domain/utils/base32.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
//! Decoding and encoding of base 32.
//!
//! The base 32 encoding is defined in [RFC 4648]. It is essentially a
//! case-insensitive version of [base64][super::base64] which is necessary
//! when encoding binary data in domain names. The RFC defines two separate
//! encodings, called *base32* and *base32hex*. The DNS uses the latter
//! version, particularly in [NSEC3], for encoding binary data in domain
//! names, because it has the property that the encoding maintains the order
//! of the original data.
//!
//! This module currently only implements *base32hex* but is prepared for
//! adding the other option by using the prefix `_hex` wherever distinction
//! is necessary.
//!
//! The module defines the type [`Decoder`] which keeps the state necessary
//! for decoding. The various functions offered use such a decoder to decode
//! and encode octets in various forms.
//!
//! [RFC 4648]: https://tools.ietf.org/html/rfc4648
//! [NSEC3]: ../../rdata/rfc5155/index.html
//! [`Decoder`]: struct.Decoder.html
use crate::base::scan::{ConvertSymbols, EntrySymbol, ScannerError};
use core::fmt;
use octseq::builder::{
EmptyBuilder, FreezeBuilder, FromBuilder, OctetsBuilder,
};
#[cfg(feature = "std")]
use std::string::String;
//------------ Re-exports ----------------------------------------------------
pub use super::base64::DecodeError;
//------------ Convenience Functions -----------------------------------------
/// Decodes a string with *base32hex* encoded data.
///
/// The function attempts to decode the entire string and returns the result
/// as an `Octets` value.
pub fn decode_hex<Octets>(s: &str) -> Result<Octets, DecodeError>
where
Octets: FromBuilder,
<Octets as FromBuilder>::Builder: OctetsBuilder + EmptyBuilder,
{
let mut decoder = Decoder::<<Octets as FromBuilder>::Builder>::new_hex();
for ch in s.chars() {
decoder.push(ch)?;
}
decoder.finalize()
}
/// Encodes binary data in *base32hex* and writes it into a format stream.
///
/// This function is intended to be used in implementations of formatting
/// traits:
///
/// ```
/// use core::fmt;
/// use domain::utils::base32;
///
/// struct Foo<'a>(&'a [u8]);
///
/// impl<'a> fmt::Display for Foo<'a> {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// base32::display_hex(&self.0, f)
/// }
/// }
/// ```
pub fn display_hex<B, W>(bytes: &B, f: &mut W) -> fmt::Result
where
B: AsRef<[u8]> + ?Sized,
W: fmt::Write,
{
fn ch(i: u8) -> char {
ENCODE_HEX_ALPHABET[i as usize]
}
for chunk in bytes.as_ref().chunks(5) {
f.write_char(ch(chunk[0] >> 3))?; // 0
if chunk.len() == 1 {
f.write_char(ch((chunk[0] & 0x07) << 2))?; // 1
break;
}
f.write_char(ch((chunk[0] & 0x07) << 2 | chunk[1] >> 6))?; // 1
f.write_char(ch((chunk[1] & 0x3F) >> 1))?; // 2
if chunk.len() == 2 {
f.write_char(ch((chunk[1] & 0x01) << 4))?; // 3
break;
}
f.write_char(ch((chunk[1] & 0x01) << 4 | chunk[2] >> 4))?; // 3
if chunk.len() == 3 {
f.write_char(ch((chunk[2] & 0x0F) << 1))?; // 4
break;
}
f.write_char(ch((chunk[2] & 0x0F) << 1 | chunk[3] >> 7))?; // 4
f.write_char(ch((chunk[3] & 0x7F) >> 2))?; // 5
if chunk.len() == 4 {
f.write_char(ch((chunk[3] & 0x03) << 3))?; // 6
break;
}
f.write_char(ch((chunk[3] & 0x03) << 3 | chunk[4] >> 5))?; // 6
f.write_char(ch(chunk[4] & 0x1F))?; // 7
}
Ok(())
}
/// Encodes binary data in *base32hex* and returns the encoded data as a string.
#[cfg(feature = "std")]
pub fn encode_string_hex<B: AsRef<[u8]> + ?Sized>(bytes: &B) -> String {
let mut res = String::with_capacity((bytes.as_ref().len() / 5 + 1) * 8);
display_hex(bytes, &mut res).unwrap();
res
}
/// Returns a placeholder value that implements `Display` for encoded data.
pub fn encode_display_hex<Octets: AsRef<[u8]>>(
octets: &Octets,
) -> impl fmt::Display + '_ {
struct Display<'a>(&'a [u8]);
impl<'a> fmt::Display for Display<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
display_hex(self.0, f)
}
}
Display(octets.as_ref())
}
/// Serialize and deserialize octets Base64 encoded or binary.
///
/// This module can be used with Serde’s `with` attribute. It will serialize
/// an octets sequence as a Base64 encoded string with human readable
/// serializers or as a raw octets sequence for compact serializers.
#[cfg(feature = "serde")]
pub mod serde {
use core::fmt;
use octseq::builder::{EmptyBuilder, FromBuilder, OctetsBuilder};
use octseq::serde::{DeserializeOctets, SerializeOctets};
pub fn serialize<Octets, S>(
octets: &Octets,
serializer: S,
) -> Result<S::Ok, S::Error>
where
Octets: AsRef<[u8]> + SerializeOctets,
S: serde::Serializer,
{
if serializer.is_human_readable() {
serializer.collect_str(&super::encode_display_hex(octets))
} else {
octets.serialize_octets(serializer)
}
}
pub fn deserialize<'de, Octets, D: serde::Deserializer<'de>>(
deserializer: D,
) -> Result<Octets, D::Error>
where
Octets: FromBuilder + DeserializeOctets<'de>,
<Octets as FromBuilder>::Builder: EmptyBuilder,
{
struct Visitor<'de, Octets: DeserializeOctets<'de>>(Octets::Visitor);
impl<'de, Octets> serde::de::Visitor<'de> for Visitor<'de, Octets>
where
Octets: FromBuilder + DeserializeOctets<'de>,
<Octets as FromBuilder>::Builder: OctetsBuilder + EmptyBuilder,
{
type Value = Octets;
fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("an Base32-encoded string")
}
fn visit_str<E: serde::de::Error>(
self,
v: &str,
) -> Result<Self::Value, E> {
super::decode_hex(v).map_err(E::custom)
}
fn visit_borrowed_bytes<E: serde::de::Error>(
self,
value: &'de [u8],
) -> Result<Self::Value, E> {
self.0.visit_borrowed_bytes(value)
}
#[cfg(feature = "std")]
fn visit_byte_buf<E: serde::de::Error>(
self,
value: std::vec::Vec<u8>,
) -> Result<Self::Value, E> {
self.0.visit_byte_buf(value)
}
}
if deserializer.is_human_readable() {
deserializer.deserialize_str(Visitor(Octets::visitor()))
} else {
Octets::deserialize_with_visitor(
deserializer,
Visitor(Octets::visitor()),
)
}
}
}
//------------ Decoder -------------------------------------------------------
/// A base 32 decoder.
///
/// This type keeps all the state for decoding a sequence of characters
/// representing data encoded in base 32. Upon success, the decoder returns
/// the decoded data.
///
/// # Limitations
///
/// The decoder does not support padding.
pub struct Decoder<Builder> {
/// The alphabet we are using.
alphabet: &'static [u8; 128],
/// A buffer for up to eight characters.
///
/// We only keep `u8`s here because only ASCII characters are used by
/// Base32.
buf: [u8; 8],
/// The index in `buf` where we place the next character.
next: usize,
/// The target or an error if something went wrong.
target: Result<Builder, DecodeError>,
}
impl<Builder: EmptyBuilder> Decoder<Builder> {
/// Creates a new, empty decoder using the *base32hex* variant.
#[must_use]
pub fn new_hex() -> Self {
Decoder {
alphabet: &DECODE_HEX_ALPHABET,
buf: [0; 8],
next: 0,
target: Ok(Builder::empty()),
}
}
}
impl<Builder: OctetsBuilder> Decoder<Builder> {
/// Finalizes decoding and returns the decoded data.
#[allow(clippy::question_mark)] // false positive
pub fn finalize(mut self) -> Result<Builder::Octets, DecodeError>
where
Builder: FreezeBuilder,
{
if let Err(err) = self.target {
return Err(err);
}
match self.next {
0 => {}
1 | 3 | 6 => return Err(DecodeError::ShortInput),
2 => {
self.octet_0();
}
4 => {
self.octet_0();
self.octet_1();
}
5 => {
self.octet_0();
self.octet_1();
self.octet_2();
}
7 => {
self.octet_0();
self.octet_1();
self.octet_2();
self.octet_3();
}
_ => unreachable!(),
}
self.target.map(FreezeBuilder::freeze)
}
/// Decodes one more character of data.
///
/// Returns an error as soon as the encoded data is determined to be
/// illegal. It is okay to push more data after the first error. The
/// method will just keep returning errors.
pub fn push(&mut self, ch: char) -> Result<(), DecodeError> {
if ch > (127 as char) {
self.target = Err(DecodeError::IllegalChar(ch));
return Err(DecodeError::IllegalChar(ch));
}
let val = self.alphabet[ch as usize];
if val == 0xFF {
self.target = Err(DecodeError::IllegalChar(ch));
return Err(DecodeError::IllegalChar(ch));
}
self.buf[self.next] = val;
self.next += 1;
if self.next == 8 {
self.octet_0();
self.octet_1();
self.octet_2();
self.octet_3();
self.octet_4();
self.next = 0;
}
match self.target {
Ok(_) => Ok(()),
Err(err) => Err(err),
}
}
/// Decodes the zeroth octet in a base 32 sequence.
fn octet_0(&mut self) {
let ch = self.buf[0] << 3 | self.buf[1] >> 2;
self.append(ch)
}
/// Decodes the first octet in a base 32 sequence.
fn octet_1(&mut self) {
let ch = self.buf[1] << 6 | self.buf[2] << 1 | self.buf[3] >> 4;
self.append(ch)
}
/// Decodes the second octet in a base 32 sequence.
fn octet_2(&mut self) {
let ch = self.buf[3] << 4 | self.buf[4] >> 1;
self.append(ch)
}
/// Decodes the third octet in a base 32 sequence.
fn octet_3(&mut self) {
let ch = self.buf[4] << 7 | self.buf[5] << 2 | self.buf[6] >> 3;
self.append(ch)
}
/// Decodes the forth octet in a base 32 sequence.
fn octet_4(&mut self) {
let ch = self.buf[6] << 5 | self.buf[7];
self.append(ch)
}
/// Appends a decoded octet to the target.
fn append(&mut self, value: u8) {
let target = match self.target.as_mut() {
Ok(target) => target,
Err(_) => return,
};
if let Err(err) = target.append_slice(&[value]) {
self.target = Err(err.into().into());
}
}
}
//------------ SymbolConverter -----------------------------------------------
/// A Base 32 decoder that can be used as a converter with a scanner.
#[derive(Clone, Debug)]
pub struct SymbolConverter {
/// The alphabet we are using.
alphabet: &'static [u8; 128],
/// A buffer for up to eight input characters.
///
/// We only keep `u8`s here because only ASCII characters are used by
/// Base64.
input: [u8; 8],
/// The index in `input` where we place the next character.
///
/// We also abuse this to mark when we are done (because there was
/// padding, in which case we set it to 0xF0).
next: usize,
/// A buffer to return a slice for the output.
output: [u8; 5],
}
impl Default for SymbolConverter {
fn default() -> Self {
SymbolConverter {
alphabet: &DECODE_HEX_ALPHABET,
input: [0; 8],
next: 0,
output: Default::default(),
}
}
}
impl SymbolConverter {
/// Creates a new symbol converter.
#[must_use]
pub fn new() -> Self {
Default::default()
}
fn process_char<Error: ScannerError>(
&mut self,
ch: char,
) -> Result<Option<&[u8]>, Error> {
if ch > (127 as char) {
return Err(Error::custom("illegal Base 32 data"));
}
let val = self.alphabet[ch as usize];
if val == 0xFF {
return Err(Error::custom("illegal Base 32 data"));
}
self.input[self.next] = val;
self.next += 1;
if self.next == 8 {
self.output = [
self.input[0] << 3 | self.input[1] >> 2,
self.input[1] << 6 | self.input[2] << 1 | self.input[3] >> 4,
self.input[3] << 4 | self.input[4] >> 1,
self.input[4] << 7 | self.input[5] << 2 | self.input[6] >> 3,
self.input[6] << 5 | self.input[7],
];
self.next = 0;
Ok(Some(&self.output))
} else {
Ok(None)
}
}
}
impl<Sym, Error> ConvertSymbols<Sym, Error> for SymbolConverter
where
Sym: Into<EntrySymbol>,
Error: ScannerError,
{
fn process_symbol(
&mut self,
symbol: Sym,
) -> Result<Option<&[u8]>, Error> {
match symbol.into() {
EntrySymbol::Symbol(symbol) => self.process_char(
symbol
.into_char()
.map_err(|_| Error::custom("illegal Base 32 data"))?,
),
EntrySymbol::EndOfToken => Ok(None),
}
}
/// Process the end of token.
///
/// The method may return data to be added to the output octets sequence.
fn process_tail(&mut self) -> Result<Option<&[u8]>, Error> {
match self.next {
0 => return Ok(None),
1 | 3 | 6 => return Err(Error::custom("short Base 32 input")),
_ => {}
}
self.output[0] = self.input[0] << 3 | self.input[1] >> 2;
if self.next == 2 {
return Ok(Some(&self.output[0..1]));
}
self.output[1] =
self.input[1] << 6 | self.input[2] << 1 | self.input[3] >> 4;
if self.next == 4 {
return Ok(Some(&self.output[0..2]));
}
self.output[2] = self.input[3] << 4 | self.input[4] >> 1;
if self.next == 5 {
return Ok(Some(&self.output[0..3]));
}
self.output[3] =
self.input[4] << 7 | self.input[5] << 2 | self.input[6] >> 3;
Ok(Some(&self.output[0..4]))
}
}
//------------ Constants -----------------------------------------------------
/// The alphabet used for decoding *base32hex.*
///
/// This maps encoding characters into their values. A value of 0xFF stands in
/// for illegal characters. We only provide the first 128 characters since the
/// alphabet will only use ASCII characters.
const DECODE_HEX_ALPHABET: [u8; 128] = [
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0x00 .. 0x07
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0x08 .. 0x0F
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0x10 .. 0x17
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0x18 .. 0x1F
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0x20 .. 0x27
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0x28 .. 0x2F
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, // 0x30 .. 0x37
0x08, 0x09, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0x38 .. 0x3F
0xFF, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, // 0x40 .. 0x47
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, // 0x48 .. 0x4F
0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0xFF, // 0x50 .. 0x57
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0x58 .. 0x5F
0xFF, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, // 0x60 .. 0x67
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, // 0x68 .. 0x6F
0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0xFF, // 0x70 .. 0x77
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0x78 .. 0x7F
];
/// The alphabet used for encoding *base32hex.*
const ENCODE_HEX_ALPHABET: [char; 32] = [
'0', '1', '2', '3', '4', '5', '6', '7', // 0x00 .. 0x07
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F', // 0x08 .. 0x0F
'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', // 0x10 .. 0x17
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', // 0x18 .. 0x1F
];
//============ Test ==========================================================
#[cfg(test)]
#[cfg(feature = "std")]
mod test {
use super::*;
use std::string::String;
#[test]
#[cfg(feature = "bytes")]
fn decode_str_hex() {
use super::DecodeError;
fn decode_hex(s: &str) -> Result<std::vec::Vec<u8>, DecodeError> {
super::decode_hex(s)
}
assert_eq!(&decode_hex("").unwrap(), b"");
assert_eq!(&decode_hex("CO").unwrap(), b"f");
assert_eq!(&decode_hex("CPNG").unwrap(), b"fo");
assert_eq!(&decode_hex("CPNMU").unwrap(), b"foo");
assert_eq!(&decode_hex("CPNMUOG").unwrap(), b"foob");
assert_eq!(&decode_hex("CPNMUOJ1").unwrap(), b"fooba");
assert_eq!(&decode_hex("CPNMUOJ1E8").unwrap(), b"foobar");
assert_eq!(&decode_hex("co").unwrap(), b"f");
assert_eq!(&decode_hex("cpng").unwrap(), b"fo");
assert_eq!(&decode_hex("cpnmu").unwrap(), b"foo");
assert_eq!(&decode_hex("cpnmuog").unwrap(), b"foob");
assert_eq!(&decode_hex("cpnmuoj1").unwrap(), b"fooba");
assert_eq!(&decode_hex("cpnmuoj1e8").unwrap(), b"foobar");
}
#[test]
fn test_display_hex() {
fn fmt(s: &[u8]) -> String {
let mut out = String::new();
display_hex(s, &mut out).unwrap();
out
}
assert_eq!(fmt(b""), "");
assert_eq!(fmt(b"f"), "CO");
assert_eq!(fmt(b"fo"), "CPNG");
assert_eq!(fmt(b"foo"), "CPNMU");
assert_eq!(fmt(b"foob"), "CPNMUOG");
assert_eq!(fmt(b"fooba"), "CPNMUOJ1");
assert_eq!(fmt(b"foobar"), "CPNMUOJ1E8");
}
}