mz_adapter/coord/command_handler.rs
1// Copyright Materialize, Inc. and contributors. All rights reserved.
2//
3// Use of this software is governed by the Business Source License
4// included in the LICENSE file.
5//
6// As of the Change Date specified in that file, in accordance with
7// the Business Source License, use of this software will be governed
8// by the Apache License, Version 2.0.
9
10//! Logic for processing client [`Command`]s. Each [`Command`] is initiated by a
11//! client via some external Materialize API (ex: HTTP and psql).
12
13use base64::prelude::*;
14use differential_dataflow::lattice::Lattice;
15use mz_adapter_types::dyncfgs::ALLOW_USER_SESSIONS;
16use mz_auth::password::Password;
17use mz_repr::namespaces::MZ_INTERNAL_SCHEMA;
18use mz_sql::session::metadata::SessionMetadata;
19use std::collections::{BTreeMap, BTreeSet};
20use std::net::IpAddr;
21use std::sync::Arc;
22
23use futures::FutureExt;
24use futures::future::LocalBoxFuture;
25use mz_adapter_types::connection::{ConnectionId, ConnectionIdType};
26use mz_catalog::SYSTEM_CONN_ID;
27use mz_catalog::memory::objects::{CatalogItem, DataSourceDesc, Source, Table, TableDataSource};
28use mz_ore::task;
29use mz_ore::tracing::OpenTelemetryContext;
30use mz_ore::{instrument, soft_panic_or_log};
31use mz_repr::role_id::RoleId;
32use mz_repr::{Diff, SqlScalarType, Timestamp};
33use mz_sql::ast::{
34 AlterConnectionAction, AlterConnectionStatement, AlterSinkAction, AlterSourceAction, AstInfo,
35 ConstantVisitor, CopyRelation, CopyStatement, CreateSourceOptionName, Raw, Statement,
36 SubscribeStatement,
37};
38use mz_sql::catalog::RoleAttributesRaw;
39use mz_sql::names::{Aug, PartialItemName, ResolvedIds};
40use mz_sql::plan::{
41 AbortTransactionPlan, CommitTransactionPlan, CreateRolePlan, Params, Plan,
42 StatementClassification, TransactionType,
43};
44use mz_sql::pure::{
45 materialized_view_option_contains_temporal, purify_create_materialized_view_options,
46};
47use mz_sql::rbac;
48use mz_sql::rbac::CREATE_ITEM_USAGE;
49use mz_sql::session::user::User;
50use mz_sql::session::vars::{
51 EndTransactionAction, NETWORK_POLICY, OwnedVarInput, STATEMENT_LOGGING_SAMPLE_RATE, Value, Var,
52};
53use mz_sql_parser::ast::display::AstDisplay;
54use mz_sql_parser::ast::{
55 CreateMaterializedViewStatement, ExplainPlanStatement, Explainee, InsertStatement,
56 WithOptionValue,
57};
58use mz_storage_types::sources::Timeline;
59use opentelemetry::trace::TraceContextExt;
60use tokio::sync::{mpsc, oneshot};
61use tracing::{Instrument, debug_span, info, warn};
62use tracing_opentelemetry::OpenTelemetrySpanExt;
63
64use crate::command::{
65 AuthResponse, CatalogSnapshot, Command, ExecuteResponse, SASLChallengeResponse,
66 SASLVerifyProofResponse, StartupResponse,
67};
68use crate::coord::appends::PendingWriteTxn;
69use crate::coord::{
70 ConnMeta, Coordinator, DeferredPlanStatement, Message, PendingTxn, PlanStatement, PlanValidity,
71 PurifiedStatementReady, validate_ip_with_policy_rules,
72};
73use crate::error::{AdapterError, AuthenticationError};
74use crate::notice::AdapterNotice;
75use crate::session::{Session, TransactionOps, TransactionStatus};
76use crate::util::{ClientTransmitter, ResultExt};
77use crate::webhook::{
78 AppendWebhookResponse, AppendWebhookValidator, WebhookAppender, WebhookAppenderInvalidator,
79};
80use crate::{AppendWebhookError, ExecuteContext, catalog, metrics};
81
82use super::ExecuteContextExtra;
83
84impl Coordinator {
85 /// BOXED FUTURE: As of Nov 2023 the returned Future from this function was 58KB. This would
86 /// get stored on the stack which is bad for runtime performance, and blow up our stack usage.
87 /// Because of that we purposefully move this Future onto the heap (i.e. Box it).
88 pub(crate) fn handle_command(&mut self, mut cmd: Command) -> LocalBoxFuture<'_, ()> {
89 async move {
90 if let Some(session) = cmd.session_mut() {
91 session.apply_external_metadata_updates();
92 }
93 match cmd {
94 Command::Startup {
95 tx,
96 user,
97 conn_id,
98 secret_key,
99 uuid,
100 client_ip,
101 application_name,
102 notice_tx,
103 } => {
104 // Note: We purposefully do not use a ClientTransmitter here because startup
105 // handles errors and cleanup of sessions itself.
106 self.handle_startup(
107 tx,
108 user,
109 conn_id,
110 secret_key,
111 uuid,
112 client_ip,
113 application_name,
114 notice_tx,
115 )
116 .await;
117 }
118
119 Command::AuthenticatePassword {
120 tx,
121 role_name,
122 password,
123 } => {
124 self.handle_authenticate_password(tx, role_name, password)
125 .await;
126 }
127
128 Command::AuthenticateGetSASLChallenge {
129 tx,
130 role_name,
131 nonce,
132 } => {
133 self.handle_generate_sasl_challenge(tx, role_name, nonce)
134 .await;
135 }
136
137 Command::AuthenticateVerifySASLProof {
138 tx,
139 role_name,
140 proof,
141 mock_hash,
142 auth_message,
143 } => {
144 self.handle_authenticate_verify_sasl_proof(
145 tx,
146 role_name,
147 proof,
148 auth_message,
149 mock_hash,
150 );
151 }
152
153 Command::Execute {
154 portal_name,
155 session,
156 tx,
157 outer_ctx_extra,
158 } => {
159 let tx = ClientTransmitter::new(tx, self.internal_cmd_tx.clone());
160
161 self.handle_execute(portal_name, session, tx, outer_ctx_extra)
162 .await;
163 }
164
165 Command::RetireExecute { data, reason } => self.retire_execution(reason, data),
166
167 Command::CancelRequest {
168 conn_id,
169 secret_key,
170 } => {
171 self.handle_cancel(conn_id, secret_key).await;
172 }
173
174 Command::PrivilegedCancelRequest { conn_id } => {
175 self.handle_privileged_cancel(conn_id).await;
176 }
177
178 Command::GetWebhook {
179 database,
180 schema,
181 name,
182 tx,
183 } => {
184 self.handle_get_webhook(database, schema, name, tx);
185 }
186
187 Command::GetSystemVars { tx } => {
188 let _ = tx.send(self.catalog.system_config().clone());
189 }
190
191 Command::SetSystemVars { vars, conn_id, tx } => {
192 let mut ops = Vec::with_capacity(vars.len());
193 let conn = &self.active_conns[&conn_id];
194
195 for (name, value) in vars {
196 if let Err(e) =
197 self.catalog().system_config().get(&name).and_then(|var| {
198 var.visible(conn.user(), self.catalog.system_config())
199 })
200 {
201 let _ = tx.send(Err(e.into()));
202 return;
203 }
204
205 ops.push(catalog::Op::UpdateSystemConfiguration {
206 name,
207 value: OwnedVarInput::Flat(value),
208 });
209 }
210
211 let result = self
212 .catalog_transact_with_context(Some(&conn_id), None, ops)
213 .await;
214 let _ = tx.send(result);
215 }
216
217 Command::Terminate { conn_id, tx } => {
218 self.handle_terminate(conn_id).await;
219 // Note: We purposefully do not use a ClientTransmitter here because we're already
220 // terminating the provided session.
221 if let Some(tx) = tx {
222 let _ = tx.send(Ok(()));
223 }
224 }
225
226 Command::Commit {
227 action,
228 session,
229 tx,
230 } => {
231 let tx = ClientTransmitter::new(tx, self.internal_cmd_tx.clone());
232 // We reach here not through a statement execution, but from the
233 // "commit" pgwire command. Thus, we just generate a default statement
234 // execution context (once statement logging is implemented, this will cause nothing to be logged
235 // when the execution finishes.)
236 let ctx = ExecuteContext::from_parts(
237 tx,
238 self.internal_cmd_tx.clone(),
239 session,
240 Default::default(),
241 );
242 let plan = match action {
243 EndTransactionAction::Commit => {
244 Plan::CommitTransaction(CommitTransactionPlan {
245 transaction_type: TransactionType::Implicit,
246 })
247 }
248 EndTransactionAction::Rollback => {
249 Plan::AbortTransaction(AbortTransactionPlan {
250 transaction_type: TransactionType::Implicit,
251 })
252 }
253 };
254
255 let conn_id = ctx.session().conn_id().clone();
256 self.sequence_plan(ctx, plan, ResolvedIds::empty()).await;
257 // Part of the Command::Commit contract is that the Coordinator guarantees that
258 // it has cleared its transaction state for the connection.
259 self.clear_connection(&conn_id).await;
260 }
261
262 Command::CatalogSnapshot { tx } => {
263 let _ = tx.send(CatalogSnapshot {
264 catalog: self.owned_catalog(),
265 });
266 }
267
268 Command::CheckConsistency { tx } => {
269 let _ = tx.send(self.check_consistency());
270 }
271
272 Command::Dump { tx } => {
273 let _ = tx.send(self.dump().await);
274 }
275
276 Command::GetComputeInstanceClient { instance_id, tx } => {
277 let _ = tx.send(self.controller.compute.instance_client(instance_id));
278 }
279
280 Command::GetOracle { timeline, tx } => {
281 let oracle = self
282 .global_timelines
283 .get(&timeline)
284 .map(|timeline_state| Arc::clone(&timeline_state.oracle))
285 .ok_or(AdapterError::ChangedPlan(
286 "timeline has disappeared during planning".to_string(),
287 ));
288 let _ = tx.send(oracle);
289 }
290
291 Command::DetermineRealTimeRecentTimestamp {
292 source_ids,
293 real_time_recency_timeout,
294 tx,
295 } => {
296 let result = self
297 .determine_real_time_recent_timestamp(
298 source_ids.iter().copied(),
299 real_time_recency_timeout,
300 )
301 .await;
302
303 match result {
304 Ok(Some(fut)) => {
305 task::spawn(|| "determine real time recent timestamp", async move {
306 let result = fut.await.map(Some).map_err(AdapterError::from);
307 let _ = tx.send(result);
308 });
309 }
310 Ok(None) => {
311 let _ = tx.send(Ok(None));
312 }
313 Err(e) => {
314 let _ = tx.send(Err(e));
315 }
316 }
317 }
318
319 Command::GetTransactionReadHoldsBundle { conn_id, tx } => {
320 let read_holds = self.txn_read_holds.get(&conn_id).cloned();
321 let _ = tx.send(read_holds);
322 }
323
324 Command::StoreTransactionReadHolds {
325 conn_id,
326 read_holds,
327 tx,
328 } => {
329 self.store_transaction_read_holds(conn_id, read_holds);
330 let _ = tx.send(());
331 }
332
333 Command::ExecuteSlowPathPeek {
334 dataflow_plan,
335 determination,
336 finishing,
337 compute_instance,
338 target_replica,
339 intermediate_result_type,
340 source_ids,
341 conn_id,
342 max_result_size,
343 max_query_result_size,
344 tx,
345 } => {
346 let result = self
347 .implement_slow_path_peek(
348 *dataflow_plan,
349 determination,
350 finishing,
351 compute_instance,
352 target_replica,
353 intermediate_result_type,
354 source_ids,
355 conn_id,
356 max_result_size,
357 max_query_result_size,
358 )
359 .await;
360
361 let _ = tx.send(result);
362 }
363
364 Command::ExecuteCopyTo {
365 df_desc,
366 compute_instance,
367 target_replica,
368 source_ids,
369 conn_id,
370 tx,
371 } => {
372 // implement_copy_to spawns a background task that sends the response
373 // through tx when the COPY TO completes (or immediately if setup fails).
374 // We just call it and let it handle all response sending.
375 self.implement_copy_to(
376 *df_desc,
377 compute_instance,
378 target_replica,
379 source_ids,
380 conn_id,
381 tx,
382 )
383 .await;
384 }
385 }
386 }
387 .instrument(debug_span!("handle_command"))
388 .boxed_local()
389 }
390
391 fn handle_authenticate_verify_sasl_proof(
392 &self,
393 tx: oneshot::Sender<Result<SASLVerifyProofResponse, AdapterError>>,
394 role_name: String,
395 proof: String,
396 auth_message: String,
397 mock_hash: String,
398 ) {
399 let role = self.catalog().try_get_role_by_name(role_name.as_str());
400 let role_auth = role.and_then(|r| self.catalog().try_get_role_auth_by_id(&r.id));
401
402 let login = role
403 .as_ref()
404 .map(|r| r.attributes.login.unwrap_or(false))
405 .unwrap_or(false);
406
407 let real_hash = role_auth
408 .as_ref()
409 .and_then(|auth| auth.password_hash.as_ref());
410 let hash_ref = real_hash.map(|s| s.as_str()).unwrap_or(&mock_hash);
411
412 let role_present = role.is_some();
413 let make_auth_err = |role_present: bool, login: bool| {
414 AdapterError::AuthenticationError(if role_present && !login {
415 AuthenticationError::NonLogin
416 } else {
417 AuthenticationError::InvalidCredentials
418 })
419 };
420
421 match mz_auth::hash::sasl_verify(hash_ref, &proof, &auth_message) {
422 Ok(verifier) => {
423 // Success only if role exists, allows login, and a real password hash was used.
424 if login && real_hash.is_some() {
425 let role = role.expect("login implies role exists");
426 let _ = tx.send(Ok(SASLVerifyProofResponse {
427 verifier,
428 auth_resp: AuthResponse {
429 role_id: role.id,
430 superuser: role.attributes.superuser.unwrap_or(false),
431 },
432 }));
433 } else {
434 let _ = tx.send(Err(make_auth_err(role_present, login)));
435 }
436 }
437 Err(_) => {
438 let _ = tx.send(Err(AdapterError::AuthenticationError(
439 AuthenticationError::InvalidCredentials,
440 )));
441 }
442 }
443 }
444
445 #[mz_ore::instrument(level = "debug")]
446 async fn handle_generate_sasl_challenge(
447 &mut self,
448 tx: oneshot::Sender<Result<SASLChallengeResponse, AdapterError>>,
449 role_name: String,
450 client_nonce: String,
451 ) {
452 let role_auth = self
453 .catalog()
454 .try_get_role_by_name(&role_name)
455 .and_then(|role| self.catalog().try_get_role_auth_by_id(&role.id));
456
457 let nonce = match mz_auth::hash::generate_nonce(&client_nonce) {
458 Ok(n) => n,
459 Err(e) => {
460 let msg = format!(
461 "failed to generate nonce for client nonce {}: {}",
462 client_nonce, e
463 );
464 let _ = tx.send(Err(AdapterError::Internal(msg.clone())));
465 soft_panic_or_log!("{msg}");
466 return;
467 }
468 };
469
470 // It's important that the mock_nonce is deterministic per role, otherwise the purpose of
471 // doing mock authentication is defeated. We use a catalog-wide nonce, and combine that
472 // with the role name to get a per-role mock nonce.
473 let send_mock_challenge =
474 |role_name: String,
475 mock_nonce: String,
476 nonce: String,
477 tx: oneshot::Sender<Result<SASLChallengeResponse, AdapterError>>| {
478 let opts = mz_auth::hash::mock_sasl_challenge(
479 &role_name,
480 &mock_nonce,
481 &self.catalog().system_config().scram_iterations(),
482 );
483 let _ = tx.send(Ok(SASLChallengeResponse {
484 iteration_count: mz_ore::cast::u32_to_usize(opts.iterations.get()),
485 salt: BASE64_STANDARD.encode(opts.salt),
486 nonce,
487 }));
488 };
489
490 match role_auth {
491 Some(auth) if auth.password_hash.is_some() => {
492 let hash = auth.password_hash.as_ref().expect("checked above");
493 match mz_auth::hash::scram256_parse_opts(hash) {
494 Ok(opts) => {
495 let _ = tx.send(Ok(SASLChallengeResponse {
496 iteration_count: mz_ore::cast::u32_to_usize(opts.iterations.get()),
497 salt: BASE64_STANDARD.encode(opts.salt),
498 nonce,
499 }));
500 }
501 Err(_) => {
502 send_mock_challenge(
503 role_name,
504 self.catalog().state().mock_authentication_nonce(),
505 nonce,
506 tx,
507 );
508 }
509 }
510 }
511 _ => {
512 send_mock_challenge(
513 role_name,
514 self.catalog().state().mock_authentication_nonce(),
515 nonce,
516 tx,
517 );
518 }
519 }
520 }
521
522 #[mz_ore::instrument(level = "debug")]
523 async fn handle_authenticate_password(
524 &mut self,
525 tx: oneshot::Sender<Result<AuthResponse, AdapterError>>,
526 role_name: String,
527 password: Option<Password>,
528 ) {
529 let Some(password) = password else {
530 // The user did not provide a password.
531 let _ = tx.send(Err(AdapterError::AuthenticationError(
532 AuthenticationError::PasswordRequired,
533 )));
534 return;
535 };
536
537 if let Some(role) = self.catalog().try_get_role_by_name(role_name.as_str()) {
538 if !role.attributes.login.unwrap_or(false) {
539 // The user is not allowed to login.
540 let _ = tx.send(Err(AdapterError::AuthenticationError(
541 AuthenticationError::NonLogin,
542 )));
543 return;
544 }
545 if let Some(auth) = self.catalog().try_get_role_auth_by_id(&role.id) {
546 if let Some(hash) = &auth.password_hash {
547 let _ = match mz_auth::hash::scram256_verify(&password, hash) {
548 Ok(_) => tx.send(Ok(AuthResponse {
549 role_id: role.id,
550 superuser: role.attributes.superuser.unwrap_or(false),
551 })),
552 Err(_) => tx.send(Err(AdapterError::AuthenticationError(
553 AuthenticationError::InvalidCredentials,
554 ))),
555 };
556 return;
557 }
558 }
559 // Authentication failed due to incorrect password or missing password hash.
560 let _ = tx.send(Err(AdapterError::AuthenticationError(
561 AuthenticationError::InvalidCredentials,
562 )));
563 } else {
564 // The user does not exist.
565 let _ = tx.send(Err(AdapterError::AuthenticationError(
566 AuthenticationError::RoleNotFound,
567 )));
568 }
569 }
570
571 #[mz_ore::instrument(level = "debug")]
572 async fn handle_startup(
573 &mut self,
574 tx: oneshot::Sender<Result<StartupResponse, AdapterError>>,
575 user: User,
576 conn_id: ConnectionId,
577 secret_key: u32,
578 uuid: uuid::Uuid,
579 client_ip: Option<IpAddr>,
580 application_name: String,
581 notice_tx: mpsc::UnboundedSender<AdapterNotice>,
582 ) {
583 // Early return if successful, otherwise cleanup any possible state.
584 match self.handle_startup_inner(&user, &conn_id, &client_ip).await {
585 Ok((role_id, session_defaults)) => {
586 let session_type = metrics::session_type_label_value(&user);
587 self.metrics
588 .active_sessions
589 .with_label_values(&[session_type])
590 .inc();
591 let conn = ConnMeta {
592 secret_key,
593 notice_tx,
594 drop_sinks: BTreeSet::new(),
595 pending_cluster_alters: BTreeSet::new(),
596 connected_at: self.now(),
597 user,
598 application_name,
599 uuid,
600 client_ip,
601 conn_id: conn_id.clone(),
602 authenticated_role: role_id,
603 deferred_lock: None,
604 };
605 let update = self.catalog().state().pack_session_update(&conn, Diff::ONE);
606 let update = self.catalog().state().resolve_builtin_table_update(update);
607 self.begin_session_for_statement_logging(&conn);
608 self.active_conns.insert(conn_id.clone(), conn);
609
610 // Note: Do NOT await the notify here, we pass this back to
611 // whatever requested the startup to prevent blocking startup
612 // and the Coordinator on a builtin table update.
613 let updates = vec![update];
614 // It's not a hard error if our list is missing a builtin table, but we want to
615 // make sure these two things stay in-sync.
616 if mz_ore::assert::soft_assertions_enabled() {
617 let required_tables: BTreeSet<_> = super::appends::REQUIRED_BUILTIN_TABLES
618 .iter()
619 .map(|table| self.catalog().resolve_builtin_table(*table))
620 .collect();
621 let updates_tracked = updates
622 .iter()
623 .all(|update| required_tables.contains(&update.id));
624 let all_mz_internal = super::appends::REQUIRED_BUILTIN_TABLES
625 .iter()
626 .all(|table| table.schema == MZ_INTERNAL_SCHEMA);
627 mz_ore::soft_assert_or_log!(
628 updates_tracked,
629 "not tracking all required builtin table updates!"
630 );
631 // TODO(parkmycar): When checking if a query depends on these builtin table
632 // writes we do not check the transitive dependencies of the query, because
633 // we don't support creating views on mz_internal objects. If one of these
634 // tables is promoted out of mz_internal then we'll need to add this check.
635 mz_ore::soft_assert_or_log!(
636 all_mz_internal,
637 "not all builtin tables are in mz_internal! need to check transitive depends",
638 )
639 }
640 let notify = self.builtin_table_update().background(updates);
641
642 let resp = Ok(StartupResponse {
643 role_id,
644 write_notify: notify,
645 session_defaults,
646 catalog: self.owned_catalog(),
647 storage_collections: Arc::clone(&self.controller.storage_collections),
648 transient_id_gen: Arc::clone(&self.transient_id_gen),
649 optimizer_metrics: self.optimizer_metrics.clone(),
650 persist_client: self.persist_client.clone(),
651 });
652 if tx.send(resp).is_err() {
653 // Failed to send to adapter, but everything is setup so we can terminate
654 // normally.
655 self.handle_terminate(conn_id).await;
656 }
657 }
658 Err(e) => {
659 // Error during startup or sending to adapter, cleanup possible state created by
660 // handle_startup_inner. A user may have been created and it can stay; no need to
661 // delete it.
662 self.catalog_mut()
663 .drop_temporary_schema(&conn_id)
664 .unwrap_or_terminate("unable to drop temporary schema");
665
666 // Communicate the error back to the client. No need to
667 // handle failures to send the error back; we've already
668 // cleaned up all necessary state.
669 let _ = tx.send(Err(e));
670 }
671 }
672 }
673
674 // Failible startup work that needs to be cleaned up on error.
675 async fn handle_startup_inner(
676 &mut self,
677 user: &User,
678 conn_id: &ConnectionId,
679 client_ip: &Option<IpAddr>,
680 ) -> Result<(RoleId, BTreeMap<String, OwnedVarInput>), AdapterError> {
681 if self.catalog().try_get_role_by_name(&user.name).is_none() {
682 // If the user has made it to this point, that means they have been fully authenticated.
683 // This includes preventing any user, except a pre-defined set of system users, from
684 // connecting to an internal port. Therefore it's ok to always create a new role for the
685 // user.
686 let attributes = RoleAttributesRaw::new();
687 let plan = CreateRolePlan {
688 name: user.name.to_string(),
689 attributes,
690 };
691 self.sequence_create_role_for_startup(plan).await?;
692 }
693 let role_id = self
694 .catalog()
695 .try_get_role_by_name(&user.name)
696 .expect("created above")
697 .id;
698
699 if role_id.is_user() && !ALLOW_USER_SESSIONS.get(self.catalog().system_config().dyncfgs()) {
700 return Err(AdapterError::UserSessionsDisallowed);
701 }
702
703 // Initialize the default session variables for this role.
704 let mut session_defaults = BTreeMap::new();
705 let system_config = self.catalog().state().system_config();
706
707 // Override the session with any system defaults.
708 session_defaults.extend(
709 system_config
710 .iter_session()
711 .map(|v| (v.name().to_string(), OwnedVarInput::Flat(v.value()))),
712 );
713 // Special case.
714 let statement_logging_default = system_config
715 .statement_logging_default_sample_rate()
716 .format();
717 session_defaults.insert(
718 STATEMENT_LOGGING_SAMPLE_RATE.name().to_string(),
719 OwnedVarInput::Flat(statement_logging_default),
720 );
721 // Override system defaults with role defaults.
722 session_defaults.extend(
723 self.catalog()
724 .get_role(&role_id)
725 .vars()
726 .map(|(name, val)| (name.to_string(), val.clone())),
727 );
728
729 // Validate network policies for external users. Internal users can only connect on the
730 // internal interfaces (internal HTTP/ pgwire). It is up to the person deploying the system
731 // to ensure these internal interfaces are well secured.
732 //
733 // HACKY(parkmycar): We don't have a fully formed session yet for this role, but we want
734 // the default network policy for this role, so we read directly out of what the session
735 // will get initialized with.
736 if !user.is_internal() {
737 let network_policy_name = session_defaults
738 .get(NETWORK_POLICY.name())
739 .and_then(|value| match value {
740 OwnedVarInput::Flat(name) => Some(name.clone()),
741 OwnedVarInput::SqlSet(names) => {
742 tracing::error!(?names, "found multiple network policies");
743 None
744 }
745 })
746 .unwrap_or_else(|| system_config.default_network_policy_name());
747 let maybe_network_policy = self
748 .catalog()
749 .get_network_policy_by_name(&network_policy_name);
750
751 let Some(network_policy) = maybe_network_policy else {
752 // We should prevent dropping the default network policy, or setting the policy
753 // to something that doesn't exist, so complain loudly if this occurs.
754 tracing::error!(
755 network_policy_name,
756 "default network policy does not exist. All user traffic will be blocked"
757 );
758 let reason = match client_ip {
759 Some(ip) => super::NetworkPolicyError::AddressDenied(ip.clone()),
760 None => super::NetworkPolicyError::MissingIp,
761 };
762 return Err(AdapterError::NetworkPolicyDenied(reason));
763 };
764
765 if let Some(ip) = client_ip {
766 match validate_ip_with_policy_rules(ip, &network_policy.rules) {
767 Ok(_) => {}
768 Err(e) => return Err(AdapterError::NetworkPolicyDenied(e)),
769 }
770 } else {
771 // Only temporary and internal representation of a session
772 // should be missing a client_ip. These sessions should not be
773 // making requests or going through handle_startup.
774 return Err(AdapterError::NetworkPolicyDenied(
775 super::NetworkPolicyError::MissingIp,
776 ));
777 }
778 }
779
780 self.catalog_mut()
781 .create_temporary_schema(conn_id, role_id)?;
782
783 Ok((role_id, session_defaults))
784 }
785
786 /// Handles an execute command.
787 #[instrument(name = "coord::handle_execute", fields(session = session.uuid().to_string()))]
788 pub(crate) async fn handle_execute(
789 &mut self,
790 portal_name: String,
791 mut session: Session,
792 tx: ClientTransmitter<ExecuteResponse>,
793 // If this command was part of another execute command
794 // (for example, executing a `FETCH` statement causes an execute to be
795 // issued for the cursor it references),
796 // then `outer_context` should be `Some`.
797 // This instructs the coordinator that the
798 // outer execute should be considered finished once the inner one is.
799 outer_context: Option<ExecuteContextExtra>,
800 ) {
801 if session.vars().emit_trace_id_notice() {
802 let span_context = tracing::Span::current()
803 .context()
804 .span()
805 .span_context()
806 .clone();
807 if span_context.is_valid() {
808 session.add_notice(AdapterNotice::QueryTrace {
809 trace_id: span_context.trace_id(),
810 });
811 }
812 }
813
814 if let Err(err) = Self::verify_portal(self.catalog(), &mut session, &portal_name) {
815 // If statement logging hasn't started yet, we don't need
816 // to add any "end" event, so just make up a no-op
817 // `ExecuteContextExtra` here, via `Default::default`.
818 //
819 // It's a bit unfortunate because the edge case of failed
820 // portal verifications won't show up in statement
821 // logging, but there seems to be nothing else we can do,
822 // because we need access to the portal to begin logging.
823 //
824 // Another option would be to log a begin and end event, but just fill in NULLs
825 // for everything we get from the portal (prepared statement id, params).
826 let extra = outer_context.unwrap_or_else(Default::default);
827 let ctx = ExecuteContext::from_parts(tx, self.internal_cmd_tx.clone(), session, extra);
828 return ctx.retire(Err(err));
829 }
830
831 // The reference to `portal` can't outlive `session`, which we
832 // use to construct the context, so scope the reference to this block where we
833 // get everything we need from the portal for later.
834 let (stmt, ctx, params) = {
835 let portal = session
836 .get_portal_unverified(&portal_name)
837 .expect("known to exist");
838 let params = portal.parameters.clone();
839 let stmt = portal.stmt.clone();
840 let logging = Arc::clone(&portal.logging);
841 let lifecycle_timestamps = portal.lifecycle_timestamps.clone();
842
843 let extra = if let Some(extra) = outer_context {
844 // We are executing in the context of another SQL statement, so we don't
845 // want to begin statement logging anew. The context of the actual statement
846 // being executed is the one that should be retired once this finishes.
847 extra
848 } else {
849 // This is a new statement, log it and return the context
850 let maybe_uuid = self.begin_statement_execution(
851 &mut session,
852 ¶ms,
853 &logging,
854 lifecycle_timestamps,
855 );
856
857 ExecuteContextExtra::new(maybe_uuid)
858 };
859 let ctx = ExecuteContext::from_parts(tx, self.internal_cmd_tx.clone(), session, extra);
860 (stmt, ctx, params)
861 };
862
863 let stmt = match stmt {
864 Some(stmt) => stmt,
865 None => return ctx.retire(Ok(ExecuteResponse::EmptyQuery)),
866 };
867
868 let session_type = metrics::session_type_label_value(ctx.session().user());
869 let stmt_type = metrics::statement_type_label_value(&stmt);
870 self.metrics
871 .query_total
872 .with_label_values(&[session_type, stmt_type])
873 .inc();
874 match &*stmt {
875 Statement::Subscribe(SubscribeStatement { output, .. })
876 | Statement::Copy(CopyStatement {
877 relation: CopyRelation::Subscribe(SubscribeStatement { output, .. }),
878 ..
879 }) => {
880 self.metrics
881 .subscribe_outputs
882 .with_label_values(&[
883 session_type,
884 metrics::subscribe_output_label_value(output),
885 ])
886 .inc();
887 }
888 _ => {}
889 }
890
891 self.handle_execute_inner(stmt, params, ctx).await
892 }
893
894 #[instrument(name = "coord::handle_execute_inner", fields(stmt = stmt.to_ast_string_redacted()))]
895 pub(crate) async fn handle_execute_inner(
896 &mut self,
897 stmt: Arc<Statement<Raw>>,
898 params: Params,
899 mut ctx: ExecuteContext,
900 ) {
901 // This comment describes the various ways DDL can execute (the ordered operations: name
902 // resolve, purify, plan, sequence), all of which are managed by this function. DDL has
903 // three notable properties that all partially interact.
904 //
905 // 1. Most DDL statements (and a few others) support single-statement transaction delayed
906 // execution. This occurs when a session executes `BEGIN`, a single DDL, then `COMMIT`.
907 // We announce success of the single DDL when it is executed, but do not attempt to plan
908 // or sequence it until `COMMIT`, which is able to error if needed while sequencing the
909 // DDL (this behavior is Postgres-compatible). The purpose of this is because some
910 // drivers or tools wrap all statements in `BEGIN` and `COMMIT` and we would like them to
911 // work. When the single DDL is announced as successful we also put the session's
912 // transaction ops into `SingleStatement` which will produce an error if any other
913 // statement is run in the transaction except `COMMIT`. Additionally, this will cause
914 // `handle_execute_inner` to stop further processing (no planning, etc.) of the
915 // statement.
916 // 2. A few other DDL statements (`ALTER .. RENAME/SWAP`) enter the `DDL` ops which allows
917 // any number of only these DDL statements to be executed in a transaction. At sequencing
918 // these generate the `Op::TransactionDryRun` catalog op. When applied with
919 // `catalog_transact`, that op will always produce the `TransactionDryRun` error. The
920 // `catalog_transact_with_ddl_transaction` function intercepts that error and reports
921 // success to the user, but nothing is yet committed to the real catalog. At `COMMIT` all
922 // of the ops but without dry run are applied. The purpose of this is to allow multiple,
923 // atomic renames in the same transaction.
924 // 3. Some DDLs do off-thread work during purification or sequencing that is expensive or
925 // makes network calls (interfacing with secrets, optimization of views/indexes, source
926 // purification). These must guarantee correctness when they return to the main
927 // coordinator thread because the catalog state could have changed while they were doing
928 // the off-thread work. Previously we would use `PlanValidity::Checks` to specify a bunch
929 // of IDs that we needed to exist. We discovered the way we were doing that was not
930 // always correct. Instead of attempting to get that completely right, we have opted to
931 // serialize DDL. Getting this right is difficult because catalog changes can affect name
932 // resolution, planning, sequencing, and optimization. Correctly writing logic that is
933 // aware of all possible catalog changes that would affect any of those parts is not
934 // something our current code has been designed to be helpful at. Even if a DDL statement
935 // is doing off-thread work, another DDL must not yet execute at all. Executing these
936 // serially will guarantee that no off-thread work has affected the state of the catalog.
937 // This is done by adding a VecDeque of deferred statements and a lock to the
938 // Coordinator. When a DDL is run in `handle_execute_inner` (after applying whatever
939 // transaction ops are needed to the session as described above), it attempts to own the
940 // lock (a tokio Mutex). If acquired, it stashes the lock in the connection`s `ConnMeta`
941 // struct in `active_conns` and proceeds. The lock is dropped at transaction end in
942 // `clear_transaction` and a message sent to the Coordinator to execute the next queued
943 // DDL. If the lock could not be acquired, the DDL is put into the VecDeque where it
944 // awaits dequeuing caused by the lock being released.
945
946 // Verify that this statement type can be executed in the current
947 // transaction state.
948 match ctx.session().transaction() {
949 // By this point we should be in a running transaction.
950 TransactionStatus::Default => unreachable!(),
951
952 // Failed transactions have already been checked in pgwire for a safe statement
953 // (COMMIT, ROLLBACK, etc.) and can proceed.
954 TransactionStatus::Failed(_) => {}
955
956 // Started is a deceptive name, and means different things depending on which
957 // protocol was used. It's either exactly one statement (known because this
958 // is the simple protocol and the parser parsed the entire string, and it had
959 // one statement). Or from the extended protocol, it means *some* query is
960 // being executed, but there might be others after it before the Sync (commit)
961 // message. Postgres handles this by teaching Started to eagerly commit certain
962 // statements that can't be run in a transaction block.
963 TransactionStatus::Started(_) => {
964 if let Statement::Declare(_) = &*stmt {
965 // Declare is an exception. Although it's not against any spec to execute
966 // it, it will always result in nothing happening, since all portals will be
967 // immediately closed. Users don't know this detail, so this error helps them
968 // understand what's going wrong. Postgres does this too.
969 return ctx.retire(Err(AdapterError::OperationRequiresTransaction(
970 "DECLARE CURSOR".into(),
971 )));
972 }
973 }
974
975 // Implicit or explicit transactions.
976 //
977 // Implicit transactions happen when a multi-statement query is executed
978 // (a "simple query"). However if a "BEGIN" appears somewhere in there,
979 // then the existing implicit transaction will be upgraded to an explicit
980 // transaction. Thus, we should not separate what implicit and explicit
981 // transactions can do unless there's some additional checking to make sure
982 // something disallowed in explicit transactions did not previously take place
983 // in the implicit portion.
984 TransactionStatus::InTransactionImplicit(_) | TransactionStatus::InTransaction(_) => {
985 match &*stmt {
986 // Statements that are safe in a transaction. We still need to verify that we
987 // don't interleave reads and writes since we can't perform those serializably.
988 Statement::Close(_)
989 | Statement::Commit(_)
990 | Statement::Copy(_)
991 | Statement::Deallocate(_)
992 | Statement::Declare(_)
993 | Statement::Discard(_)
994 | Statement::Execute(_)
995 | Statement::ExplainPlan(_)
996 | Statement::ExplainPushdown(_)
997 | Statement::ExplainAnalyzeObject(_)
998 | Statement::ExplainAnalyzeCluster(_)
999 | Statement::ExplainTimestamp(_)
1000 | Statement::ExplainSinkSchema(_)
1001 | Statement::Fetch(_)
1002 | Statement::Prepare(_)
1003 | Statement::Rollback(_)
1004 | Statement::Select(_)
1005 | Statement::SetTransaction(_)
1006 | Statement::Show(_)
1007 | Statement::SetVariable(_)
1008 | Statement::ResetVariable(_)
1009 | Statement::StartTransaction(_)
1010 | Statement::Subscribe(_)
1011 | Statement::Raise(_) => {
1012 // Always safe.
1013 }
1014
1015 Statement::Insert(InsertStatement {
1016 source, returning, ..
1017 }) if returning.is_empty() && ConstantVisitor::insert_source(source) => {
1018 // Inserting from constant values statements that do not need to execute on
1019 // any cluster (no RETURNING) is always safe.
1020 }
1021
1022 // These statements must be kept in-sync with `must_serialize_ddl()`.
1023 Statement::AlterObjectRename(_)
1024 | Statement::AlterObjectSwap(_)
1025 | Statement::CreateTableFromSource(_)
1026 | Statement::CreateSource(_) => {
1027 let state = self.catalog().for_session(ctx.session()).state().clone();
1028 let revision = self.catalog().transient_revision();
1029
1030 // Initialize our transaction with a set of empty ops, or return an error
1031 // if we can't run a DDL transaction
1032 let txn_status = ctx.session_mut().transaction_mut();
1033 if let Err(err) = txn_status.add_ops(TransactionOps::DDL {
1034 ops: vec![],
1035 state,
1036 revision,
1037 side_effects: vec![],
1038 }) {
1039 return ctx.retire(Err(err));
1040 }
1041 }
1042
1043 // Statements below must by run singly (in Started).
1044 Statement::AlterCluster(_)
1045 | Statement::AlterConnection(_)
1046 | Statement::AlterDefaultPrivileges(_)
1047 | Statement::AlterIndex(_)
1048 | Statement::AlterMaterializedViewApplyReplacement(_)
1049 | Statement::AlterSetCluster(_)
1050 | Statement::AlterOwner(_)
1051 | Statement::AlterRetainHistory(_)
1052 | Statement::AlterRole(_)
1053 | Statement::AlterSecret(_)
1054 | Statement::AlterSink(_)
1055 | Statement::AlterSource(_)
1056 | Statement::AlterSystemReset(_)
1057 | Statement::AlterSystemResetAll(_)
1058 | Statement::AlterSystemSet(_)
1059 | Statement::AlterTableAddColumn(_)
1060 | Statement::AlterNetworkPolicy(_)
1061 | Statement::CreateCluster(_)
1062 | Statement::CreateClusterReplica(_)
1063 | Statement::CreateConnection(_)
1064 | Statement::CreateDatabase(_)
1065 | Statement::CreateIndex(_)
1066 | Statement::CreateMaterializedView(_)
1067 | Statement::CreateContinualTask(_)
1068 | Statement::CreateRole(_)
1069 | Statement::CreateSchema(_)
1070 | Statement::CreateSecret(_)
1071 | Statement::CreateSink(_)
1072 | Statement::CreateSubsource(_)
1073 | Statement::CreateTable(_)
1074 | Statement::CreateType(_)
1075 | Statement::CreateView(_)
1076 | Statement::CreateWebhookSource(_)
1077 | Statement::CreateNetworkPolicy(_)
1078 | Statement::Delete(_)
1079 | Statement::DropObjects(_)
1080 | Statement::DropOwned(_)
1081 | Statement::GrantPrivileges(_)
1082 | Statement::GrantRole(_)
1083 | Statement::Insert(_)
1084 | Statement::ReassignOwned(_)
1085 | Statement::RevokePrivileges(_)
1086 | Statement::RevokeRole(_)
1087 | Statement::Update(_)
1088 | Statement::ValidateConnection(_)
1089 | Statement::Comment(_) => {
1090 let txn_status = ctx.session_mut().transaction_mut();
1091
1092 // If we're not in an implicit transaction and we could generate exactly one
1093 // valid ExecuteResponse, we can delay execution until commit.
1094 if !txn_status.is_implicit() {
1095 // Statements whose tag is trivial (known only from an unexecuted statement) can
1096 // be run in a special single-statement explicit mode. In this mode (`BEGIN;
1097 // <stmt>; COMMIT`), we generate the expected tag from a successful <stmt>, but
1098 // delay execution until `COMMIT`.
1099 if let Ok(resp) = ExecuteResponse::try_from(&*stmt) {
1100 if let Err(err) = txn_status
1101 .add_ops(TransactionOps::SingleStatement { stmt, params })
1102 {
1103 ctx.retire(Err(err));
1104 return;
1105 }
1106 ctx.retire(Ok(resp));
1107 return;
1108 }
1109 }
1110
1111 return ctx.retire(Err(AdapterError::OperationProhibitsTransaction(
1112 stmt.to_string(),
1113 )));
1114 }
1115 }
1116 }
1117 }
1118
1119 // DDLs must be planned and sequenced serially. We do not rely on PlanValidity checking
1120 // various IDs because we have incorrectly done that in the past. Attempt to acquire the
1121 // ddl lock. The lock is stashed in the ConnMeta which is dropped at transaction end. If
1122 // acquired, proceed with sequencing. If not, enqueue and return. This logic assumes that
1123 // Coordinator::clear_transaction is correctly called when session transactions are ended
1124 // because that function will release the held lock from active_conns.
1125 if Self::must_serialize_ddl(&stmt, &ctx) {
1126 if let Ok(guard) = self.serialized_ddl.try_lock_owned() {
1127 let prev = self
1128 .active_conns
1129 .get_mut(ctx.session().conn_id())
1130 .expect("connection must exist")
1131 .deferred_lock
1132 .replace(guard);
1133 assert!(
1134 prev.is_none(),
1135 "connections should have at most one lock guard"
1136 );
1137 } else {
1138 if self
1139 .active_conns
1140 .get(ctx.session().conn_id())
1141 .expect("connection must exist")
1142 .deferred_lock
1143 .is_some()
1144 {
1145 // This session *already* has the lock, and incorrectly tried to execute another
1146 // DDL while still holding the lock, violating the assumption documented above.
1147 // This is an internal error, probably in some AdapterClient user (pgwire or
1148 // http). Because the session is now in some unexpected state, return an error
1149 // which should cause the AdapterClient user to fail the transaction.
1150 // (Terminating the connection is maybe what we would prefer to do, but is not
1151 // currently a thing we can do from the coordinator: calling handle_terminate
1152 // cleans up Coordinator state for the session but doesn't inform the
1153 // AdapterClient that the session should terminate.)
1154 soft_panic_or_log!(
1155 "session {} attempted to get ddl lock while already owning it",
1156 ctx.session().conn_id()
1157 );
1158 ctx.retire(Err(AdapterError::Internal(
1159 "session attempted to get ddl lock while already owning it".to_string(),
1160 )));
1161 return;
1162 }
1163 self.serialized_ddl.push_back(DeferredPlanStatement {
1164 ctx,
1165 ps: PlanStatement::Statement { stmt, params },
1166 });
1167 return;
1168 }
1169 }
1170
1171 let catalog = self.catalog();
1172 let catalog = catalog.for_session(ctx.session());
1173 let original_stmt = Arc::clone(&stmt);
1174 // `resolved_ids` should be derivable from `stmt`. If `stmt` is transformed to remove/add
1175 // IDs, then `resolved_ids` should be updated to also remove/add those IDs.
1176 let (stmt, mut resolved_ids) = match mz_sql::names::resolve(&catalog, (*stmt).clone()) {
1177 Ok(resolved) => resolved,
1178 Err(e) => return ctx.retire(Err(e.into())),
1179 };
1180 // N.B. The catalog can change during purification so we must validate that the dependencies still exist after
1181 // purification. This should be done back on the main thread.
1182 // We do the validation:
1183 // - In the handler for `Message::PurifiedStatementReady`, before we handle the purified statement.
1184 // If we add special handling for more types of `Statement`s, we'll need to ensure similar verification
1185 // occurs.
1186 let (stmt, resolved_ids) = match stmt {
1187 // Various statements must be purified off the main coordinator thread of control.
1188 stmt if Self::must_spawn_purification(&stmt) => {
1189 let internal_cmd_tx = self.internal_cmd_tx.clone();
1190 let conn_id = ctx.session().conn_id().clone();
1191 let catalog = self.owned_catalog();
1192 let now = self.now();
1193 let otel_ctx = OpenTelemetryContext::obtain();
1194 let current_storage_configuration = self.controller.storage.config().clone();
1195 task::spawn(|| format!("purify:{conn_id}"), async move {
1196 let transient_revision = catalog.transient_revision();
1197 let catalog = catalog.for_session(ctx.session());
1198
1199 // Checks if the session is authorized to purify a statement. Usually
1200 // authorization is checked after planning, however purification happens before
1201 // planning, which may require the use of some connections and secrets.
1202 if let Err(e) = rbac::check_usage(
1203 &catalog,
1204 ctx.session(),
1205 &resolved_ids,
1206 &CREATE_ITEM_USAGE,
1207 ) {
1208 return ctx.retire(Err(e.into()));
1209 }
1210
1211 let (result, cluster_id) = mz_sql::pure::purify_statement(
1212 catalog,
1213 now,
1214 stmt,
1215 ¤t_storage_configuration,
1216 )
1217 .await;
1218 let result = result.map_err(|e| e.into());
1219 let dependency_ids = resolved_ids.items().copied().collect();
1220 let plan_validity = PlanValidity::new(
1221 transient_revision,
1222 dependency_ids,
1223 cluster_id,
1224 None,
1225 ctx.session().role_metadata().clone(),
1226 );
1227 // It is not an error for purification to complete after `internal_cmd_rx` is dropped.
1228 let result = internal_cmd_tx.send(Message::PurifiedStatementReady(
1229 PurifiedStatementReady {
1230 ctx,
1231 result,
1232 params,
1233 plan_validity,
1234 original_stmt,
1235 otel_ctx,
1236 },
1237 ));
1238 if let Err(e) = result {
1239 tracing::warn!("internal_cmd_rx dropped before we could send: {:?}", e);
1240 }
1241 });
1242 return;
1243 }
1244
1245 // `CREATE SUBSOURCE` statements are disallowed for users and are only generated
1246 // automatically as part of purification
1247 Statement::CreateSubsource(_) => {
1248 ctx.retire(Err(AdapterError::Unsupported(
1249 "CREATE SUBSOURCE statements",
1250 )));
1251 return;
1252 }
1253
1254 Statement::CreateMaterializedView(mut cmvs) => {
1255 // `CREATE MATERIALIZED VIEW ... AS OF ...` syntax is disallowed for users and is
1256 // only used for storing initial frontiers in the catalog.
1257 if cmvs.as_of.is_some() {
1258 return ctx.retire(Err(AdapterError::Unsupported(
1259 "CREATE MATERIALIZED VIEW ... AS OF statements",
1260 )));
1261 }
1262
1263 let mz_now = match self
1264 .resolve_mz_now_for_create_materialized_view(
1265 &cmvs,
1266 &resolved_ids,
1267 ctx.session_mut(),
1268 true,
1269 )
1270 .await
1271 {
1272 Ok(mz_now) => mz_now,
1273 Err(e) => return ctx.retire(Err(e)),
1274 };
1275
1276 let catalog = self.catalog().for_session(ctx.session());
1277
1278 purify_create_materialized_view_options(
1279 catalog,
1280 mz_now,
1281 &mut cmvs,
1282 &mut resolved_ids,
1283 );
1284
1285 let purified_stmt =
1286 Statement::CreateMaterializedView(CreateMaterializedViewStatement::<Aug> {
1287 if_exists: cmvs.if_exists,
1288 name: cmvs.name,
1289 columns: cmvs.columns,
1290 replacing: cmvs.replacing,
1291 in_cluster: cmvs.in_cluster,
1292 query: cmvs.query,
1293 with_options: cmvs.with_options,
1294 as_of: None,
1295 });
1296
1297 // (Purifying CreateMaterializedView doesn't happen async, so no need to send
1298 // `Message::PurifiedStatementReady` here.)
1299 (purified_stmt, resolved_ids)
1300 }
1301
1302 Statement::ExplainPlan(ExplainPlanStatement {
1303 stage,
1304 with_options,
1305 format,
1306 explainee: Explainee::CreateMaterializedView(box_cmvs, broken),
1307 }) => {
1308 let mut cmvs = *box_cmvs;
1309 let mz_now = match self
1310 .resolve_mz_now_for_create_materialized_view(
1311 &cmvs,
1312 &resolved_ids,
1313 ctx.session_mut(),
1314 false,
1315 )
1316 .await
1317 {
1318 Ok(mz_now) => mz_now,
1319 Err(e) => return ctx.retire(Err(e)),
1320 };
1321
1322 let catalog = self.catalog().for_session(ctx.session());
1323
1324 purify_create_materialized_view_options(
1325 catalog,
1326 mz_now,
1327 &mut cmvs,
1328 &mut resolved_ids,
1329 );
1330
1331 let purified_stmt = Statement::ExplainPlan(ExplainPlanStatement {
1332 stage,
1333 with_options,
1334 format,
1335 explainee: Explainee::CreateMaterializedView(Box::new(cmvs), broken),
1336 });
1337
1338 (purified_stmt, resolved_ids)
1339 }
1340
1341 // All other statements are handled immediately.
1342 _ => (stmt, resolved_ids),
1343 };
1344
1345 match self.plan_statement(ctx.session(), stmt, ¶ms, &resolved_ids) {
1346 Ok(plan) => self.sequence_plan(ctx, plan, resolved_ids).await,
1347 Err(e) => ctx.retire(Err(e)),
1348 }
1349 }
1350
1351 /// Whether the statement must be serialized and is DDL.
1352 fn must_serialize_ddl(stmt: &Statement<Raw>, ctx: &ExecuteContext) -> bool {
1353 // Non-DDL is not serialized here.
1354 if !StatementClassification::from(&*stmt).is_ddl() {
1355 return false;
1356 }
1357 // Off-thread, pre-planning purification can perform arbitrarily slow network calls so must
1358 // not be serialized. These all use PlanValidity for their checking, and we must ensure
1359 // those checks are sufficient.
1360 if Self::must_spawn_purification(stmt) {
1361 return false;
1362 }
1363
1364 // Statements that support multiple DDLs in a single transaction aren't serialized here.
1365 // Their operations are serialized when applied to the catalog, guaranteeing that any
1366 // off-thread DDLs concurrent with a multiple DDL transaction will have a serial order.
1367 if ctx.session.transaction().is_ddl() {
1368 return false;
1369 }
1370
1371 // Some DDL is exempt. It is not great that we are matching on Statements here because
1372 // different plans can be produced from the same top-level statement type (i.e., `ALTER
1373 // CONNECTION ROTATE KEYS`). But the whole point of this is to prevent things from being
1374 // planned in the first place, so we accept the abstraction leak.
1375 match stmt {
1376 // Secrets have a small and understood set of dependencies, and their off-thread work
1377 // interacts with k8s.
1378 Statement::AlterSecret(_) => false,
1379 Statement::CreateSecret(_) => false,
1380 Statement::AlterConnection(AlterConnectionStatement { actions, .. })
1381 if actions
1382 .iter()
1383 .all(|action| matches!(action, AlterConnectionAction::RotateKeys)) =>
1384 {
1385 false
1386 }
1387
1388 // The off-thread work that altering a cluster may do (waiting for replicas to spin-up),
1389 // does not affect its catalog names or ids and so is safe to not serialize. This could
1390 // change the set of replicas that exist. For queries that name replicas or use the
1391 // current_replica session var, the `replica_id` field of `PlanValidity` serves to
1392 // ensure that those replicas exist during the query finish stage. Additionally, that
1393 // work can take hours (configured by the user), so would also be a bad experience for
1394 // users.
1395 Statement::AlterCluster(_) => false,
1396
1397 // `ALTER SINK SET FROM` waits for the old relation to make enough progress for a clean
1398 // cutover. If the old collection is stalled, it may block forever. Checks in
1399 // sequencing ensure that the operation fails if any one of these happens concurrently:
1400 // * the sink is dropped
1401 // * the new source relation is dropped
1402 // * another `ALTER SINK` for the same sink is applied first
1403 Statement::AlterSink(stmt)
1404 if matches!(stmt.action, AlterSinkAction::ChangeRelation(_)) =>
1405 {
1406 false
1407 }
1408
1409 // Everything else must be serialized.
1410 _ => true,
1411 }
1412 }
1413
1414 /// Whether the statement must be purified off of the Coordinator thread.
1415 fn must_spawn_purification<A: AstInfo>(stmt: &Statement<A>) -> bool {
1416 // `CREATE` and `ALTER` `SOURCE` and `SINK` statements must be purified off the main
1417 // coordinator thread.
1418 if !matches!(
1419 stmt,
1420 Statement::CreateSource(_)
1421 | Statement::AlterSource(_)
1422 | Statement::CreateSink(_)
1423 | Statement::CreateTableFromSource(_)
1424 ) {
1425 return false;
1426 }
1427
1428 // However `ALTER SOURCE RETAIN HISTORY` should be excluded from off-thread purification.
1429 if let Statement::AlterSource(stmt) = stmt {
1430 let names: Vec<CreateSourceOptionName> = match &stmt.action {
1431 AlterSourceAction::SetOptions(options) => {
1432 options.iter().map(|o| o.name.clone()).collect()
1433 }
1434 AlterSourceAction::ResetOptions(names) => names.clone(),
1435 _ => vec![],
1436 };
1437 if !names.is_empty()
1438 && names
1439 .iter()
1440 .all(|n| matches!(n, CreateSourceOptionName::RetainHistory))
1441 {
1442 return false;
1443 }
1444 }
1445
1446 true
1447 }
1448
1449 /// Chooses a timestamp for `mz_now()`, if `mz_now()` occurs in a REFRESH option of the
1450 /// materialized view. Additionally, if `acquire_read_holds` is true and the MV has any REFRESH
1451 /// option, this function grabs read holds at the earliest possible time on input collections
1452 /// that might be involved in the MV.
1453 ///
1454 /// Note that this is NOT what handles `mz_now()` in the query part of the MV. (handles it only
1455 /// in `with_options`).
1456 ///
1457 /// (Note that the chosen timestamp won't be the same timestamp as the system table inserts,
1458 /// unfortunately.)
1459 async fn resolve_mz_now_for_create_materialized_view(
1460 &mut self,
1461 cmvs: &CreateMaterializedViewStatement<Aug>,
1462 resolved_ids: &ResolvedIds,
1463 session: &Session,
1464 acquire_read_holds: bool,
1465 ) -> Result<Option<Timestamp>, AdapterError> {
1466 if cmvs
1467 .with_options
1468 .iter()
1469 .any(|wo| matches!(wo.value, Some(WithOptionValue::Refresh(..))))
1470 {
1471 let catalog = self.catalog().for_session(session);
1472 let cluster = mz_sql::plan::resolve_cluster_for_materialized_view(&catalog, cmvs)?;
1473 let ids = self
1474 .index_oracle(cluster)
1475 .sufficient_collections(resolved_ids.collections().copied());
1476
1477 // If there is any REFRESH option, then acquire read holds. (Strictly speaking, we'd
1478 // need this only if there is a `REFRESH AT`, not for `REFRESH EVERY`, because later
1479 // we want to check the AT times against the read holds that we acquire here. But
1480 // we do it for any REFRESH option, to avoid having so many code paths doing different
1481 // things.)
1482 //
1483 // It's important that we acquire read holds _before_ we determine the least valid read.
1484 // Otherwise, we're not guaranteed that the since frontier doesn't
1485 // advance forward from underneath us.
1486 let read_holds = self.acquire_read_holds(&ids);
1487
1488 // Does `mz_now()` occur?
1489 let mz_now_ts = if cmvs
1490 .with_options
1491 .iter()
1492 .any(materialized_view_option_contains_temporal)
1493 {
1494 let timeline_context = self
1495 .catalog()
1496 .validate_timeline_context(resolved_ids.collections().copied())?;
1497
1498 // We default to EpochMilliseconds, similarly to `determine_timestamp_for`,
1499 // but even in the TimestampIndependent case.
1500 // Note that we didn't accurately decide whether we are TimestampDependent
1501 // or TimestampIndependent, because for this we'd need to also check whether
1502 // `query.contains_temporal()`, similarly to how `peek_stage_validate` does.
1503 // However, this doesn't matter here, as we are just going to default to
1504 // EpochMilliseconds in both cases.
1505 let timeline = timeline_context
1506 .timeline()
1507 .unwrap_or(&Timeline::EpochMilliseconds);
1508
1509 // Let's start with the timestamp oracle read timestamp.
1510 let mut timestamp = self.get_timestamp_oracle(timeline).read_ts().await;
1511
1512 // If `least_valid_read` is later than the oracle, then advance to that time.
1513 // If we didn't do this, then there would be a danger of missing the first refresh,
1514 // which might cause the materialized view to be unreadable for hours. This might
1515 // be what was happening here:
1516 // https://github.com/MaterializeInc/database-issues/issues/7265#issuecomment-1931856361
1517 //
1518 // In the long term, it would be good to actually block the MV creation statement
1519 // until `least_valid_read`. https://github.com/MaterializeInc/database-issues/issues/7504
1520 // Without blocking, we have the problem that a REFRESH AT CREATION is not linearized
1521 // with the CREATE MATERIALIZED VIEW statement, in the sense that a query from the MV
1522 // after its creation might see input changes that happened after the CRATE MATERIALIZED
1523 // VIEW statement returned.
1524 let oracle_timestamp = timestamp;
1525 let least_valid_read = read_holds.least_valid_read();
1526 timestamp.advance_by(least_valid_read.borrow());
1527
1528 if oracle_timestamp != timestamp {
1529 warn!(%cmvs.name, %oracle_timestamp, %timestamp, "REFRESH MV's inputs are not readable at the oracle read ts");
1530 }
1531
1532 info!("Resolved `mz_now()` to {timestamp} for REFRESH MV");
1533 Ok(Some(timestamp))
1534 } else {
1535 Ok(None)
1536 };
1537
1538 // NOTE: The Drop impl of ReadHolds makes sure that the hold is
1539 // released when we don't use it.
1540 if acquire_read_holds {
1541 self.store_transaction_read_holds(session.conn_id().clone(), read_holds);
1542 }
1543
1544 mz_now_ts
1545 } else {
1546 Ok(None)
1547 }
1548 }
1549
1550 /// Instruct the dataflow layer to cancel any ongoing, interactive work for
1551 /// the named `conn_id` if the correct secret key is specified.
1552 ///
1553 /// Note: Here we take a [`ConnectionIdType`] as opposed to an owned
1554 /// `ConnectionId` because this method gets called by external clients when
1555 /// they request to cancel a request.
1556 #[mz_ore::instrument(level = "debug")]
1557 async fn handle_cancel(&mut self, conn_id: ConnectionIdType, secret_key: u32) {
1558 if let Some((id_handle, conn_meta)) = self.active_conns.get_key_value(&conn_id) {
1559 // If the secret key specified by the client doesn't match the
1560 // actual secret key for the target connection, we treat this as a
1561 // rogue cancellation request and ignore it.
1562 if conn_meta.secret_key != secret_key {
1563 return;
1564 }
1565
1566 // Now that we've verified the secret key, this is a privileged
1567 // cancellation request. We can upgrade the raw connection ID to a
1568 // proper `IdHandle`.
1569 self.handle_privileged_cancel(id_handle.clone()).await;
1570 }
1571 }
1572
1573 /// Unconditionally instructs the dataflow layer to cancel any ongoing,
1574 /// interactive work for the named `conn_id`.
1575 #[mz_ore::instrument(level = "debug")]
1576 pub(crate) async fn handle_privileged_cancel(&mut self, conn_id: ConnectionId) {
1577 let mut maybe_ctx = None;
1578
1579 // Cancel pending writes. There is at most one pending write per session.
1580 if let Some(idx) = self.pending_writes.iter().position(|pending_write_txn| {
1581 matches!(pending_write_txn, PendingWriteTxn::User {
1582 pending_txn: PendingTxn { ctx, .. },
1583 ..
1584 } if *ctx.session().conn_id() == conn_id)
1585 }) {
1586 if let PendingWriteTxn::User {
1587 pending_txn: PendingTxn { ctx, .. },
1588 ..
1589 } = self.pending_writes.remove(idx)
1590 {
1591 maybe_ctx = Some(ctx);
1592 }
1593 }
1594
1595 // Cancel deferred writes.
1596 if let Some(write_op) = self.deferred_write_ops.remove(&conn_id) {
1597 maybe_ctx = Some(write_op.into_ctx());
1598 }
1599
1600 // Cancel deferred statements.
1601 if let Some(idx) = self
1602 .serialized_ddl
1603 .iter()
1604 .position(|deferred| *deferred.ctx.session().conn_id() == conn_id)
1605 {
1606 let deferred = self
1607 .serialized_ddl
1608 .remove(idx)
1609 .expect("known to exist from call to `position` above");
1610 maybe_ctx = Some(deferred.ctx);
1611 }
1612
1613 // Cancel reads waiting on being linearized. There is at most one linearized read per
1614 // session.
1615 if let Some(pending_read_txn) = self.pending_linearize_read_txns.remove(&conn_id) {
1616 let ctx = pending_read_txn.take_context();
1617 maybe_ctx = Some(ctx);
1618 }
1619
1620 if let Some(ctx) = maybe_ctx {
1621 ctx.retire(Err(AdapterError::Canceled));
1622 }
1623
1624 self.cancel_pending_peeks(&conn_id);
1625 self.cancel_pending_watchsets(&conn_id);
1626 self.cancel_compute_sinks_for_conn(&conn_id).await;
1627 self.cancel_cluster_reconfigurations_for_conn(&conn_id)
1628 .await;
1629 self.cancel_pending_copy(&conn_id);
1630 if let Some((tx, _rx)) = self.staged_cancellation.get_mut(&conn_id) {
1631 let _ = tx.send(true);
1632 }
1633 }
1634
1635 /// Handle termination of a client session.
1636 ///
1637 /// This cleans up any state in the coordinator associated with the session.
1638 #[mz_ore::instrument(level = "debug")]
1639 async fn handle_terminate(&mut self, conn_id: ConnectionId) {
1640 if !self.active_conns.contains_key(&conn_id) {
1641 // If the session doesn't exist in `active_conns`, then this method will panic later on.
1642 // Instead we explicitly panic here while dumping the entire Coord to the logs to help
1643 // debug. This panic is very infrequent so we want as much information as possible.
1644 // See https://github.com/MaterializeInc/database-issues/issues/5627.
1645 panic!("unknown connection: {conn_id:?}\n\n{self:?}")
1646 }
1647
1648 // We do not need to call clear_transaction here because there are no side effects to run
1649 // based on any session transaction state.
1650 self.clear_connection(&conn_id).await;
1651
1652 self.drop_temp_items(&conn_id).await;
1653 self.catalog_mut()
1654 .drop_temporary_schema(&conn_id)
1655 .unwrap_or_terminate("unable to drop temporary schema");
1656 let conn = self.active_conns.remove(&conn_id).expect("conn must exist");
1657 let session_type = metrics::session_type_label_value(conn.user());
1658 self.metrics
1659 .active_sessions
1660 .with_label_values(&[session_type])
1661 .dec();
1662 self.cancel_pending_peeks(conn.conn_id());
1663 self.cancel_pending_watchsets(&conn_id);
1664 self.cancel_pending_copy(&conn_id);
1665 self.end_session_for_statement_logging(conn.uuid());
1666
1667 // Queue the builtin table update, but do not wait for it to complete. We explicitly do
1668 // this to prevent blocking the Coordinator in the case that a lot of connections are
1669 // closed at once, which occurs regularly in some workflows.
1670 let update = self
1671 .catalog()
1672 .state()
1673 .pack_session_update(&conn, Diff::MINUS_ONE);
1674 let update = self.catalog().state().resolve_builtin_table_update(update);
1675
1676 let _builtin_update_notify = self.builtin_table_update().defer(vec![update]);
1677 }
1678
1679 /// Returns the necessary metadata for appending to a webhook source, and a channel to send
1680 /// rows.
1681 #[mz_ore::instrument(level = "debug")]
1682 fn handle_get_webhook(
1683 &mut self,
1684 database: String,
1685 schema: String,
1686 name: String,
1687 tx: oneshot::Sender<Result<AppendWebhookResponse, AppendWebhookError>>,
1688 ) {
1689 /// Attempts to resolve a Webhook source from a provided `database.schema.name` path.
1690 ///
1691 /// Returns a struct that can be used to append data to the underlying storate collection, and the
1692 /// types we should cast the request to.
1693 fn resolve(
1694 coord: &mut Coordinator,
1695 database: String,
1696 schema: String,
1697 name: String,
1698 ) -> Result<AppendWebhookResponse, PartialItemName> {
1699 // Resolve our collection.
1700 let name = PartialItemName {
1701 database: Some(database),
1702 schema: Some(schema),
1703 item: name,
1704 };
1705 let Ok(entry) = coord
1706 .catalog()
1707 .resolve_entry(None, &vec![], &name, &SYSTEM_CONN_ID)
1708 else {
1709 return Err(name);
1710 };
1711
1712 // Webhooks can be created with `CREATE SOURCE` or `CREATE TABLE`.
1713 let (data_source, desc, global_id) = match entry.item() {
1714 CatalogItem::Source(Source {
1715 data_source: data_source @ DataSourceDesc::Webhook { .. },
1716 desc,
1717 global_id,
1718 ..
1719 }) => (data_source, desc.clone(), *global_id),
1720 CatalogItem::Table(
1721 table @ Table {
1722 desc,
1723 data_source:
1724 TableDataSource::DataSource {
1725 desc: data_source @ DataSourceDesc::Webhook { .. },
1726 ..
1727 },
1728 ..
1729 },
1730 ) => (data_source, desc.latest(), table.global_id_writes()),
1731 _ => return Err(name),
1732 };
1733
1734 let DataSourceDesc::Webhook {
1735 validate_using,
1736 body_format,
1737 headers,
1738 ..
1739 } = data_source
1740 else {
1741 mz_ore::soft_panic_or_log!("programming error! checked above for webhook");
1742 return Err(name);
1743 };
1744 let body_format = body_format.clone();
1745 let header_tys = headers.clone();
1746
1747 // Assert we have one column for the body, and how ever many are required for
1748 // the headers.
1749 let num_columns = headers.num_columns() + 1;
1750 mz_ore::soft_assert_or_log!(
1751 desc.arity() <= num_columns,
1752 "expected at most {} columns, but got {}",
1753 num_columns,
1754 desc.arity()
1755 );
1756
1757 // Double check that the body column of the webhook source matches the type
1758 // we're about to deserialize as.
1759 let body_column = desc
1760 .get_by_name(&"body".into())
1761 .map(|(_idx, ty)| ty.clone())
1762 .ok_or_else(|| name.clone())?;
1763 assert!(!body_column.nullable, "webhook body column is nullable!?");
1764 assert_eq!(body_column.scalar_type, SqlScalarType::from(body_format));
1765
1766 // Create a validator that can be called to validate a webhook request.
1767 let validator = validate_using.as_ref().map(|v| {
1768 let validation = v.clone();
1769 AppendWebhookValidator::new(validation, coord.caching_secrets_reader.clone())
1770 });
1771
1772 // Get a channel so we can queue updates to be written.
1773 let row_tx = coord
1774 .controller
1775 .storage
1776 .monotonic_appender(global_id)
1777 .map_err(|_| name.clone())?;
1778 let stats = coord
1779 .controller
1780 .storage
1781 .webhook_statistics(global_id)
1782 .map_err(|_| name)?;
1783 let invalidator = coord
1784 .active_webhooks
1785 .entry(entry.id())
1786 .or_insert_with(WebhookAppenderInvalidator::new);
1787 let tx = WebhookAppender::new(row_tx, invalidator.guard(), stats);
1788
1789 Ok(AppendWebhookResponse {
1790 tx,
1791 body_format,
1792 header_tys,
1793 validator,
1794 })
1795 }
1796
1797 let response = resolve(self, database, schema, name).map_err(|name| {
1798 AppendWebhookError::UnknownWebhook {
1799 database: name.database.expect("provided"),
1800 schema: name.schema.expect("provided"),
1801 name: name.item,
1802 }
1803 });
1804 let _ = tx.send(response);
1805 }
1806}