1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! An interface for atomic multi-shard writes.
use std::collections::BTreeMap;
use std::fmt::Debug;
use std::ops::{Deref, DerefMut};
use std::sync::Arc;
use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use futures::stream::FuturesUnordered;
use futures::StreamExt;
use mz_dyncfg::{Config, ConfigSet, ConfigValHandle};
use mz_ore::collections::HashSet;
use mz_ore::instrument;
use mz_persist_client::batch::Batch;
use mz_persist_client::cfg::USE_CRITICAL_SINCE_TXN;
use mz_persist_client::critical::SinceHandle;
use mz_persist_client::write::WriteHandle;
use mz_persist_client::{Diagnostics, PersistClient, ShardId};
use mz_persist_types::schema::SchemaId;
use mz_persist_types::txn::{TxnsCodec, TxnsEntry};
use mz_persist_types::{Codec, Codec64, Opaque, StepForward};
use timely::order::TotalOrder;
use timely::progress::Timestamp;
use tracing::debug;
use crate::metrics::Metrics;
use crate::txn_cache::{TxnsCache, Unapplied};
use crate::txn_write::Txn;
use crate::TxnsCodecDefault;
/// An interface for atomic multi-shard writes.
///
/// This handle is acquired through [Self::open]. Any data shards must be
/// registered with [Self::register] before use. Transactions are then started
/// with [Self::begin].
///
/// # Implementation Details
///
/// The structure of the txns shard is `(ShardId, Vec<u8>)` updates.
///
/// The core mechanism is that a txn commits a set of transmittable persist
/// _batch handles_ as `(ShardId, <opaque blob>)` pairs at a single timestamp.
/// This contractually both commits the txn and advances the logical upper of
/// _every_ data shard (not just the ones involved in the txn).
///
/// Example:
///
/// ```text
/// // A txn to only d0 at ts=1
/// (d0, <opaque blob A>, 1, 1)
/// // A txn to d0 (two blobs) and d1 (one blob) at ts=4
/// (d0, <opaque blob B>, 4, 1)
/// (d0, <opaque blob C>, 4, 1)
/// (d1, <opaque blob D>, 4, 1)
/// ```
///
/// However, the new commit is not yet readable until the txn apply has run,
/// which is expected to be promptly done by the committer, except in the event
/// of a crash. This, in ts order, moves the batch handles into the data shards
/// with a [compare_and_append_batch] (similar to how the multi-worker
/// persist_sink works).
///
/// [compare_and_append_batch]:
/// mz_persist_client::write::WriteHandle::compare_and_append_batch
///
/// Once apply is run, we "tidy" the txns shard by retracting the update adding
/// the batch. As a result, the contents of the txns shard at any given
/// timestamp is exactly the set of outstanding apply work (plus registrations,
/// see below).
///
/// Example (building on the above):
///
/// ```text
/// // Tidy for the first txn at ts=3
/// (d0, <opaque blob A>, 3, -1)
/// // Tidy for the second txn (the timestamps can be different for each
/// // retraction in a txn, but don't need to be)
/// (d0, <opaque blob B>, 5, -1)
/// (d0, <opaque blob C>, 6, -1)
/// (d1, <opaque blob D>, 6, -1)
/// ```
///
/// To make it easy to reason about exactly which data shards are registered in
/// the txn set at any given moment, the data shard is added to the set with a
/// `(ShardId, <empty>)` pair. The data may not be read before the timestamp of
/// the update (which starts at the time it was initialized, but it may later be
/// forwarded).
///
/// Example (building on both of the above):
///
/// ```text
/// // d0 and d1 were both initialized before they were used above
/// (d0, <empty>, 0, 1)
/// (d1, <empty>, 2, 1)
/// ```
#[derive(Debug)]
pub struct TxnsHandle<K: Codec, V: Codec, T, D, O = u64, C: TxnsCodec = TxnsCodecDefault> {
pub(crate) metrics: Arc<Metrics>,
pub(crate) txns_cache: TxnsCache<T, C>,
pub(crate) txns_write: WriteHandle<C::Key, C::Val, T, i64>,
pub(crate) txns_since: SinceHandle<C::Key, C::Val, T, i64, O>,
pub(crate) datas: DataHandles<K, V, T, D>,
}
impl<K, V, T, D, O, C> TxnsHandle<K, V, T, D, O, C>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
D: Debug + Semigroup + Ord + Codec64 + Send + Sync,
O: Opaque + Debug + Codec64,
C: TxnsCodec,
{
/// Returns a [TxnsHandle] committing to the given txn shard.
///
/// `txns_id` identifies which shard will be used as the txns WAL. MZ will
/// likely have one of these per env, used by all processes and the same
/// across restarts.
///
/// This also does any (idempotent) initialization work: i.e. ensures that
/// the txn shard is readable at `init_ts` by appending an empty batch, if
/// necessary.
pub async fn open(
init_ts: T,
client: PersistClient,
dyncfgs: ConfigSet,
metrics: Arc<Metrics>,
txns_id: ShardId,
) -> Self {
let (txns_key_schema, txns_val_schema) = C::schemas();
let (mut txns_write, txns_read) = client
.open(
txns_id,
Arc::new(txns_key_schema),
Arc::new(txns_val_schema),
Diagnostics {
shard_name: "txns".to_owned(),
handle_purpose: "commit txns".to_owned(),
},
USE_CRITICAL_SINCE_TXN.get(client.dyncfgs()),
)
.await
.expect("txns schema shouldn't change");
let txns_since = client
.open_critical_since(
txns_id,
// TODO: We likely need to use a different critical reader id
// for this if we want to be able to introspect it via SQL.
PersistClient::CONTROLLER_CRITICAL_SINCE,
Diagnostics {
shard_name: "txns".to_owned(),
handle_purpose: "commit txns".to_owned(),
},
)
.await
.expect("txns schema shouldn't change");
let txns_cache = TxnsCache::init(init_ts, txns_read, &mut txns_write).await;
TxnsHandle {
metrics,
txns_cache,
txns_write,
txns_since,
datas: DataHandles {
dyncfgs,
client: Arc::new(client),
data_write_for_apply: BTreeMap::new(),
data_write_for_commit: BTreeMap::new(),
},
}
}
/// Returns a new, empty transaction that can involve the data shards
/// registered with this handle.
pub fn begin(&self) -> Txn<K, V, T, D> {
// TODO: This is a method on the handle because we'll need WriteHandles
// once we start spilling to s3.
Txn::new()
}
/// Registers data shards for use with this txn set.
///
/// A registration entry is written to the txn shard. If it is not possible
/// to register the data at the requested time, an Err will be returned with
/// the minimum time the data shards could be registered.
///
/// This method is idempotent. Data shards currently registered at
/// `register_ts` will not be registered a second time. Specifically, this
/// method will return success when the most recent register ts `R` is
/// less_equal to `register_ts` AND there is no forget ts between `R` and
/// `register_ts`.
///
/// As a side effect all txns <= register_ts are applied, including the
/// registration itself.
///
/// **WARNING!** While a data shard is registered to the txn set, writing to
/// it directly (i.e. using a WriteHandle instead of the TxnHandle,
/// registering it with another txn shard) will lead to incorrectness,
/// undefined behavior, and (potentially sticky) panics.
#[instrument(level = "debug", fields(ts = ?register_ts))]
pub async fn register(
&mut self,
register_ts: T,
data_writes: impl IntoIterator<Item = WriteHandle<K, V, T, D>>,
) -> Result<Tidy, T> {
let op = &Arc::clone(&self.metrics).register;
op.run(async {
let data_writes = data_writes.into_iter().collect::<Vec<_>>();
let updates = data_writes
.iter()
.map(|data_write| {
let data_id = data_write.shard_id();
let entry = TxnsEntry::Register(data_id, T::encode(®ister_ts));
(data_id, C::encode(entry))
})
.collect::<Vec<_>>();
let data_ids_debug = || {
data_writes
.iter()
.map(|x| format!("{:.9}", x.shard_id().to_string()))
.collect::<Vec<_>>()
.join(" ")
};
let mut txns_upper = self
.txns_write
.shared_upper()
.into_option()
.expect("txns should not be closed");
loop {
txns_upper = self.txns_cache.update_ge(&txns_upper).await.clone();
// Figure out which are still unregistered as of `txns_upper`. Below
// we write conditionally on the upper being what we expect so than
// we can re-run this if anything changes from underneath us.
let updates = updates
.iter()
.flat_map(|(data_id, (key, val))| {
let registered =
self.txns_cache.registered_at_progress(data_id, &txns_upper);
(!registered).then_some(((key, val), ®ister_ts, 1))
})
.collect::<Vec<_>>();
// If the txns_upper has passed register_ts, we can no longer write.
if register_ts < txns_upper {
debug!(
"txns register {} at {:?} mismatch current={:?}",
data_ids_debug(),
register_ts,
txns_upper,
);
return Err(txns_upper);
}
let res = crate::small_caa(
|| format!("txns register {}", data_ids_debug()),
&mut self.txns_write,
&updates,
txns_upper,
register_ts.step_forward(),
)
.await;
match res {
Ok(()) => {
debug!(
"txns register {} at {:?} success",
data_ids_debug(),
register_ts
);
break;
}
Err(new_txns_upper) => {
self.metrics.register.retry_count.inc();
txns_upper = new_txns_upper;
continue;
}
}
}
for data_write in data_writes {
self.datas
.data_write_for_commit
.insert(data_write.shard_id(), DataWriteCommit(data_write));
}
let tidy = self.apply_le(®ister_ts).await;
Ok(tidy)
})
.await
}
/// Removes data shards from use with this txn set.
///
/// The registration entry written to the txn shard is retracted. If it is
/// not possible to forget the data shard at the requested time, an Err will
/// be returned with the minimum time the data shards could be forgotten.
///
/// This method is idempotent. Data shards currently forgotten at
/// `forget_ts` will not be forgotten a second time. Specifically, this
/// method will return success when the most recent forget ts (if any) `F`
/// is less_equal to `forget_ts` AND there is no register ts between `F` and
/// `forget_ts`.
///
/// As a side effect all txns <= forget_ts are applied, including the
/// forget itself.
///
/// **WARNING!** While a data shard is registered to the txn set, writing to
/// it directly (i.e. using a WriteHandle instead of the TxnHandle,
/// registering it with another txn shard) will lead to incorrectness,
/// undefined behavior, and (potentially sticky) panics.
#[instrument(level = "debug", fields(ts = ?forget_ts))]
pub async fn forget(
&mut self,
forget_ts: T,
data_ids: impl IntoIterator<Item = ShardId>,
) -> Result<Tidy, T> {
let op = &Arc::clone(&self.metrics).forget;
op.run(async {
let data_ids = data_ids.into_iter().collect::<Vec<_>>();
let mut txns_upper = self
.txns_write
.shared_upper()
.into_option()
.expect("txns should not be closed");
loop {
txns_upper = self.txns_cache.update_ge(&txns_upper).await.clone();
let data_ids_debug = || {
data_ids
.iter()
.map(|x| format!("{:.9}", x.to_string()))
.collect::<Vec<_>>()
.join(" ")
};
let updates = data_ids
.iter()
// Never registered or already forgotten. This could change in
// `[txns_upper, forget_ts]` (due to races) so close off that
// interval before returning, just don't write any updates.
.filter(|data_id| self.txns_cache.registered_at_progress(data_id, &txns_upper))
.map(|data_id| C::encode(TxnsEntry::Register(*data_id, T::encode(&forget_ts))))
.collect::<Vec<_>>();
let updates = updates
.iter()
.map(|(key, val)| ((key, val), &forget_ts, -1))
.collect::<Vec<_>>();
// If the txns_upper has passed forget_ts, we can no longer write.
if forget_ts < txns_upper {
debug!(
"txns forget {} at {:?} mismatch current={:?}",
data_ids_debug(),
forget_ts,
txns_upper,
);
return Err(txns_upper);
}
// Ensure the latest writes for each shard has been applied, so we don't run into
// any issues trying to apply it later.
{
let data_ids: HashSet<_> = data_ids.iter().cloned().collect();
let data_latest_unapplied = self
.txns_cache
.unapplied_batches
.values()
.rev()
.find(|(x, _, _)| data_ids.contains(x));
if let Some((_, _, latest_write)) = data_latest_unapplied {
debug!(
"txns forget {} applying latest write {:?}",
data_ids_debug(),
latest_write,
);
let latest_write = latest_write.clone();
let _tidy = self.apply_le(&latest_write).await;
}
}
let res = crate::small_caa(
|| format!("txns forget {}", data_ids_debug()),
&mut self.txns_write,
&updates,
txns_upper,
forget_ts.step_forward(),
)
.await;
match res {
Ok(()) => {
debug!(
"txns forget {} at {:?} success",
data_ids_debug(),
forget_ts
);
break;
}
Err(new_txns_upper) => {
self.metrics.forget.retry_count.inc();
txns_upper = new_txns_upper;
continue;
}
}
}
// Note: Ordering here matters, we want to generate the Tidy work _before_ removing the
// handle because the work will create a handle to the shard.
let tidy = self.apply_le(&forget_ts).await;
for data_id in &data_ids {
self.datas.data_write_for_commit.remove(data_id);
}
Ok(tidy)
})
.await
}
/// Forgets, at the given timestamp, every data shard that is registered.
/// Returns the ids of the forgotten shards. See [Self::forget].
#[instrument(level = "debug", fields(ts = ?forget_ts))]
pub async fn forget_all(&mut self, forget_ts: T) -> Result<(Vec<ShardId>, Tidy), T> {
let op = &Arc::clone(&self.metrics).forget_all;
op.run(async {
let mut txns_upper = self
.txns_write
.shared_upper()
.into_option()
.expect("txns should not be closed");
let registered = loop {
txns_upper = self.txns_cache.update_ge(&txns_upper).await.clone();
let registered = self.txns_cache.all_registered_at_progress(&txns_upper);
let data_ids_debug = || {
registered
.iter()
.map(|x| format!("{:.9}", x.to_string()))
.collect::<Vec<_>>()
.join(" ")
};
let updates = registered
.iter()
.map(|data_id| {
C::encode(crate::TxnsEntry::Register(*data_id, T::encode(&forget_ts)))
})
.collect::<Vec<_>>();
let updates = updates
.iter()
.map(|(key, val)| ((key, val), &forget_ts, -1))
.collect::<Vec<_>>();
// If the txns_upper has passed forget_ts, we can no longer write.
if forget_ts < txns_upper {
debug!(
"txns forget_all {} at {:?} mismatch current={:?}",
data_ids_debug(),
forget_ts,
txns_upper,
);
return Err(txns_upper);
}
// Ensure the latest write has been applied, so we don't run into
// any issues trying to apply it later.
//
// NB: It's _very_ important for correctness to get this from the
// unapplied batches (which compact themselves naturally) and not
// from the writes (which are artificially compacted based on when
// we need reads for).
let data_latest_unapplied = self.txns_cache.unapplied_batches.values().last();
if let Some((_, _, latest_write)) = data_latest_unapplied {
debug!(
"txns forget_all {} applying latest write {:?}",
data_ids_debug(),
latest_write,
);
let latest_write = latest_write.clone();
let _tidy = self.apply_le(&latest_write).await;
}
let res = crate::small_caa(
|| format!("txns forget_all {}", data_ids_debug()),
&mut self.txns_write,
&updates,
txns_upper,
forget_ts.step_forward(),
)
.await;
match res {
Ok(()) => {
debug!(
"txns forget_all {} at {:?} success",
data_ids_debug(),
forget_ts
);
break registered;
}
Err(new_txns_upper) => {
self.metrics.forget_all.retry_count.inc();
txns_upper = new_txns_upper;
continue;
}
}
};
for data_id in registered.iter() {
self.datas.data_write_for_commit.remove(data_id);
}
let tidy = self.apply_le(&forget_ts).await;
Ok((registered, tidy))
})
.await
}
/// "Applies" all committed txns <= the given timestamp, ensuring that reads
/// at that timestamp will not block.
///
/// In the common case, the txn committer will have done this work and this
/// method will be a no-op, but it is not guaranteed. In the event of a
/// crash or race, this does whatever persist writes are necessary (and
/// returns the resulting maintenance work), which could be significant.
///
/// If the requested timestamp has not yet been written, this could block
/// for an unbounded amount of time.
///
/// This method is idempotent.
#[instrument(level = "debug", fields(ts = ?ts))]
pub async fn apply_le(&mut self, ts: &T) -> Tidy {
let op = &self.metrics.apply_le;
op.run(async {
debug!("apply_le {:?}", ts);
let _ = self.txns_cache.update_gt(ts).await;
self.txns_cache.update_gauges(&self.metrics);
let mut unapplied_by_data = BTreeMap::<_, Vec<_>>::new();
for (data_id, unapplied, unapplied_ts) in self.txns_cache.unapplied() {
if ts < unapplied_ts {
break;
}
unapplied_by_data
.entry(*data_id)
.or_default()
.push((unapplied, unapplied_ts));
}
let retractions = FuturesUnordered::new();
for (data_id, unapplied) in unapplied_by_data {
let mut data_write = self.datas.take_write_for_apply(&data_id).await;
retractions.push(async move {
let mut ret = Vec::new();
for (unapplied, unapplied_ts) in unapplied {
match unapplied {
Unapplied::RegisterForget => {
let () = crate::empty_caa(
|| {
format!(
"data {:.9} register/forget fill",
data_id.to_string()
)
},
&mut data_write,
unapplied_ts.clone(),
)
.await;
}
Unapplied::Batch(batch_raws) => {
let batch_raws = batch_raws
.into_iter()
.map(|batch_raw| batch_raw.as_slice())
.collect();
crate::apply_caa(
&mut data_write,
&batch_raws,
unapplied_ts.clone(),
)
.await;
for batch_raw in batch_raws {
// NB: Protos are not guaranteed to exactly roundtrip the
// encoded bytes, so we intentionally use the raw batch so that
// it definitely retracts.
ret.push((
batch_raw.to_vec(),
(T::encode(unapplied_ts), data_id),
));
}
}
}
}
(data_write, ret)
});
}
let retractions = retractions.collect::<Vec<_>>().await;
let retractions = retractions
.into_iter()
.flat_map(|(data_write, retractions)| {
self.datas.put_write_for_apply(data_write);
retractions
})
.collect();
// Remove all the applied registers.
self.txns_cache.mark_register_applied(ts);
debug!("apply_le {:?} success", ts);
Tidy { retractions }
})
.await
}
/// Commits the tidy work at the given time.
///
/// Mostly a helper to make it obvious that we can throw away the apply work
/// (and not get into an infinite cycle of tidy->apply->tidy).
#[cfg(test)]
pub async fn tidy_at(&mut self, tidy_ts: T, tidy: Tidy) -> Result<(), T> {
debug!("tidy at {:?}", tidy_ts);
let mut txn = self.begin();
txn.tidy(tidy);
// We just constructed this txn, so it couldn't have committed any
// batches, and thus there's nothing to apply. We're free to throw it
// away.
let apply = txn.commit_at(self, tidy_ts.clone()).await?;
assert!(apply.is_empty());
debug!("tidy at {:?} success", tidy_ts);
Ok(())
}
/// Allows compaction to the txns shard as well as internal representations,
/// losing the ability to answer queries about times less_than since_ts.
///
/// In practice, this will likely only be called from the singleton
/// controller process.
pub async fn compact_to(&mut self, mut since_ts: T) {
let op = &self.metrics.compact_to;
op.run(async {
tracing::debug!("compact_to {:?}", since_ts);
let _ = self.txns_cache.update_gt(&since_ts).await;
// NB: A critical invariant for how this all works is that we never
// allow the since of the txns shard to pass any unapplied writes, so
// reduce it as necessary.
let min_unapplied_ts = self.txns_cache.min_unapplied_ts();
if min_unapplied_ts < &since_ts {
since_ts.clone_from(min_unapplied_ts);
}
crate::cads::<T, O, C>(&mut self.txns_since, since_ts).await;
})
.await
}
/// Returns the [ShardId] of the txns shard.
pub fn txns_id(&self) -> ShardId {
self.txns_write.shard_id()
}
/// Returns the [TxnsCache] used by this handle.
pub fn read_cache(&self) -> &TxnsCache<T, C> {
&self.txns_cache
}
}
/// A token representing maintenance writes (in particular, retractions) to the
/// txns shard.
///
/// This can be written on its own with `TxnsHandle::tidy_at` or sidecar'd into
/// a normal txn with [Txn::tidy].
#[derive(Debug, Default)]
pub struct Tidy {
pub(crate) retractions: BTreeMap<Vec<u8>, ([u8; 8], ShardId)>,
}
impl Tidy {
/// Merges the work represented by the other tidy into this one.
pub fn merge(&mut self, other: Tidy) {
self.retractions.extend(other.retractions)
}
}
/// A helper to make a more targeted mutable borrow of self.
#[derive(Debug)]
pub(crate) struct DataHandles<K: Codec, V: Codec, T, D> {
pub(crate) dyncfgs: ConfigSet,
pub(crate) client: Arc<PersistClient>,
/// See [DataWriteApply].
///
/// This is lazily populated with the set of shards touched by `apply_le`.
data_write_for_apply: BTreeMap<ShardId, DataWriteApply<K, V, T, D>>,
/// See [DataWriteCommit].
///
/// This contains the set of data shards registered but not yet forgotten
/// with this particular write handle.
///
/// NB: In the common case, this and `_for_apply` will contain the same set
/// of shards, but this is not required. A shard can be in either and not
/// the other.
data_write_for_commit: BTreeMap<ShardId, DataWriteCommit<K, V, T, D>>,
}
impl<K, V, T, D> DataHandles<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + TotalOrder + Codec64 + Sync,
D: Semigroup + Ord + Codec64 + Send + Sync,
{
async fn open_data_write_for_apply(&self, data_id: ShardId) -> DataWriteApply<K, V, T, D> {
let diagnostics = Diagnostics::from_purpose("txn data");
let schemas = self
.client
.latest_schema::<K, V, T, D>(data_id, diagnostics.clone())
.await
.expect("codecs have not changed");
let (key_schema, val_schema) = match schemas {
Some((_, key_schema, val_schema)) => (Arc::new(key_schema), Arc::new(val_schema)),
// - For new shards we will always have at least one schema
// registered by the time we reach this point, because that
// happens at txn-registration time.
// - For pre-existing shards, every txns shard will have had
// open_writer called on it at least once in the previous release,
// so the schema should exist.
None => unreachable!("data shard {} should have a schema", data_id),
};
let wrapped = self
.client
.open_writer(data_id, key_schema, val_schema, diagnostics)
.await
.expect("schema shouldn't change");
DataWriteApply {
apply_ensure_schema_match: APPLY_ENSURE_SCHEMA_MATCH.handle(&self.dyncfgs),
client: Arc::clone(&self.client),
wrapped,
}
}
pub(crate) async fn take_write_for_apply(
&mut self,
data_id: &ShardId,
) -> DataWriteApply<K, V, T, D> {
if let Some(data_write) = self.data_write_for_apply.remove(data_id) {
return data_write;
}
self.open_data_write_for_apply(*data_id).await
}
pub(crate) fn put_write_for_apply(&mut self, data_write: DataWriteApply<K, V, T, D>) {
self.data_write_for_apply
.insert(data_write.shard_id(), data_write);
}
pub(crate) fn take_write_for_commit(
&mut self,
data_id: &ShardId,
) -> Option<DataWriteCommit<K, V, T, D>> {
self.data_write_for_commit.remove(data_id)
}
pub(crate) fn put_write_for_commit(&mut self, data_write: DataWriteCommit<K, V, T, D>) {
let prev = self
.data_write_for_commit
.insert(data_write.shard_id(), data_write);
assert!(prev.is_none());
}
}
/// A newtype wrapper around [WriteHandle] indicating that it has a real schema
/// registered by the user.
///
/// The txn-wal user declares which schema they'd like to use for committing
/// batches by passing it in (as part of the WriteHandle) in the call to
/// register. This must be used to encode any new batches written. The wrapper
/// helps us from accidentally mixing up the WriteHandles that we internally
/// invent for applying the batches (which use a schema matching the one
/// declared in the batch).
#[derive(Debug)]
pub(crate) struct DataWriteCommit<K: Codec, V: Codec, T, D>(pub(crate) WriteHandle<K, V, T, D>);
impl<K: Codec, V: Codec, T, D> Deref for DataWriteCommit<K, V, T, D> {
type Target = WriteHandle<K, V, T, D>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<K: Codec, V: Codec, T, D> DerefMut for DataWriteCommit<K, V, T, D> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
/// A newtype wrapper around [WriteHandle] indicating that it can alter the
/// schema its using to match the one in the batches being appended.
///
/// When a batch is committed to txn-wal, it contains metadata about which
/// schemas were used to encode the data in it. Txn-wal then uses this info to
/// make sure that in [TxnsHandle::apply_le], that the `compare_and_append` call
/// happens on a handle with the same schema. This is accomplished by querying
/// the persist schema registry.
#[derive(Debug)]
pub(crate) struct DataWriteApply<K: Codec, V: Codec, T, D> {
client: Arc<PersistClient>,
apply_ensure_schema_match: ConfigValHandle<bool>,
pub(crate) wrapped: WriteHandle<K, V, T, D>,
}
impl<K: Codec, V: Codec, T, D> Deref for DataWriteApply<K, V, T, D> {
type Target = WriteHandle<K, V, T, D>;
fn deref(&self) -> &Self::Target {
&self.wrapped
}
}
impl<K: Codec, V: Codec, T, D> DerefMut for DataWriteApply<K, V, T, D> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.wrapped
}
}
pub(crate) const APPLY_ENSURE_SCHEMA_MATCH: Config<bool> = Config::new(
"txn_wal_apply_ensure_schema_match",
true,
"CYA to skip updating write handle to batch schema in apply",
);
fn at_most_one_schema(
schemas: impl Iterator<Item = SchemaId>,
) -> Result<Option<SchemaId>, (SchemaId, SchemaId)> {
let mut schema = None;
for s in schemas {
match schema {
None => schema = Some(s),
Some(x) if s != x => return Err((s, x)),
Some(_) => continue,
}
}
Ok(schema)
}
impl<K, V, T, D> DataWriteApply<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + TotalOrder + Codec64 + Sync,
D: Semigroup + Ord + Codec64 + Send + Sync,
{
pub(crate) async fn maybe_replace_with_batch_schema(&mut self, batches: &[Batch<K, V, T, D>]) {
// TODO: Remove this once everything is rolled out and we're sure it's
// not going to cause any issues.
if !self.apply_ensure_schema_match.get() {
return;
}
let batch_schema = at_most_one_schema(batches.iter().flat_map(|x| x.schemas()));
let batch_schema = batch_schema.unwrap_or_else(|_| {
panic!(
"txn-wal uses at most one schema to commit batches, got: {:?}",
batches.iter().flat_map(|x| x.schemas()).collect::<Vec<_>>()
)
});
let (batch_schema, handle_schema) = match (batch_schema, self.wrapped.schema_id()) {
(Some(batch_schema), Some(handle_schema)) if batch_schema != handle_schema => {
(batch_schema, handle_schema)
}
_ => return,
};
let data_id = self.shard_id();
let diagnostics = Diagnostics::from_purpose("txn data");
let (key_schema, val_schema) = self
.client
.get_schema::<K, V, T, D>(data_id, batch_schema, diagnostics.clone())
.await
.expect("codecs shouldn't change")
.expect("id must have been registered to create this batch");
let new_data_write = self
.client
.open_writer(
self.shard_id(),
Arc::new(key_schema),
Arc::new(val_schema),
diagnostics,
)
.await
.expect("codecs shouldn't change");
tracing::info!(
"updated {} write handle from {} to {} to apply batches",
data_id,
handle_schema,
batch_schema
);
assert_eq!(new_data_write.schema_id(), Some(batch_schema));
self.wrapped = new_data_write;
}
}
#[cfg(test)]
mod tests {
use std::time::{Duration, UNIX_EPOCH};
use differential_dataflow::Hashable;
use futures::future::BoxFuture;
use mz_ore::assert_none;
use mz_ore::cast::CastFrom;
use mz_ore::collections::CollectionExt;
use mz_ore::metrics::MetricsRegistry;
use mz_persist_client::cache::PersistClientCache;
use mz_persist_client::cfg::RetryParameters;
use mz_persist_client::PersistLocation;
use rand::rngs::SmallRng;
use rand::{RngCore, SeedableRng};
use timely::progress::Antichain;
use tokio::sync::oneshot;
use tracing::{info, info_span, Instrument};
use crate::operator::DataSubscribe;
use crate::tests::{reader, write_directly, writer, CommitLog};
use super::*;
impl TxnsHandle<String, (), u64, i64, u64, TxnsCodecDefault> {
pub(crate) async fn expect_open(client: PersistClient) -> Self {
Self::expect_open_id(client, ShardId::new()).await
}
pub(crate) async fn expect_open_id(client: PersistClient, txns_id: ShardId) -> Self {
let dyncfgs = crate::all_dyncfgs(client.dyncfgs().clone());
Self::open(
0,
client,
dyncfgs,
Arc::new(Metrics::new(&MetricsRegistry::new())),
txns_id,
)
.await
}
pub(crate) fn new_log(&self) -> CommitLog {
CommitLog::new((*self.datas.client).clone(), self.txns_id())
}
pub(crate) async fn expect_register(&mut self, register_ts: u64) -> ShardId {
self.expect_registers(register_ts, 1).await.into_element()
}
pub(crate) async fn expect_registers(
&mut self,
register_ts: u64,
amount: usize,
) -> Vec<ShardId> {
let data_ids: Vec<_> = (0..amount).map(|_| ShardId::new()).collect();
let mut writers = Vec::new();
for data_id in &data_ids {
writers.push(writer(&self.datas.client, *data_id).await);
}
self.register(register_ts, writers).await.unwrap();
data_ids
}
pub(crate) async fn expect_commit_at(
&mut self,
commit_ts: u64,
data_id: ShardId,
keys: &[&str],
log: &CommitLog,
) -> Tidy {
let mut txn = self.begin();
for key in keys {
txn.write(&data_id, (*key).into(), (), 1).await;
}
let tidy = txn
.commit_at(self, commit_ts)
.await
.unwrap()
.apply(self)
.await;
for key in keys {
log.record((data_id, (*key).into(), commit_ts, 1));
}
tidy
}
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // too slow
async fn register_at() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let log = txns.new_log();
let d0 = txns.expect_register(2).await;
// Register a second time is a no-op (idempotent).
txns.register(3, [writer(&client, d0).await]).await.unwrap();
// Cannot register a new data shard at an already closed off time. An
// error is returned with the first time that a registration would
// succeed.
let d1 = ShardId::new();
assert_eq!(
txns.register(2, [writer(&client, d1).await])
.await
.unwrap_err(),
4
);
// Can still register after txns have been committed.
txns.expect_commit_at(4, d0, &["foo"], &log).await;
txns.register(5, [writer(&client, d1).await]).await.unwrap();
// We can also register some new and some already registered shards.
let d2 = ShardId::new();
txns.register(6, [writer(&client, d0).await, writer(&client, d2).await])
.await
.unwrap();
let () = log.assert_snapshot(d0, 6).await;
let () = log.assert_snapshot(d1, 6).await;
}
/// A sanity check that CommitLog catches an incorrect usage (proxy for a
/// bug that looks like an incorrect usage).
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // too slow
#[should_panic(expected = "left: [(\"foo\", 2, 1)]\n right: [(\"foo\", 2, 2)]")]
async fn incorrect_usage_register_write_same_time() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let log = txns.new_log();
let d0 = txns.expect_register(1).await;
let mut d0_write = writer(&client, d0).await;
// Commit a write at ts 2...
let mut txn = txns.begin_test();
txn.write(&d0, "foo".into(), (), 1).await;
let apply = txn.commit_at(&mut txns, 2).await.unwrap();
log.record_txn(2, &txn);
// ... and (incorrectly) also write to the shard normally at ts 2.
let () = d0_write
.compare_and_append(
&[(("foo".to_owned(), ()), 2, 1)],
Antichain::from_elem(2),
Antichain::from_elem(3),
)
.await
.unwrap()
.unwrap();
log.record((d0, "foo".into(), 2, 1));
apply.apply(&mut txns).await;
// Verify that CommitLog catches this.
log.assert_snapshot(d0, 2).await;
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // too slow
async fn forget_at() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let log = txns.new_log();
// Can forget a data_shard that has not been registered.
txns.forget(1, [ShardId::new()]).await.unwrap();
// Can forget multiple data_shards that have not been registered.
txns.forget(2, (0..5).map(|_| ShardId::new()))
.await
.unwrap();
// Can forget a registered shard.
let d0 = txns.expect_register(3).await;
txns.forget(4, [d0]).await.unwrap();
// Can forget multiple registered shards.
let ds = txns.expect_registers(5, 5).await;
txns.forget(6, ds.clone()).await.unwrap();
// Forget is idempotent.
txns.forget(7, [d0]).await.unwrap();
txns.forget(8, ds.clone()).await.unwrap();
// Cannot forget at an already closed off time. An error is returned
// with the first time that a registration would succeed.
let d1 = txns.expect_register(9).await;
assert_eq!(txns.forget(9, [d1]).await.unwrap_err(), 10);
// Write to txns and to d0 directly.
let mut d0_write = writer(&client, d0).await;
txns.expect_commit_at(10, d1, &["d1"], &log).await;
let updates = [(("d0".to_owned(), ()), 10, 1)];
d0_write
.compare_and_append(&updates, d0_write.shared_upper(), Antichain::from_elem(11))
.await
.unwrap()
.unwrap();
log.record((d0, "d0".into(), 10, 1));
// Can register and forget an already registered and forgotten shard.
txns.register(11, [writer(&client, d0).await])
.await
.unwrap();
let mut forget_expected = vec![d0, d1];
forget_expected.sort();
assert_eq!(txns.forget_all(12).await.unwrap().0, forget_expected);
// Close shard to writes
d0_write
.compare_and_append_batch(&mut [], d0_write.shared_upper(), Antichain::new())
.await
.unwrap()
.unwrap();
let () = log.assert_snapshot(d0, 12).await;
let () = log.assert_snapshot(d1, 12).await;
for di in ds {
let mut di_write = writer(&client, di).await;
// Close shards to writes
di_write
.compare_and_append_batch(&mut [], di_write.shared_upper(), Antichain::new())
.await
.unwrap()
.unwrap();
let () = log.assert_snapshot(di, 8).await;
}
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // too slow
async fn register_forget() {
async fn step_some_past(subs: &mut Vec<DataSubscribe>, ts: u64) {
for (idx, sub) in subs.iter_mut().enumerate() {
// Only step some of them to try to maximize edge cases.
if usize::cast_from(ts) % (idx + 1) == 0 {
async {
info!("stepping sub {} past {}", idx, ts);
sub.step_past(ts).await;
}
.instrument(info_span!("sub", idx))
.await;
}
}
}
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let log = txns.new_log();
let d0 = ShardId::new();
let mut d0_write = writer(&client, d0).await;
let mut subs = Vec::new();
// Loop for a while doing the following:
// - Write directly to some time before register ts
// - Register
// - Write via txns
// - Forget
//
// After each step, make sure that a subscription started at that time
// works and that all subscriptions can be stepped through the expected
// timestamp.
let mut ts = 0;
while ts < 32 {
subs.push(txns.read_cache().expect_subscribe(&client, d0, ts));
ts += 1;
info!("{} direct", ts);
txns.begin().commit_at(&mut txns, ts).await.unwrap();
write_directly(ts, &mut d0_write, &[&format!("d{}", ts)], &log).await;
step_some_past(&mut subs, ts).await;
if ts % 11 == 0 {
txns.compact_to(ts).await;
}
subs.push(txns.read_cache().expect_subscribe(&client, d0, ts));
ts += 1;
info!("{} register", ts);
txns.register(ts, [writer(&client, d0).await])
.await
.unwrap();
step_some_past(&mut subs, ts).await;
if ts % 11 == 0 {
txns.compact_to(ts).await;
}
subs.push(txns.read_cache().expect_subscribe(&client, d0, ts));
ts += 1;
info!("{} txns", ts);
txns.expect_commit_at(ts, d0, &[&format!("t{}", ts)], &log)
.await;
step_some_past(&mut subs, ts).await;
if ts % 11 == 0 {
txns.compact_to(ts).await;
}
subs.push(txns.read_cache().expect_subscribe(&client, d0, ts));
ts += 1;
info!("{} forget", ts);
txns.forget(ts, [d0]).await.unwrap();
step_some_past(&mut subs, ts).await;
if ts % 11 == 0 {
txns.compact_to(ts).await;
}
}
// Check all the subscribes.
for mut sub in subs.into_iter() {
sub.step_past(ts).await;
log.assert_eq(d0, sub.as_of, sub.progress(), sub.output().clone());
}
}
// Regression test for a bug encountered during initial development:
// - task 0 commits to a data shard at ts T
// - before task 0 can unblock T for reads, task 1 tries to register it at
// time T (ditto T+X), this does a caa of empty space, advancing the upper
// of the data shard to T+1
// - task 0 attempts to caa in the batch, but finds out the upper is T+1 and
// assumes someone else did the work
// - result: the write is lost
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn race_data_shard_register_and_commit() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let d0 = txns.expect_register(1).await;
let mut txn = txns.begin();
txn.write(&d0, "foo".into(), (), 1).await;
let commit_apply = txn.commit_at(&mut txns, 2).await.unwrap();
txns.register(3, [writer(&client, d0).await]).await.unwrap();
// Make sure that we can read empty at the register commit time even
// before the txn commit apply.
let actual = txns.txns_cache.expect_snapshot(&client, d0, 1).await;
assert_eq!(actual, Vec::<String>::new());
commit_apply.apply(&mut txns).await;
let actual = txns.txns_cache.expect_snapshot(&client, d0, 2).await;
assert_eq!(actual, vec!["foo".to_owned()]);
}
// A test that applies a batch of writes all at once.
#[mz_ore::test(tokio::test(flavor = "multi_thread"))]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn apply_many_ts() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let log = txns.new_log();
let d0 = txns.expect_register(1).await;
for ts in 2..10 {
let mut txn = txns.begin();
txn.write(&d0, ts.to_string(), (), 1).await;
let _apply = txn.commit_at(&mut txns, ts).await.unwrap();
log.record((d0, ts.to_string(), ts, 1));
}
// This automatically runs the apply, which catches up all the previous
// txns at once.
txns.expect_commit_at(10, d0, &[], &log).await;
log.assert_snapshot(d0, 10).await;
}
struct StressWorker {
idx: usize,
data_ids: Vec<ShardId>,
txns: TxnsHandle<String, (), u64, i64>,
log: CommitLog,
tidy: Tidy,
ts: u64,
step: usize,
rng: SmallRng,
reads: Vec<(
oneshot::Sender<u64>,
ShardId,
u64,
mz_ore::task::JoinHandle<Vec<(String, u64, i64)>>,
)>,
}
impl StressWorker {
pub async fn step(&mut self) {
debug!(
"stress {} step {} START ts={}",
self.idx, self.step, self.ts
);
let data_id =
self.data_ids[usize::cast_from(self.rng.next_u64()) % self.data_ids.len()];
match self.rng.next_u64() % 6 {
0 => self.write(data_id).await,
// The register and forget impls intentionally don't switch on
// whether it's already registered to stress idempotence.
1 => self.register(data_id).await,
2 => self.forget(data_id).await,
3 => {
debug!("stress update {:.9} to {}", data_id.to_string(), self.ts);
let _ = self.txns.txns_cache.update_ge(&self.ts).await;
}
4 => self.start_read(data_id, true),
5 => self.start_read(data_id, false),
_ => unreachable!(""),
}
debug!("stress {} step {} DONE ts={}", self.idx, self.step, self.ts);
self.step += 1;
}
fn key(&self) -> String {
format!("w{}s{}", self.idx, self.step)
}
async fn registered_at_progress_ts(&mut self, data_id: ShardId) -> bool {
self.ts = *self.txns.txns_cache.update_ge(&self.ts).await;
self.txns
.txns_cache
.registered_at_progress(&data_id, &self.ts)
}
// Writes to the given data shard, either via txns if it's registered or
// directly if it's not.
async fn write(&mut self, data_id: ShardId) {
// Make sure to keep the registered_at_ts call _inside_ the retry
// loop, because a data shard might switch between registered or not
// registered as the loop advances through timestamps.
self.retry_ts_err(&mut |w: &mut StressWorker| {
Box::pin(async move {
if w.registered_at_progress_ts(data_id).await {
w.write_via_txns(data_id).await
} else {
w.write_direct(data_id).await
}
})
})
.await
}
async fn write_via_txns(&mut self, data_id: ShardId) -> Result<(), u64> {
debug!(
"stress write_via_txns {:.9} at {}",
data_id.to_string(),
self.ts
);
// HACK: Normally, we'd make sure that this particular handle had
// registered the data shard before writing to it, but that would
// consume a ts and isn't quite how we want `write_via_txns` to
// work. Work around that by setting a write handle (with a schema
// that we promise is correct) in the right place.
if !self.txns.datas.data_write_for_commit.contains_key(&data_id) {
let x = writer(&self.txns.datas.client, data_id).await;
self.txns
.datas
.data_write_for_commit
.insert(data_id, DataWriteCommit(x));
}
let mut txn = self.txns.begin_test();
txn.tidy(std::mem::take(&mut self.tidy));
txn.write(&data_id, self.key(), (), 1).await;
let apply = txn.commit_at(&mut self.txns, self.ts).await?;
debug!(
"log {:.9} {} at {}",
data_id.to_string(),
self.key(),
self.ts
);
self.log.record_txn(self.ts, &txn);
if self.rng.next_u64() % 3 == 0 {
self.tidy.merge(apply.apply(&mut self.txns).await);
}
Ok(())
}
async fn write_direct(&mut self, data_id: ShardId) -> Result<(), u64> {
debug!(
"stress write_direct {:.9} at {}",
data_id.to_string(),
self.ts
);
// First write an empty txn to ensure that the shard isn't
// registered at this ts by someone else.
self.txns.begin().commit_at(&mut self.txns, self.ts).await?;
let mut write = writer(&self.txns.datas.client, data_id).await;
let mut current = write.shared_upper().into_option().unwrap();
loop {
if !(current <= self.ts) {
return Err(current);
}
let key = self.key();
let updates = [((&key, &()), &self.ts, 1)];
let res = crate::small_caa(
|| format!("data {:.9} direct", data_id.to_string()),
&mut write,
&updates,
current,
self.ts + 1,
)
.await;
match res {
Ok(()) => {
debug!("log {:.9} {} at {}", data_id.to_string(), key, self.ts);
self.log.record((data_id, key, self.ts, 1));
return Ok(());
}
Err(new_current) => current = new_current,
}
}
}
async fn register(&mut self, data_id: ShardId) {
self.retry_ts_err(&mut |w: &mut StressWorker| {
debug!("stress register {:.9} at {}", data_id.to_string(), w.ts);
Box::pin(async move {
let data_write = writer(&w.txns.datas.client, data_id).await;
let _ = w.txns.register(w.ts, [data_write]).await?;
Ok(())
})
})
.await
}
async fn forget(&mut self, data_id: ShardId) {
self.retry_ts_err(&mut |w: &mut StressWorker| {
debug!("stress forget {:.9} at {}", data_id.to_string(), w.ts);
Box::pin(async move { w.txns.forget(w.ts, [data_id]).await.map(|_| ()) })
})
.await
}
fn start_read(&mut self, data_id: ShardId, use_global_txn_cache: bool) {
debug!(
"stress start_read {:.9} at {}",
data_id.to_string(),
self.ts
);
let client = (*self.txns.datas.client).clone();
let txns_id = self.txns.txns_id();
let as_of = self.ts;
debug!("start_read {:.9} as_of {}", data_id.to_string(), as_of);
let (tx, mut rx) = oneshot::channel();
let subscribe = mz_ore::task::spawn_blocking(
|| format!("{:.9}-{}", data_id.to_string(), as_of),
move || {
let mut subscribe = DataSubscribe::new(
"test",
client,
txns_id,
data_id,
as_of,
Antichain::new(),
use_global_txn_cache,
);
let data_id = format!("{:.9}", data_id.to_string());
let _guard = info_span!("read_worker", %data_id, as_of).entered();
loop {
subscribe.worker.step_or_park(None);
subscribe.capture_output();
let until = match rx.try_recv() {
Ok(ts) => ts,
Err(oneshot::error::TryRecvError::Empty) => {
continue;
}
Err(oneshot::error::TryRecvError::Closed) => 0,
};
while subscribe.progress() < until {
subscribe.worker.step_or_park(None);
subscribe.capture_output();
}
return subscribe.output().clone();
}
},
);
self.reads.push((tx, data_id, as_of, subscribe));
}
async fn retry_ts_err<W>(&mut self, work_fn: &mut W)
where
W: for<'b> FnMut(&'b mut Self) -> BoxFuture<'b, Result<(), u64>>,
{
loop {
match work_fn(self).await {
Ok(ret) => return ret,
Err(new_ts) => self.ts = new_ts,
}
}
}
}
#[mz_ore::test(tokio::test(flavor = "multi_thread"))]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn stress_correctness() {
const NUM_DATA_SHARDS: usize = 2;
const NUM_WORKERS: usize = 2;
const NUM_STEPS_PER_WORKER: usize = 100;
let seed = UNIX_EPOCH.elapsed().unwrap().hashed();
eprintln!("using seed {}", seed);
let mut clients = PersistClientCache::new_no_metrics();
// We disable pubsub below, so retune the listen retries (pubsub
// fallback) to keep the test speedy.
clients
.cfg()
.set_next_listen_batch_retryer(RetryParameters {
fixed_sleep: Duration::ZERO,
initial_backoff: Duration::from_millis(1),
multiplier: 1,
clamp: Duration::from_millis(1),
});
let client = clients.open(PersistLocation::new_in_mem()).await.unwrap();
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let log = txns.new_log();
let data_ids = (0..NUM_DATA_SHARDS)
.map(|_| ShardId::new())
.collect::<Vec<_>>();
let data_writes = data_ids
.iter()
.map(|data_id| writer(&client, *data_id))
.collect::<FuturesUnordered<_>>()
.collect::<Vec<_>>()
.await;
let _data_sinces = data_ids
.iter()
.map(|data_id| reader(&client, *data_id))
.collect::<FuturesUnordered<_>>()
.collect::<Vec<_>>()
.await;
let register_ts = 1;
txns.register(register_ts, data_writes).await.unwrap();
let mut workers = Vec::new();
for idx in 0..NUM_WORKERS {
// Clear the state cache between each client to maximally disconnect
// them from each other.
clients.clear_state_cache();
let client = clients.open(PersistLocation::new_in_mem()).await.unwrap();
let mut worker = StressWorker {
idx,
log: log.clone(),
txns: TxnsHandle::expect_open_id(client.clone(), txns.txns_id()).await,
data_ids: data_ids.clone(),
tidy: Tidy::default(),
ts: register_ts,
step: 0,
rng: SmallRng::seed_from_u64(seed.wrapping_add(u64::cast_from(idx))),
reads: Vec::new(),
};
let worker = async move {
while worker.step < NUM_STEPS_PER_WORKER {
worker.step().await;
}
(worker.ts, worker.reads)
}
.instrument(info_span!("stress_worker", idx));
workers.push(mz_ore::task::spawn(|| format!("worker-{}", idx), worker));
}
let mut max_ts = 0;
let mut reads = Vec::new();
for worker in workers {
let (t, mut r) = worker.await.unwrap();
max_ts = std::cmp::max(max_ts, t);
reads.append(&mut r);
}
// Run all of the following in a timeout to make hangs easier to debug.
tokio::time::timeout(Duration::from_secs(30), async {
info!("finished with max_ts of {}", max_ts);
txns.apply_le(&max_ts).await;
for data_id in data_ids {
info!("reading data shard {}", data_id);
log.assert_snapshot(data_id, max_ts)
.instrument(info_span!("read_data", data_id = format!("{:.9}", data_id)))
.await;
}
info!("now waiting for reads {}", max_ts);
for (tx, data_id, as_of, subscribe) in reads {
let _ = tx.send(max_ts + 1);
let output = subscribe.await.unwrap();
log.assert_eq(data_id, as_of, max_ts + 1, output);
}
})
.await
.unwrap();
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn advance_physical_uppers_past() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let log = txns.new_log();
let d0 = txns.expect_register(1).await;
let mut d0_write = writer(&client, d0).await;
let d1 = txns.expect_register(2).await;
let mut d1_write = writer(&client, d1).await;
assert_eq!(d0_write.fetch_recent_upper().await.elements(), &[2]);
assert_eq!(d1_write.fetch_recent_upper().await.elements(), &[3]);
// Normal `apply` (used by expect_commit_at) does not advance the
// physical upper of data shards that were not involved in the txn (lazy
// upper). d1 is not involved in this txn so stays where it is.
txns.expect_commit_at(3, d0, &["0-2"], &log).await;
assert_eq!(d0_write.fetch_recent_upper().await.elements(), &[4]);
assert_eq!(d1_write.fetch_recent_upper().await.elements(), &[3]);
// d0 is not involved in this txn so stays where it is.
txns.expect_commit_at(4, d1, &["1-3"], &log).await;
assert_eq!(d0_write.fetch_recent_upper().await.elements(), &[4]);
assert_eq!(d1_write.fetch_recent_upper().await.elements(), &[5]);
log.assert_snapshot(d0, 4).await;
log.assert_snapshot(d1, 4).await;
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)]
#[allow(clippy::unnecessary_get_then_check)] // Makes it less readable.
async fn schemas() {
let client = PersistClient::new_for_tests().await;
let mut txns0 = TxnsHandle::expect_open(client.clone()).await;
let mut txns1 = TxnsHandle::expect_open_id(client.clone(), txns0.txns_id()).await;
let log = txns0.new_log();
let d0 = txns0.expect_register(1).await;
// The register call happened on txns0, which means it has a real schema
// and can commit batches.
assert!(txns0.datas.data_write_for_commit.get(&d0).is_some());
let mut txn = txns0.begin_test();
txn.write(&d0, "foo".into(), (), 1).await;
let apply = txn.commit_at(&mut txns0, 2).await.unwrap();
log.record_txn(2, &txn);
// We can use handle without a register call to apply a committed txn.
assert!(txns1.datas.data_write_for_commit.get(&d0).is_none());
let _tidy = apply.apply(&mut txns1).await;
// However, it cannot commit batches.
assert!(txns1.datas.data_write_for_commit.get(&d0).is_none());
let res = mz_ore::task::spawn(|| "test", async move {
let mut txn = txns1.begin();
txn.write(&d0, "bar".into(), (), 1).await;
// This panics.
let _ = txn.commit_at(&mut txns1, 3).await;
});
assert!(res.await.is_err());
// Forgetting the data shard removes it, so we don't leave the schema
// sitting around.
assert!(txns0.datas.data_write_for_commit.get(&d0).is_some());
txns0.forget(3, [d0]).await.unwrap();
assert_none!(txns0.datas.data_write_for_commit.get(&d0));
// Forget is idempotent.
assert_none!(txns0.datas.data_write_for_commit.get(&d0));
txns0.forget(4, [d0]).await.unwrap();
assert_none!(txns0.datas.data_write_for_commit.get(&d0));
// We can register it again and commit again.
assert_none!(txns0.datas.data_write_for_commit.get(&d0));
txns0
.register(5, [writer(&client, d0).await])
.await
.unwrap();
assert!(txns0.datas.data_write_for_commit.get(&d0).is_some());
txns0.expect_commit_at(6, d0, &["baz"], &log).await;
log.assert_snapshot(d0, 6).await;
}
}