1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! An analysis that reports all known-equivalent expressions for each relation.
//!
//! Expressions are equivalent at a relation if they are certain to evaluate to
//! the same `Datum` for all records in the relation.
//!
//! Equivalences are recorded in an `EquivalenceClasses`, which lists all known
//! equivalences classes, each a list of equivalent expressions.
use std::collections::BTreeMap;
use mz_expr::{Id, MirRelationExpr, MirScalarExpr};
use mz_repr::{ColumnType, Datum};
use crate::analysis::{Analysis, Lattice};
use crate::analysis::{Arity, RelationType};
use crate::analysis::{Derived, DerivedBuilder};
/// Pulls up and pushes down predicate information represented as equivalences
#[derive(Debug, Default)]
pub struct Equivalences;
impl Analysis for Equivalences {
// A `Some(list)` indicates a list of classes of equivalent expressions.
// A `None` indicates all expressions are equivalent, including contradictions;
// this is only possible for the empty collection, and as an initial result for
// unconstrained recursive terms.
type Value = Option<EquivalenceClasses>;
fn announce_dependencies(builder: &mut DerivedBuilder) {
builder.require(Arity);
builder.require(RelationType); // needed for expression reduction.
}
fn derive(
&self,
expr: &MirRelationExpr,
index: usize,
results: &[Self::Value],
depends: &Derived,
) -> Self::Value {
let mut equivalences = match expr {
MirRelationExpr::Constant { rows, typ } => {
// Trawl `rows` for any constant information worth recording.
// Literal columns may be valuable; non-nullability could be too.
let mut equivalences = EquivalenceClasses::default();
if let Ok([(row, _cnt), rows @ ..]) = rows.as_deref() {
// Vector of `Option<Datum>` which becomes `None` once a column has a second datum.
let len = row.iter().count();
let mut common = Vec::with_capacity(len);
common.extend(row.iter().map(Some));
// Prep initial nullability information.
let mut nullable_cols = common
.iter()
.map(|datum| datum == &Some(Datum::Null))
.collect::<Vec<_>>();
for (row, _cnt) in rows.iter() {
for ((datum, common), nullable) in row
.iter()
.zip(common.iter_mut())
.zip(nullable_cols.iter_mut())
{
if Some(datum) != *common {
*common = None;
}
if datum == Datum::Null {
*nullable = true;
}
}
}
for (index, common) in common.into_iter().enumerate() {
if let Some(datum) = common {
equivalences.classes.push(vec![
MirScalarExpr::Column(index),
MirScalarExpr::literal_ok(
datum,
typ.column_types[index].scalar_type.clone(),
),
]);
}
}
// If any columns are non-null, introduce this fact.
if nullable_cols.iter().any(|x| !*x) {
let mut class = vec![MirScalarExpr::literal_false()];
for (index, nullable) in nullable_cols.iter().enumerate() {
if !*nullable {
class.push(MirScalarExpr::column(index).call_is_null());
}
}
equivalences.classes.push(class);
}
}
Some(equivalences)
}
MirRelationExpr::Get { id, typ, .. } => {
let mut equivalences = Some(EquivalenceClasses::default());
// Find local identifiers, but nothing for external identifiers.
if let Id::Local(id) = id {
if let Some(offset) = depends.bindings().get(id) {
// It is possible we have derived nothing for a recursive term
if let Some(result) = results.get(*offset) {
equivalences.clone_from(result);
} else {
// No top element was prepared.
// This means we are executing pessimistically,
// but perhaps we must because optimism is off.
}
}
}
// Incorporate statements about column nullability.
let mut non_null_cols = vec![MirScalarExpr::literal_false()];
for (index, col_type) in typ.column_types.iter().enumerate() {
if !col_type.nullable {
non_null_cols.push(MirScalarExpr::column(index).call_is_null());
}
}
if non_null_cols.len() > 1 {
if let Some(equivalences) = equivalences.as_mut() {
equivalences.classes.push(non_null_cols);
}
}
equivalences
}
MirRelationExpr::Let { .. } => results.get(index - 1).unwrap().clone(),
MirRelationExpr::LetRec { .. } => results.get(index - 1).unwrap().clone(),
MirRelationExpr::Project { outputs, .. } => {
// restrict equivalences, and introduce equivalences for repeated outputs.
let mut equivalences = results.get(index - 1).unwrap().clone();
equivalences
.as_mut()
.map(|e| e.project(outputs.iter().cloned()));
equivalences
}
MirRelationExpr::Map { scalars, .. } => {
// introduce equivalences for new columns and expressions that define them.
let mut equivalences = results.get(index - 1).unwrap().clone();
if let Some(equivalences) = &mut equivalences {
let input_arity = depends.results::<Arity>().unwrap()[index - 1];
for (pos, expr) in scalars.iter().enumerate() {
equivalences
.classes
.push(vec![MirScalarExpr::Column(input_arity + pos), expr.clone()]);
}
}
equivalences
}
MirRelationExpr::FlatMap { .. } => results.get(index - 1).unwrap().clone(),
MirRelationExpr::Filter { predicates, .. } => {
let mut equivalences = results.get(index - 1).unwrap().clone();
if let Some(equivalences) = &mut equivalences {
let mut class = predicates.clone();
class.push(MirScalarExpr::literal_ok(
Datum::True,
mz_repr::ScalarType::Bool,
));
equivalences.classes.push(class);
}
equivalences
}
MirRelationExpr::Join { equivalences, .. } => {
// Collect equivalences from all inputs;
let expr_index = index;
let mut children = depends
.children_of_rev(expr_index, expr.children().count())
.collect::<Vec<_>>();
children.reverse();
let arity = depends.results::<Arity>().unwrap();
let mut columns = 0;
let mut result = Some(EquivalenceClasses::default());
for child in children.into_iter() {
let input_arity = arity[child];
let equivalences = results[child].clone();
if let Some(mut equivalences) = equivalences {
let permutation = (columns..(columns + input_arity)).collect::<Vec<_>>();
equivalences.permute(&permutation);
result
.as_mut()
.map(|e| e.classes.extend(equivalences.classes));
} else {
result = None;
}
columns += input_arity;
}
// Fold join equivalences into our results.
result
.as_mut()
.map(|e| e.classes.extend(equivalences.iter().cloned()));
result
}
MirRelationExpr::Reduce {
group_key,
aggregates,
..
} => {
let input_arity = depends.results::<Arity>().unwrap()[index - 1];
let mut equivalences = results.get(index - 1).unwrap().clone();
if let Some(equivalences) = &mut equivalences {
// Introduce keys column equivalences as if a map, then project to those columns.
// This should retain as much information as possible about these columns.
for (pos, expr) in group_key.iter().enumerate() {
equivalences
.classes
.push(vec![MirScalarExpr::Column(input_arity + pos), expr.clone()]);
}
// Having added classes to `equivalences`, we should minimize the classes to fold the
// information in before applying the `project`, to set it up for success.
equivalences.minimize(&None);
// Grab a copy of the equivalences with key columns added to use in aggregate reasoning.
let extended = equivalences.clone();
// Now project down the equivalences, as we will extend them in terms of the output columns.
equivalences.project(input_arity..(input_arity + group_key.len()));
// TODO: MIN, MAX, ANY, ALL aggregates pass through all certain properties of their columns.
// They also pass through equivalences of them and other constant columns (e.g. key columns).
// However, it is not correct to simply project onto these columns, as relationships amongst
// aggregate columns may no longer be preserved. MAX(col) != MIN(col) even though col = col.
// The correct thing to do is treat the reduce as a join between single-aggregate reductions,
// where each single MIN/MAX/ANY/ALL aggregate propagates equivalences.
for (index, aggregate) in aggregates.iter().enumerate() {
if aggregate_is_input(&aggregate.func) {
let mut temp_equivs = extended.clone();
temp_equivs.classes.push(vec![
MirScalarExpr::column(input_arity + group_key.len()),
aggregate.expr.clone(),
]);
temp_equivs.minimize(&None);
temp_equivs.project(input_arity..(input_arity + group_key.len() + 1));
let columns = (0..group_key.len())
.chain(std::iter::once(group_key.len() + index))
.collect::<Vec<_>>();
temp_equivs.permute(&columns[..]);
equivalences.classes.extend(temp_equivs.classes);
}
}
}
equivalences
}
MirRelationExpr::TopK { .. } => results.get(index - 1).unwrap().clone(),
MirRelationExpr::Negate { .. } => results.get(index - 1).unwrap().clone(),
MirRelationExpr::Threshold { .. } => results.get(index - 1).unwrap().clone(),
MirRelationExpr::Union { .. } => {
let expr_index = index;
let mut child_equivs = depends
.children_of_rev(expr_index, expr.children().count())
.flat_map(|c| &results[c]);
if let Some(first) = child_equivs.next() {
Some(first.union_many(child_equivs))
} else {
None
}
}
MirRelationExpr::ArrangeBy { .. } => results.get(index - 1).unwrap().clone(),
};
let expr_type = depends.results::<RelationType>().unwrap()[index].clone();
equivalences.as_mut().map(|e| e.minimize(&expr_type));
equivalences
}
fn lattice() -> Option<Box<dyn Lattice<Self::Value>>> {
Some(Box::new(EQLattice))
}
}
struct EQLattice;
impl Lattice<Option<EquivalenceClasses>> for EQLattice {
fn top(&self) -> Option<EquivalenceClasses> {
None
}
fn meet_assign(
&self,
a: &mut Option<EquivalenceClasses>,
b: Option<EquivalenceClasses>,
) -> bool {
match (&mut *a, b) {
(_, None) => false,
(None, b) => {
*a = b;
true
}
(Some(a), Some(b)) => {
let mut c = a.union(&b);
std::mem::swap(a, &mut c);
a != &mut c
}
}
}
}
/// A compact representation of classes of expressions that must be equivalent.
///
/// Each "class" contains a list of expressions, each of which must be `Eq::eq` equal.
/// Ideally, the first element is the "simplest", e.g. a literal or column reference,
/// and any other element of that list can be replaced by it.
///
/// The classes are meant to be minimized, with each expression as reduced as it can be,
/// and all classes sharing an element merged.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Default, Debug)]
pub struct EquivalenceClasses {
/// Multiple lists of equivalent expressions, each representing an equivalence class.
///
/// The first element should be the "canonical" simplest element, that any other element
/// can be replaced by.
/// These classes are unified whenever possible, to minimize the number of classes.
/// They are only guaranteed to form an equivalence relation after a call to `minimimize`,
/// which refreshes both `self.classes` and `self.remap`.
pub classes: Vec<Vec<MirScalarExpr>>,
/// An expression simplification map.
///
/// This map reflects an equivalence relation based on a prior version of `self.classes`.
/// As users may add to `self.classes`, `self.remap` may become stale. We refresh `remap`
/// only in `self.refresh()`, to the equivalence relation that derives from `self.classes`.
///
/// It is important to `self.remap.clear()` if you invalidate it by mutating rather than
/// appending to `self.classes`. This will be corrected in the next call to `self.refresh()`,
/// but until then `remap` could be arbitrarily wrong. This should be improved in the future.
remap: BTreeMap<MirScalarExpr, MirScalarExpr>,
}
impl EquivalenceClasses {
/// Comparator function for the complexity of scalar expressions. Simpler expressions are
/// smaller. Can be used when we need to decide which of several equivalent expressions to use.
pub fn mir_scalar_expr_complexity(
e1: &MirScalarExpr,
e2: &MirScalarExpr,
) -> std::cmp::Ordering {
use std::cmp::Ordering::*;
use MirScalarExpr::*;
match (e1, e2) {
(Literal(_, _), Literal(_, _)) => e1.cmp(e2),
(Literal(_, _), _) => Less,
(_, Literal(_, _)) => Greater,
(Column(_), Column(_)) => e1.cmp(e2),
(Column(_), _) => Less,
(_, Column(_)) => Greater,
(x, y) => {
// General expressions should be ordered by their size,
// to ensure we only simplify expressions by substitution.
// If same size, then fall back to the expressions' Ord.
match x.size().cmp(&y.size()) {
Equal => x.cmp(y),
other => other,
}
}
}
}
/// Sorts and deduplicates each class, removing literal errors.
///
/// This method does not ensure equivalence relation structure, but instead performs
/// only minimal structural clean-up.
fn tidy(&mut self) {
for class in self.classes.iter_mut() {
// Remove all literal errors, as they cannot be equated to other things.
class.retain(|e| !e.is_literal_err());
class.sort_by(Self::mir_scalar_expr_complexity);
class.dedup();
}
self.classes.retain(|c| c.len() > 1);
self.classes.sort();
self.classes.dedup();
}
/// Restore equivalence relation structure to `self.classes` and refresh `self.remap`.
///
/// This method takes roughly linear time, and returns true iff `self.remap` has changed.
/// This is the only method that refreshes `self.remap`, and is a perfect place to decide
/// whether the equivalence classes it represents have experienced any changes since the
/// last refresh.
fn refresh(&mut self) -> bool {
self.tidy();
// remap may already be the correct answer, and if so we should avoid the work of rebuilding it.
// If it contains the same number of expressions as `self.classes`, and for every expression in
// `self.classes` the two agree on the representative, they are identical.
if self.remap.len() == self.classes.iter().map(|c| c.len()).sum::<usize>()
&& self
.classes
.iter()
.all(|c| c.iter().all(|e| self.remap.get(e) == Some(&c[0])))
{
// No change, so return false.
return false;
}
// Optimistically build the `remap` we would want.
// Note if any unions would be required, in which case we have further work to do,
// including re-forming `self.classes`.
let mut union_find = BTreeMap::default();
let mut dirtied = false;
for class in self.classes.iter() {
for expr in class.iter() {
if let Some(other) = union_find.insert(expr.clone(), class[0].clone()) {
// A merge is required, but have the more complex expression point at the simpler one.
// This allows `union_find` to end as the `remap` for the new `classes` we form, with
// the only required work being compressing all the paths.
if Self::mir_scalar_expr_complexity(&other, &class[0])
== std::cmp::Ordering::Less
{
union_find.union(&class[0], &other);
} else {
union_find.union(&other, &class[0]);
}
dirtied = true;
}
}
}
if dirtied {
let mut classes: BTreeMap<_, Vec<_>> = BTreeMap::default();
for class in self.classes.drain(..) {
for expr in class {
let root: MirScalarExpr = union_find.find(&expr).unwrap().clone();
classes.entry(root).or_default().push(expr);
}
}
self.classes = classes.into_values().collect();
self.tidy();
}
let changed = self.remap != union_find;
self.remap = union_find;
changed
}
/// Update `self` to maintain the same equivalences which potentially reducing along `Ord::le`.
///
/// Informally this means simplifying constraints, removing redundant constraints, and unifying equivalence classes.
pub fn minimize(&mut self, columns: &Option<Vec<ColumnType>>) {
// Repeatedly, we reduce each of the classes themselves, then unify the classes.
// This should strictly reduce complexity, and reach a fixed point.
// Ideally it is *confluent*, arriving at the same fixed point no matter the order of operations.
// We should not rely on nullability information present in `column_types`. (Doing this
// every time just before calling `reduce` was found to be a bottleneck during incident-217,
// so now we do this nullability tweaking only once here.)
let mut columns = columns.clone();
let mut nonnull = Vec::new();
if let Some(columns) = columns.as_mut() {
for (index, col) in columns.iter_mut().enumerate() {
let is_null = MirScalarExpr::column(index).call_is_null();
if !col.nullable
&& self
.remap
.get(&is_null)
.map(|e| !e.is_literal_false())
.unwrap_or(true)
{
nonnull.push(is_null);
}
col.nullable = true;
}
}
if !nonnull.is_empty() {
nonnull.push(MirScalarExpr::literal_false());
self.classes.push(nonnull);
}
// Ensure `self.classes` and `self.remap` are equivalence relations.
// Users are allowed to mutate `self.classes`, so we must perform this normalization at least once.
// We have also likely mutated `self.classes` just above with non-nullability information.
self.refresh();
// We continue as long as any simplification has occurred.
// An expression can be simplified, a duplication found, or two classes unified.
let mut stable = false;
while !stable {
stable = !self.minimize_once(&columns);
}
}
/// A single iteration of minimization, which we expect to repeat but benefit from factoring out.
///
/// This invocation should take roughly linear time.
/// It starts with equivalence class invariants maintained (closed under transitivity), and then
/// 1. Performs per-expression reduction, including the class structure to replace subexpressions.
/// 2. Applies idiom detection to e.g. unpack expressions equivalence to literal true or false.
/// 3. Restores the equivalence class invariants.
fn minimize_once(&mut self, columns: &Option<Vec<ColumnType>>) -> bool {
// 1. Reduce each expression
//
// This reduction first looks for subexpression substitutions that can be performed,
// and then applies expression reduction if column type information is provided.
for class in self.classes.iter_mut() {
for expr in class.iter_mut() {
self.remap.reduce_child(expr);
if let Some(columns) = columns {
expr.reduce(columns);
}
}
}
// 2. Identify idioms
// E.g. If Eq(x, y) must be true, we can introduce classes `[x, y]` and `[false, IsNull(x), IsNull(y)]`.
let mut to_add = Vec::new();
for class in self.classes.iter_mut() {
if class.iter().any(|c| c.is_literal_true()) {
for expr in class.iter() {
// If Eq(x, y) must be true, we can introduce classes `[x, y]` and `[false, IsNull(x), IsNull(y)]`.
// This substitution replaces a complex expression with several smaller expressions, and cannot
// cycle if we follow that practice.
if let MirScalarExpr::CallBinary {
func: mz_expr::BinaryFunc::Eq,
expr1,
expr2,
} = expr
{
to_add.push(vec![*expr1.clone(), *expr2.clone()]);
to_add.push(vec![
MirScalarExpr::literal_false(),
expr1.clone().call_is_null(),
expr2.clone().call_is_null(),
]);
}
}
// Remove the more complex form of the expression.
class.retain(|expr| {
if let MirScalarExpr::CallBinary {
func: mz_expr::BinaryFunc::Eq,
..
} = expr
{
false
} else {
true
}
});
for expr in class.iter() {
// If TRUE == NOT(X) then FALSE == X is a simpler form.
if let MirScalarExpr::CallUnary {
func: mz_expr::UnaryFunc::Not(_),
expr: e,
} = expr
{
to_add.push(vec![MirScalarExpr::literal_false(), (**e).clone()]);
}
}
class.retain(|expr| {
if let MirScalarExpr::CallUnary {
func: mz_expr::UnaryFunc::Not(_),
..
} = expr
{
false
} else {
true
}
});
}
if class.iter().any(|c| c.is_literal_false()) {
for expr in class.iter() {
// If FALSE == NOT(X) then TRUE == X is a simpler form.
if let MirScalarExpr::CallUnary {
func: mz_expr::UnaryFunc::Not(_),
expr: e,
} = expr
{
to_add.push(vec![MirScalarExpr::literal_true(), (**e).clone()]);
}
}
class.retain(|expr| {
if let MirScalarExpr::CallUnary {
func: mz_expr::UnaryFunc::Not(_),
..
} = expr
{
false
} else {
true
}
});
}
}
self.classes.extend(to_add);
// 3. Restore equivalence relation structure and observe if any changes result.
self.refresh()
}
/// Produce the equivalences present in both inputs.
pub fn union(&self, other: &Self) -> Self {
self.union_many([other])
}
/// The equivalence classes of terms equivalent in all inputs.
///
/// This method relies on the `remap` member of each input, and bases the intersection on these rather than `classes`.
/// This means one should ensure `minimize()` has been called on all inputs, or risk getting a stale, but conservatively
/// correct, result.
///
/// This method currently misses opportunities, because it only looks for exactly matches in expressions,
/// which may not include all possible matches. For example, `f(#1) == g(#1)` may exist in one class, but
/// in another class where `#0 == #1` it may exist as `f(#0) == g(#0)`.
pub fn union_many<'a, I>(&self, others: I) -> Self
where
I: IntoIterator<Item = &'a Self>,
{
// List of expressions in the intersection, and a proxy equivalence class identifier.
let mut intersection: Vec<(&MirScalarExpr, usize)> = Default::default();
// Map from expression to a proxy equivalence class identifier.
let mut rekey: BTreeMap<&MirScalarExpr, usize> = Default::default();
for (key, val) in self.remap.iter() {
if !rekey.contains_key(val) {
rekey.insert(val, rekey.len());
}
intersection.push((key, rekey[val]));
}
for other in others {
// Map from proxy equivalence class identifier and equivalence class expr to a new proxy identifier.
let mut rekey: BTreeMap<(usize, &MirScalarExpr), usize> = Default::default();
intersection.retain_mut(|(key, idx)| {
if let Some(val) = other.remap.get(key) {
if !rekey.contains_key(&(*idx, val)) {
rekey.insert((*idx, val), rekey.len());
}
*idx = rekey[&(*idx, val)];
true
} else {
false
}
});
}
let mut classes: BTreeMap<_, Vec<MirScalarExpr>> = Default::default();
for (key, vals) in intersection {
classes.entry(vals).or_default().push(key.clone())
}
let classes = classes.into_values().collect::<Vec<_>>();
let mut equivalences = EquivalenceClasses {
classes,
remap: Default::default(),
};
equivalences.minimize(&None);
equivalences
}
/// Permutes each expression, looking up each column reference in `permutation` and replacing with what it finds.
pub fn permute(&mut self, permutation: &[usize]) {
for class in self.classes.iter_mut() {
for expr in class.iter_mut() {
expr.permute(permutation);
}
}
self.remap.clear();
self.minimize(&None);
}
/// Subject the constraints to the column projection, reworking and removing equivalences.
///
/// This method should also introduce equivalences representing any repeated columns.
pub fn project<I>(&mut self, output_columns: I)
where
I: IntoIterator<Item = usize> + Clone,
{
// Retain the first instance of each column, and record subsequent instances as duplicates.
let mut dupes = Vec::new();
let mut remap = BTreeMap::default();
for (idx, col) in output_columns.into_iter().enumerate() {
if let Some(pos) = remap.get(&col) {
dupes.push((*pos, idx));
} else {
remap.insert(col, idx);
}
}
// Some expressions may be "localized" in that they only reference columns in `output_columns`.
// Many expressions may not be localized, but may reference canonical non-localized expressions
// for classes that contain a localized expression; in that case we can "backport" the localized
// expression to give expressions referencing the canonical expression a shot at localization.
//
// Expressions should only contain instances of canonical expressions, and so we shouldn't need
// to look any further than backporting those. Backporting should have the property that the simplest
// localized expression in each class does not contain any non-localized canonical expressions
// (as that would make it non-localized); our backporting of non-localized canonicals with localized
// expressions should never fire a second
// Let's say an expression is "localized" once we are able to rewrite its support in terms of `output_columns`.
// Not all expressions can be localized, although some of them may be equivalent to localized expressions.
// As we find localized expressions, we can replace uses of their equivalent representative with them,
// which may allow further expression localization.
// We continue the process until no further classes can be localized.
// A map from representatives to our first localization of their equivalence class.
let mut localized = false;
while !localized {
localized = true;
let mut current_map = BTreeMap::default();
for class in self.classes.iter_mut() {
if !class[0].support().iter().all(|c| remap.contains_key(c)) {
if let Some(pos) = class
.iter()
.position(|e| e.support().iter().all(|c| remap.contains_key(c)))
{
class.swap(0, pos);
localized = false;
}
}
for expr in class[1..].iter() {
current_map.insert(expr.clone(), class[0].clone());
}
}
// attempt to replace representatives with equivalent localizeable expressions.
for class_index in 0..self.classes.len() {
for index in 0..self.classes[class_index].len() {
current_map.reduce_child(&mut self.classes[class_index][index]);
}
}
// NB: Do *not* `self.minimize()`, as we are developing localizable rather than canonical representatives.
}
// Localize all localizable expressions and discard others.
for class in self.classes.iter_mut() {
class.retain(|e| e.support().iter().all(|c| remap.contains_key(c)));
for expr in class.iter_mut() {
expr.permute_map(&remap);
}
}
self.classes.retain(|c| c.len() > 1);
// If column repetitions, introduce them as equivalences.
// We introduce only the equivalence to the first occurrence, and rely on minimization to collect them.
for (col1, col2) in dupes {
self.classes.push(vec![
MirScalarExpr::Column(col1),
MirScalarExpr::Column(col2),
]);
}
self.remap.clear();
self.minimize(&None);
}
/// True if any equivalence class contains two distinct non-error literals.
pub fn unsatisfiable(&self) -> bool {
for class in self.classes.iter() {
let mut literal_ok = None;
for expr in class.iter() {
if let MirScalarExpr::Literal(Ok(row), _) = expr {
if literal_ok.is_some() && literal_ok != Some(row) {
return true;
} else {
literal_ok = Some(row);
}
}
}
}
false
}
/// Returns a map that can be used to replace (sub-)expressions.
pub fn reducer(&self) -> &BTreeMap<MirScalarExpr, MirScalarExpr> {
&self.remap
}
}
/// A type capable of simplifying `MirScalarExpr`s.
pub trait ExpressionReducer {
/// Attempt to replace `expr` itself with another expression.
/// Returns true if it does so.
fn replace(&self, expr: &mut MirScalarExpr) -> bool;
/// Attempt to replace any subexpressions of `expr` with other expressions.
/// Returns true if it does so.
fn reduce_expr(&self, expr: &mut MirScalarExpr) -> bool {
let mut simplified = false;
simplified = simplified || self.reduce_child(expr);
simplified = simplified || self.replace(expr);
simplified
}
/// Attempt to replace any subexpressions of `expr`'s children with other expressions.
/// Returns true if it does so.
fn reduce_child(&self, expr: &mut MirScalarExpr) -> bool {
let mut simplified = false;
match expr {
MirScalarExpr::CallBinary { expr1, expr2, .. } => {
simplified = self.reduce_expr(expr1) || simplified;
simplified = self.reduce_expr(expr2) || simplified;
}
MirScalarExpr::CallUnary { expr, .. } => {
simplified = self.reduce_expr(expr) || simplified;
}
MirScalarExpr::CallVariadic { exprs, .. } => {
for expr in exprs.iter_mut() {
simplified = self.reduce_expr(expr) || simplified;
}
}
MirScalarExpr::If { cond: _, then, els } => {
// Do not simplify `cond`, as we cannot ensure the simplification
// continues to hold as expressions migrate around.
simplified = self.reduce_expr(then) || simplified;
simplified = self.reduce_expr(els) || simplified;
}
_ => {}
}
simplified
}
}
impl ExpressionReducer for BTreeMap<&MirScalarExpr, &MirScalarExpr> {
/// Perform any exact replacement for `expr`, report if it had an effect.
fn replace(&self, expr: &mut MirScalarExpr) -> bool {
if let Some(other) = self.get(expr) {
if other != &expr {
expr.clone_from(other);
return true;
}
}
false
}
}
impl ExpressionReducer for BTreeMap<MirScalarExpr, MirScalarExpr> {
/// Perform any exact replacement for `expr`, report if it had an effect.
fn replace(&self, expr: &mut MirScalarExpr) -> bool {
if let Some(other) = self.get(expr) {
if other != expr {
expr.clone_from(other);
return true;
}
}
false
}
}
trait UnionFind<T> {
/// Sets `self[x]` to the root from `x`, and returns a reference to the root.
fn find<'a>(&'a mut self, x: &T) -> Option<&'a T>;
/// Ensures that `x` and `y` have the same root.
fn union(&mut self, x: &T, y: &T);
}
impl<T: Clone + Ord> UnionFind<T> for BTreeMap<T, T> {
fn find<'a>(&'a mut self, x: &T) -> Option<&'a T> {
if !self.contains_key(x) {
None
} else {
if self[x] != self[&self[x]] {
// Path halving
let mut y = self[x].clone();
while y != self[&y] {
let grandparent = self[&self[&y]].clone();
*self.get_mut(&y).unwrap() = grandparent;
y.clone_from(&self[&y]);
}
*self.get_mut(x).unwrap() = y;
}
Some(&self[x])
}
}
fn union(&mut self, x: &T, y: &T) {
match (self.find(x).is_some(), self.find(y).is_some()) {
(true, true) => {
if self[x] != self[y] {
let root_x = self[x].clone();
let root_y = self[y].clone();
self.insert(root_x, root_y);
}
}
(false, true) => {
self.insert(x.clone(), self[y].clone());
}
(true, false) => {
self.insert(y.clone(), self[x].clone());
}
(false, false) => {
self.insert(x.clone(), x.clone());
self.insert(y.clone(), x.clone());
}
}
}
}
use mz_expr::AggregateFunc;
/// True iff the aggregate function returns an input datum.
fn aggregate_is_input(aggregate: &AggregateFunc) -> bool {
match aggregate {
AggregateFunc::MaxInt16
| AggregateFunc::MaxInt32
| AggregateFunc::MaxInt64
| AggregateFunc::MaxUInt16
| AggregateFunc::MaxUInt32
| AggregateFunc::MaxUInt64
| AggregateFunc::MaxMzTimestamp
| AggregateFunc::MaxFloat32
| AggregateFunc::MaxFloat64
| AggregateFunc::MaxBool
| AggregateFunc::MaxString
| AggregateFunc::MaxDate
| AggregateFunc::MaxTimestamp
| AggregateFunc::MaxTimestampTz
| AggregateFunc::MinInt16
| AggregateFunc::MinInt32
| AggregateFunc::MinInt64
| AggregateFunc::MinUInt16
| AggregateFunc::MinUInt32
| AggregateFunc::MinUInt64
| AggregateFunc::MinMzTimestamp
| AggregateFunc::MinFloat32
| AggregateFunc::MinFloat64
| AggregateFunc::MinBool
| AggregateFunc::MinString
| AggregateFunc::MinDate
| AggregateFunc::MinTimestamp
| AggregateFunc::MinTimestampTz
| AggregateFunc::Any
| AggregateFunc::All => true,
_ => false,
}
}