, ExternalError> {
        let mut blob_by_uri = self.blob_by_uri.lock().await;
        let blob = match blob_by_uri.entry(blob_uri) {
            Entry::Occupied(x) => Arc::clone(&x.get().1),
            Entry::Vacant(x) => {
                // Intentionally hold the lock, so we don't double connect under
                // concurrency.
                let blob = BlobConfig::try_from(
                    x.key(),
                    Box::new(self.cfg.clone()),
                    self.metrics.s3_blob.clone(),
                    Arc::clone(&self.cfg.configs),
                )
                .await?;
                let blob = retry_external(&self.metrics.retries.external.blob_open, || {
                    blob.clone().open()
                })
                .await;
                let blob = Arc::new(MetricsBlob::new(blob, Arc::clone(&self.metrics)));
                let blob = Arc::new(Tasked(blob));
                let task = blob_rtt_latency_task(
                    Arc::clone(&blob),
                    Arc::clone(&self.metrics),
                    Self::PROMETHEUS_SCRAPE_INTERVAL,
                )
                .await;
                // This is intentionally "outside" (wrapping) MetricsBlob so
                // that we don't include cached responses in blob metrics.
                let blob = BlobMemCache::new(&self.cfg, Arc::clone(&self.metrics), blob);
                Arc::clone(&x.insert((RttLatencyTask(task.abort_on_drop()), blob)).1)
            }
        };
        Ok(blob)
    }
}

/// Starts a task to periodically measure the persist-observed latency to
/// consensus.
///
/// This is a task, rather than something like looking at the latencies of prod
/// traffic, so that we minimize any issues around Futures not being polled
/// promptly (as can and does happen with the Timely-polled Futures).
///
/// The caller is responsible for shutdown via aborting the `JoinHandle`.
///
/// No matter whether we wrap MetricsConsensus before or after we start up the
/// rtt latency task, there's the possibility for it being confusing at some
/// point. Err on the side of more data (including the latency measurements) to
/// start.
#[allow(clippy::unused_async)]
async fn blob_rtt_latency_task(
    blob: Arc<Tasked<MetricsBlob>>,
    metrics: Arc<Metrics>,
    measurement_interval: Duration,
) -> JoinHandle<()> {
    mz_ore::task::spawn(|| "persist::blob_rtt_latency", async move {
        // Use the tokio Instant for next_measurement because the reclock tests
        // mess with the tokio sleep clock.
        let mut next_measurement = tokio::time::Instant::now();
        loop {
            tokio::time::sleep_until(next_measurement).await;
            let start = Instant::now();
            match blob.get(BLOB_GET_LIVENESS_KEY).await {
                Ok(_) => {
                    metrics.blob.rtt_latency.set(start.elapsed().as_secs_f64());
                }
                Err(_) => {
                    // Don't spam retries if this returns an error. We're
                    // guaranteed by the method signature that we've already got
                    // metrics coverage of these, so we'll count the errors.
                }
            }
            next_measurement = tokio::time::Instant::now() + measurement_interval;
        }
    })
}

/// Starts a task to periodically measure the persist-observed latency to
/// consensus.
///
/// This is a task, rather than something like looking at the latencies of prod
/// traffic, so that we minimize any issues around Futures not being polled
/// promptly (as can and does happen with the Timely-polled Futures).
///
/// The caller is responsible for shutdown via aborting the `JoinHandle`.
///
/// No matter whether we wrap MetricsConsensus before or after we start up the
/// rtt latency task, there's the possibility for it being confusing at some
/// point. Err on the side of more data (including the latency measurements) to
/// start.
#[allow(clippy::unused_async)]
async fn consensus_rtt_latency_task(
    consensus: Arc<Tasked<MetricsConsensus>>,
    metrics: Arc<Metrics>,
    measurement_interval: Duration,
) -> JoinHandle<()> {
    mz_ore::task::spawn(|| "persist::consensus_rtt_latency", async move {
        // Use the tokio Instant for next_measurement because the reclock tests
        // mess with the tokio sleep clock.
        let mut next_measurement = tokio::time::Instant::now();
        loop {
            tokio::time::sleep_until(next_measurement).await;
            let start = Instant::now();
            match consensus.head(CONSENSUS_HEAD_LIVENESS_KEY).await {
                Ok(_) => {
                    metrics
                        .consensus
                        .rtt_latency
                        .set(start.elapsed().as_secs_f64());
                }
                Err(_) => {
                    // Don't spam retries if this returns an error. We're
                    // guaranteed by the method signature that we've already got
                    // metrics coverage of these, so we'll count the errors.
                }
            }
            next_measurement = tokio::time::Instant::now() + measurement_interval;
        }
    })
}

pub(crate) trait DynState: Debug + Send + Sync {
    fn codecs(&self) -> (String, String, String, String, Option<CodecConcreteType>);
    fn as_any(self: Arc<Self>) -> Arc<dyn Any + Send + Sync>;
    fn push_diff(&self, diff: VersionedData);
}

impl<K, V, T, D> DynState for LockingTypedState<K, V, T, D>
where
    K: Codec,
    V: Codec,
    T: Timestamp + Lattice + Codec64,
    D: Codec64,
{
    fn codecs(&self) -> (String, String, String, String, Option<CodecConcreteType>) {
        (
            K::codec_name(),
            V::codec_name(),
            T::codec_name(),
            D::codec_name(),
            Some(CodecConcreteType(std::any::type_name::<(K, V, T, D)>())),
        )
    }

    fn as_any(self: Arc<Self>) -> Arc<dyn Any + Send + Sync> {
        self
    }

    fn push_diff(&self, diff: VersionedData) {
        self.write_lock(&self.metrics.locks.applier_write, |state| {
            let seqno_before = state.seqno;
            state.apply_encoded_diffs(&self.cfg, &self.metrics, std::iter::once(&diff));
            let seqno_after = state.seqno;
            assert!(seqno_after >= seqno_before);

            if seqno_before != seqno_after {
                debug!(
                    "applied pushed diff {}. seqno {} -> {}.",
                    state.shard_id, seqno_before, state.seqno
                );
                self.shard_metrics.pubsub_push_diff_applied.inc();
            } else {
                debug!(
                    "failed to apply pushed diff {}. seqno {} vs diff {}",
                    state.shard_id, seqno_before, diff.seqno
                );
                if diff.seqno <= seqno_before {
                    self.shard_metrics.pubsub_push_diff_not_applied_stale.inc();
                } else {
                    self.shard_metrics
                        .pubsub_push_diff_not_applied_out_of_order
                        .inc();
                }
            }
        })
    }
}

/// A cache of `TypedState`, shared between all machines for that shard.
///
/// This is shared between all machines that come out of the same
/// [PersistClientCache], but in production there is one of those per process,
/// so in practice, we have one copy of state per shard per process.
///
/// The mutex contention between commands is not an issue, because if two
/// command for the same shard are executing concurrently, only one can win
/// anyway, the other will retry. With the mutex, we even get to avoid the retry
/// if the racing commands are on the same process.
#[derive(Debug)]
pub struct StateCache {
    cfg: Arc<PersistConfig>,
    pub(crate) metrics: Arc<Metrics>,
    states: Arc<std::sync::Mutex<BTreeMap<ShardId, Arc<OnceCell<Weak<dyn DynState>>>>>>,
    pubsub_sender: Arc<dyn PubSubSender>,
}

#[derive(Debug)]
enum StateCacheInit {
    Init(Arc<dyn DynState>),
    NeedInit(Arc<OnceCell<Weak<dyn DynState>>>),
}

impl StateCache {
    /// Returns a new StateCache.
    pub fn new(
        cfg: &PersistConfig,
        metrics: Arc<Metrics>,
        pubsub_sender: Arc<dyn PubSubSender>,
    ) -> Self {
        StateCache {
            cfg: Arc::new(cfg.clone()),
            metrics,
            states: Default::default(),
            pubsub_sender,
        }
    }

    #[cfg(test)]
    pub(crate) fn new_no_metrics() -> Self {
        Self::new(
            &PersistConfig::new_for_tests(),
            Arc::new(Metrics::new(
                &PersistConfig::new_for_tests(),
                &MetricsRegistry::new(),
            )),
            Arc::new(crate::rpc::NoopPubSubSender),
        )
    }

    pub(crate) async fn get<K, V, T, D, F, InitFn>(
        &self,
        shard_id: ShardId,
        mut init_fn: InitFn,
        diagnostics: &Diagnostics,
    ) -> Result<Arc<LockingTypedState<K, V, T, D>>, Box<CodecMismatch>>
    where
        K: Debug + Codec,
        V: Debug + Codec,
        T: Timestamp + Lattice + Codec64,
        D: Semigroup + Codec64,
        F: Future<Output = Result<TypedState<K, V, T, D>, Box<CodecMismatch>>>,
        InitFn: FnMut() -> F,
    {
        loop {
            let init = {
                let mut states = self.states.lock().expect("lock poisoned");
                let state = states.entry(shard_id).or_default();
                match state.get() {
                    Some(once_val) => match once_val.upgrade() {
                        Some(x) => StateCacheInit::Init(x),
                        None => {
                            // If the Weak has lost the ability to upgrade,
                            // we've dropped the State and it's gone. Clear the
                            // OnceCell and init a new one.
                            *state = Arc::new(OnceCell::new());
                            StateCacheInit::NeedInit(Arc::clone(state))
                        }
                    },
                    None => StateCacheInit::NeedInit(Arc::clone(state)),
                }
            };

            let state = match init {
                StateCacheInit::Init(x) => x,
                StateCacheInit::NeedInit(init_once) => {
                    let mut did_init: Option<Arc<LockingTypedState<K, V, T, D>>> = None;
                    let state = init_once
                        .get_or_try_init::<Box<CodecMismatch>, _, _>(|| async {
                            let init_res = init_fn().await;
                            let state = Arc::new(LockingTypedState::new(
                                shard_id,
                                init_res?,
                                Arc::clone(&self.metrics),
                                Arc::clone(&self.cfg),
                                Arc::clone(&self.pubsub_sender).subscribe(&shard_id),
                                diagnostics,
                            ));
                            let ret = Arc::downgrade(&state);
                            did_init = Some(state);
                            let ret: Weak<dyn DynState> = ret;
                            Ok(ret)
                        })
                        .await?;
                    if let Some(x) = did_init {
                        // We actually did the init work, don't bother casting back
                        // the type erased and weak version. Additionally, inform
                        // any listeners of this new state.
                        return Ok(x);
                    }
                    let Some(state) = state.upgrade() else {
                        // Race condition. Between when we first checked the
                        // OnceCell and the `get_or_try_init` call, (1) the
                        // initialization finished, (2) the other user dropped
                        // the strong ref, and (3) the Arc noticed it was down
                        // to only weak refs and dropped the value. Nothing we
                        // can do except try again.
                        continue;
                    };
                    state
                }
            };

            match Arc::clone(&state)
                .as_any()
                .downcast::<LockingTypedState<K, V, T, D>>()
            {
                Ok(x) => return Ok(x),
                Err(_) => {
                    return Err(Box::new(CodecMismatch {
                        requested: (
                            K::codec_name(),
                            V::codec_name(),
                            T::codec_name(),
                            D::codec_name(),
                            Some(CodecConcreteType(std::any::type_name::<(K, V, T, D)>())),
                        ),
                        actual: state.codecs(),
                    }))
                }
            }
        }
    }

    pub(crate) fn get_state_weak(&self, shard_id: &ShardId) -> Option<Weak<dyn DynState>> {
        self.states
            .lock()
            .expect("lock")
            .get(shard_id)
            .and_then(|x| x.get())
            .map(Weak::clone)
    }

    #[cfg(test)]
    fn get_cached(&self, shard_id: &ShardId) -> Option<Arc<dyn DynState>> {
        self.states
            .lock()
            .expect("lock")
            .get(shard_id)
            .and_then(|x| x.get())
            .and_then(|x| x.upgrade())
    }

    #[cfg(test)]
    fn initialized_count(&self) -> usize {
        self.states
            .lock()
            .expect("lock")
            .values()
            .filter(|x| x.initialized())
            .count()
    }

    #[cfg(test)]
    fn strong_count(&self) -> usize {
        self.states
            .lock()
            .expect("lock")
            .values()
            .filter(|x| x.get().map_or(false, |x| x.upgrade().is_some()))
            .count()
    }
}

/// A locked decorator for TypedState that abstracts out the specific lock implementation used.
/// Guards the private lock with public accessor fns to make locking scopes more explicit and
/// simpler to reason about.
pub(crate) struct LockingTypedState<K, V, T, D> {
    shard_id: ShardId,
    state: RwLock<TypedState<K, V, T, D>>,
    notifier: StateWatchNotifier,
    cfg: Arc<PersistConfig>,
    metrics: Arc<Metrics>,
    shard_metrics: Arc<ShardMetrics>,
    /// A [SchemaCacheMaps<K, V>], but stored as an Any so the `: Codec` bounds
    /// don't propagate to basically every struct in persist.
    schema_cache: Arc<dyn Any + Send + Sync>,
    _subscription_token: Arc<ShardSubscriptionToken>,
}

impl<K, V, T: Debug, D> Debug for LockingTypedState<K, V, T, D> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let LockingTypedState {
            shard_id,
            state,
            notifier,
            cfg: _cfg,
            metrics: _metrics,
            shard_metrics: _shard_metrics,
            schema_cache: _schema_cache,
            _subscription_token,
        } = self;
        f.debug_struct("LockingTypedState")
            .field("shard_id", shard_id)
            .field("state", state)
            .field("notifier", notifier)
            .finish()
    }
}

impl<K: Codec, V: Codec, T, D> LockingTypedState<K, V, T, D> {
    fn new(
        shard_id: ShardId,
        initial_state: TypedState<K, V, T, D>,
        metrics: Arc<Metrics>,
        cfg: Arc<PersistConfig>,
        subscription_token: Arc<ShardSubscriptionToken>,
        diagnostics: &Diagnostics,
    ) -> Self {
        Self {
            shard_id,
            notifier: StateWatchNotifier::new(Arc::clone(&metrics)),
            state: RwLock::new(initial_state),
            cfg: Arc::clone(&cfg),
            shard_metrics: metrics.shards.shard(&shard_id, &diagnostics.shard_name),
            schema_cache: Arc::new(SchemaCacheMaps::<K, V>::new(&metrics.schema)),
            metrics,
            _subscription_token: subscription_token,
        }
    }

    pub(crate) fn schema_cache(&self) -> Arc<SchemaCacheMaps<K, V>> {
        Arc::clone(&self.schema_cache)
            .downcast::<SchemaCacheMaps<K, V>>()
            .expect("K and V match")
    }
}

impl<K, V, T, D> LockingTypedState<K, V, T, D> {
    pub(crate) fn shard_id(&self) -> &ShardId {
        &self.shard_id
    }

    pub(crate) fn read_lock<R, F: FnMut(&TypedState<K, V, T, D>) -> R>(
        &self,
        metrics: &LockMetrics,
        mut f: F,
    ) -> R {
        metrics.acquire_count.inc();
        let state = match self.state.try_read() {
            Ok(x) => x,
            Err(TryLockError::WouldBlock) => {
                metrics.blocking_acquire_count.inc();
                let start = Instant::now();
                let state = self.state.read().expect("lock poisoned");
                metrics
                    .blocking_seconds
                    .inc_by(start.elapsed().as_secs_f64());
                state
            }
            Err(TryLockError::Poisoned(err)) => panic!("state read lock poisoned: {}", err),
        };
        f(&state)
    }

    pub(crate) fn write_lock<R, F: FnOnce(&mut TypedState<K, V, T, D>) -> R>(
        &self,
        metrics: &LockMetrics,
        f: F,
    ) -> R {
        metrics.acquire_count.inc();
        let mut state = match self.state.try_write() {
            Ok(x) => x,
            Err(TryLockError::WouldBlock) => {
                metrics.blocking_acquire_count.inc();
                let start = Instant::now();
                let state = self.state.write().expect("lock poisoned");
                metrics
                    .blocking_seconds
                    .inc_by(start.elapsed().as_secs_f64());
                state
            }
            Err(TryLockError::Poisoned(err)) => panic!("state read lock poisoned: {}", err),
        };
        let seqno_before = state.seqno;
        let ret = f(&mut state);
        let seqno_after = state.seqno;
        debug_assert!(seqno_after >= seqno_before);
        if seqno_after > seqno_before {
            self.notifier.notify(seqno_after);
        }
        // For now, make sure to notify while under lock. It's possible to move
        // this out of the lock window, see [StateWatchNotifier::notify].
        drop(state);
        ret
    }

    pub(crate) fn notifier(&self) -> &StateWatchNotifier {
        &self.notifier
    }
}

#[cfg(test)]
mod tests {
    use std::ops::Deref;
    use std::str::FromStr;
    use std::sync::atomic::{AtomicBool, Ordering};

    use futures::stream::{FuturesUnordered, StreamExt};
    use mz_build_info::DUMMY_BUILD_INFO;
    use mz_ore::task::spawn;
    use mz_ore::{assert_err, assert_none};

    use super::*;

    #[mz_ore::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
    async fn client_cache() {
        let cache = PersistClientCache::new(
            PersistConfig::new_for_tests(),
            &MetricsRegistry::new(),
            |_, _| PubSubClientConnection::noop(),
        );
        assert_eq!(cache.blob_by_uri.lock().await.len(), 0);
        assert_eq!(cache.consensus_by_uri.lock().await.len(), 0);

        // Opening a location on an empty cache saves the results.
        let _ = cache
            .open(PersistLocation {
                blob_uri: SensitiveUrl::from_str("mem://blob_zero").expect("invalid URL"),
                consensus_uri: SensitiveUrl::from_str("mem://consensus_zero").expect("invalid URL"),
            })
            .await
            .expect("failed to open location");
        assert_eq!(cache.blob_by_uri.lock().await.len(), 1);
        assert_eq!(cache.consensus_by_uri.lock().await.len(), 1);

        // Opening a location with an already opened consensus reuses it, even
        // if the blob is different.
        let _ = cache
            .open(PersistLocation {
                blob_uri: SensitiveUrl::from_str("mem://blob_one").expect("invalid URL"),
                consensus_uri: SensitiveUrl::from_str("mem://consensus_zero").expect("invalid URL"),
            })
            .await
            .expect("failed to open location");
        assert_eq!(cache.blob_by_uri.lock().await.len(), 2);
        assert_eq!(cache.consensus_by_uri.lock().await.len(), 1);

        // Ditto the other way.
        let _ = cache
            .open(PersistLocation {
                blob_uri: SensitiveUrl::from_str("mem://blob_one").expect("invalid URL"),
                consensus_uri: SensitiveUrl::from_str("mem://consensus_one").expect("invalid URL"),
            })
            .await
            .expect("failed to open location");
        assert_eq!(cache.blob_by_uri.lock().await.len(), 2);
        assert_eq!(cache.consensus_by_uri.lock().await.len(), 2);

        // Query params and path matter, so we get new instances.
        let _ = cache
            .open(PersistLocation {
                blob_uri: SensitiveUrl::from_str("mem://blob_one?foo").expect("invalid URL"),
                consensus_uri: SensitiveUrl::from_str("mem://consensus_one/bar")
                    .expect("invalid URL"),
            })
            .await
            .expect("failed to open location");
        assert_eq!(cache.blob_by_uri.lock().await.len(), 3);
        assert_eq!(cache.consensus_by_uri.lock().await.len(), 3);

        // User info and port also matter, so we get new instances.
        let _ = cache
            .open(PersistLocation {
                blob_uri: SensitiveUrl::from_str("mem://user@blob_one").expect("invalid URL"),
                consensus_uri: SensitiveUrl::from_str("mem://@consensus_one:123")
                    .expect("invalid URL"),
            })
            .await
            .expect("failed to open location");
        assert_eq!(cache.blob_by_uri.lock().await.len(), 4);
        assert_eq!(cache.consensus_by_uri.lock().await.len(), 4);
    }

    #[mz_ore::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
    async fn state_cache() {
        mz_ore::test::init_logging();
        fn new_state<K, V, T, D>(shard_id: ShardId) -> TypedState<K, V, T, D>
        where
            K: Codec,
            V: Codec,
            T: Timestamp + Lattice + Codec64,
            D: Codec64,
        {
            TypedState::new(
                DUMMY_BUILD_INFO.semver_version(),
                shard_id,
                "host".into(),
                0,
            )
        }
        fn assert_same<K, V, T, D>(
            state1: &LockingTypedState<K, V, T, D>,
            state2: &LockingTypedState<K, V, T, D>,
        ) {
            let pointer1 = format!("{:p}", state1.state.read().expect("lock").deref());
            let pointer2 = format!("{:p}", state2.state.read().expect("lock").deref());
            assert_eq!(pointer1, pointer2);
        }

        let s1 = ShardId::new();
        let states = Arc::new(StateCache::new_no_metrics());

        // The cache starts empty.
        assert_eq!(states.states.lock().expect("lock").len(), 0);

        // Panic'ing during init_fn .
        let s = Arc::clone(&states);
        let res = spawn(|| "test", async move {
            s.get::<(), (), u64, i64, _, _>(
                s1,
                || async { panic!("forced panic") },
                &Diagnostics::for_tests(),
            )
            .await
        })
        .await;
        assert_err!(res);
        assert_eq!(states.initialized_count(), 0);

        // Returning an error from init_fn doesn't initialize an entry in the cache.
        let res = states
            .get::<(), (), u64, i64, _, _>(
                s1,
                || async {
                    Err(Box::new(CodecMismatch {
                        requested: ("".into(), "".into(), "".into(), "".into(), None),
                        actual: ("".into(), "".into(), "".into(), "".into(), None),
                    }))
                },
                &Diagnostics::for_tests(),
            )
            .await;
        assert_err!(res);
        assert_eq!(states.initialized_count(), 0);

        // Initialize one shard.
        let did_work = Arc::new(AtomicBool::new(false));
        let s1_state1 = states
            .get::<(), (), u64, i64, _, _>(
                s1,
                || {
                    let did_work = Arc::clone(&did_work);
                    async move {
                        did_work.store(true, Ordering::SeqCst);
                        Ok(new_state(s1))
                    }
                },
                &Diagnostics::for_tests(),
            )
            .await
            .expect("should successfully initialize");
        assert_eq!(did_work.load(Ordering::SeqCst), true);
        assert_eq!(states.initialized_count(), 1);
        assert_eq!(states.strong_count(), 1);

        // Trying to initialize it again does no work and returns the same state.
        let did_work = Arc::new(AtomicBool::new(false));
        let s1_state2 = states
            .get::<(), (), u64, i64, _, _>(
                s1,
                || {
                    let did_work = Arc::clone(&did_work);
                    async move {
                        did_work.store(true, Ordering::SeqCst);
                        did_work.store(true, Ordering::SeqCst);
                        Ok(new_state(s1))
                    }
                },
                &Diagnostics::for_tests(),
            )
            .await
            .expect("should successfully initialize");
        assert_eq!(did_work.load(Ordering::SeqCst), false);
        assert_eq!(states.initialized_count(), 1);
        assert_eq!(states.strong_count(), 1);
        assert_same(&s1_state1, &s1_state2);

        // Trying to initialize with different types doesn't work.
        let did_work = Arc::new(AtomicBool::new(false));
        let res = states
            .get::<String, (), u64, i64, _, _>(
                s1,
                || {
                    let did_work = Arc::clone(&did_work);
                    async move {
                        did_work.store(true, Ordering::SeqCst);
                        Ok(new_state(s1))
                    }
                },
                &Diagnostics::for_tests(),
            )
            .await;
        assert_eq!(did_work.load(Ordering::SeqCst), false);
        assert_eq!(
            format!("{}", res.expect_err("types shouldn't match")),
            "requested codecs (\"String\", \"()\", \"u64\", \"i64\", Some(CodecConcreteType(\"(alloc::string::String, (), u64, i64)\"))) did not match ones in durable storage (\"()\", \"()\", \"u64\", \"i64\", Some(CodecConcreteType(\"((), (), u64, i64)\")))"
        );
        assert_eq!(states.initialized_count(), 1);
        assert_eq!(states.strong_count(), 1);

        // We can add a shard of a different type.
        let s2 = ShardId::new();
        let s2_state1 = states
            .get::<String, (), u64, i64, _, _>(
                s2,
                || async { Ok(new_state(s2)) },
                &Diagnostics::for_tests(),
            )
            .await
            .expect("should successfully initialize");
        assert_eq!(states.initialized_count(), 2);
        assert_eq!(states.strong_count(), 2);
        let s2_state2 = states
            .get::<String, (), u64, i64, _, _>(
                s2,
                || async { Ok(new_state(s2)) },
                &Diagnostics::for_tests(),
            )
            .await
            .expect("should successfully initialize");
        assert_same(&s2_state1, &s2_state2);

        // The cache holds weak references to State so we reclaim memory if the
        // shards stops being used.
        drop(s1_state1);
        assert_eq!(states.strong_count(), 2);
        drop(s1_state2);
        assert_eq!(states.strong_count(), 1);
        assert_eq!(states.initialized_count(), 2);
        assert_none!(states.get_cached(&s1));

        // But we can re-init that shard if necessary.
        let s1_state1 = states
            .get::<(), (), u64, i64, _, _>(
                s1,
                || async { Ok(new_state(s1)) },
                &Diagnostics::for_tests(),
            )
            .await
            .expect("should successfully initialize");
        assert_eq!(states.initialized_count(), 2);
        assert_eq!(states.strong_count(), 2);
        drop(s1_state1);
        assert_eq!(states.strong_count(), 1);
    }

    #[mz_ore::test(tokio::test(flavor = "multi_thread"))]
    #[cfg_attr(miri, ignore)] // too slow
    async fn state_cache_concurrency() {
        mz_ore::test::init_logging();

        const COUNT: usize = 1000;
        let id = ShardId::new();
        let cache = StateCache::new_no_metrics();
        let diagnostics = Diagnostics::for_tests();

        let mut futures = (0..COUNT)
            .map(|_| {
                cache.get::<(), (), u64, i64, _, _>(
                    id,
                    || async {
                        Ok(TypedState::new(
                            DUMMY_BUILD_INFO.semver_version(),
                            id,
                            "host".into(),
                            0,
                        ))
                    },
                    &diagnostics,
                )
            })
            .collect::<FuturesUnordered<_>>();

        for _ in 0..COUNT {
            let _ = futures.next().await.unwrap();
        }
    }
}