1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
//! Specifications for containers
#![forbid(missing_docs)]
use std::collections::VecDeque;
pub mod columnation;
pub mod flatcontainer;
/// A container transferring data through dataflow edges
///
/// A container stores a number of elements and thus is able to describe it length (`len()`) and
/// whether it is empty (`is_empty()`). It supports removing all elements (`clear`).
///
/// A container must implement default. The default implementation is not required to allocate
/// memory for variable-length components.
///
/// We require the container to be cloneable to enable efficient copies when providing references
/// of containers to operators. Care must be taken that the type's `clone_from` implementation
/// is efficient (which is not necessarily the case when deriving `Clone`.)
/// TODO: Don't require `Container: Clone`
pub trait Container: Default + Clone + 'static {
/// The type of elements when reading non-destructively from the container.
type ItemRef<'a> where Self: 'a;
/// The type of elements when draining the container.
type Item<'a> where Self: 'a;
/// Push `item` into self
#[inline]
fn push<T>(&mut self, item: T) where Self: PushInto<T> {
self.push_into(item)
}
/// The number of elements in this container
///
/// The length of a container must be consistent between sending and receiving it.
/// When exchanging a container and partitioning it into pieces, the sum of the length
/// of all pieces must be equal to the length of the original container. When combining
/// containers, the length of the result must be the sum of the individual parts.
fn len(&self) -> usize;
/// Determine if the container contains any elements, corresponding to `len() == 0`.
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Remove all contents from `self` while retaining allocated memory.
/// After calling `clear`, `is_empty` must return `true` and `len` 0.
fn clear(&mut self);
/// Iterator type when reading from the container.
type Iter<'a>: Iterator<Item=Self::ItemRef<'a>>;
/// Returns an iterator that reads the contents of this container.
fn iter(&self) -> Self::Iter<'_>;
/// Iterator type when draining the container.
type DrainIter<'a>: Iterator<Item=Self::Item<'a>>;
/// Returns an iterator that drains the contents of this container.
/// Drain leaves the container in an undefined state.
fn drain(&mut self) -> Self::DrainIter<'_>;
}
/// A container that can be sized and reveals its capacity.
pub trait SizableContainer: Container {
/// Return the capacity of the container.
fn capacity(&self) -> usize;
/// Return the preferred capacity of the container.
fn preferred_capacity() -> usize;
/// Reserve space for `additional` elements, possibly increasing the capacity of the container.
fn reserve(&mut self, additional: usize);
}
/// A container that can absorb items of a specific type.
pub trait PushInto<T> {
/// Push item into self.
fn push_into(&mut self, item: T);
}
/// A type that can build containers from items.
///
/// An implementation needs to absorb elements, and later reveal equivalent information
/// chunked into individual containers, but is free to change the data representation to
/// better fit the properties of the container.
///
/// Types implementing this trait should provide appropriate [`PushInto`] implementations such
/// that users can push the expected item types.
///
/// The owner extracts data in two ways. The opportunistic [`Self::extract`] method returns
/// any ready data, but doesn't need to produce partial outputs. In contrast, [`Self::finish`]
/// needs to produce all outputs, even partial ones. Caller should repeatedly call the functions
/// to drain pending or finished data.
///
/// The caller should consume the containers returned by [`Self::extract`] and
/// [`Self::finish`]. Implementations can recycle buffers, but should ensure that they clear
/// any remaining elements.
///
/// For example, a consolidating builder can aggregate differences in-place, but it has
/// to ensure that it preserves the intended information.
///
/// The trait does not prescribe any specific ordering guarantees, and each implementation can
/// decide to represent a push order for `extract` and `finish`, or not.
pub trait ContainerBuilder: Default + 'static {
/// The container type we're building.
type Container: Container;
/// Extract assembled containers, potentially leaving unfinished data behind. Can
/// be called repeatedly, for example while the caller can send data.
///
/// Returns a `Some` if there is data ready to be shipped, and `None` otherwise.
#[must_use]
fn extract(&mut self) -> Option<&mut Self::Container>;
/// Extract assembled containers and any unfinished data. Should
/// be called repeatedly until it returns `None`.
#[must_use]
fn finish(&mut self) -> Option<&mut Self::Container>;
}
/// A default container builder that uses length and preferred capacity to chunk data.
///
/// Maintains a single empty allocation between [`Self::push_into`] and [`Self::extract`], but not
/// across [`Self::finish`] to maintain a low memory footprint.
///
/// Maintains FIFO order.
#[derive(Default, Debug)]
pub struct CapacityContainerBuilder<C>{
/// Container that we're writing to.
current: C,
/// Empty allocation.
empty: Option<C>,
/// Completed containers pending to be sent.
pending: VecDeque<C>,
}
impl<T, C: SizableContainer + PushInto<T>> PushInto<T> for CapacityContainerBuilder<C> {
#[inline]
fn push_into(&mut self, item: T) {
if self.current.capacity() == 0 {
self.current = self.empty.take().unwrap_or_default();
// Discard any non-uniform capacity container.
if self.current.capacity() != C::preferred_capacity() {
self.current = C::default();
}
// Protect against non-emptied containers.
self.current.clear();
}
// Ensure capacity
if self.current.capacity() < C::preferred_capacity() {
self.current.reserve(C::preferred_capacity() - self.current.len());
}
// Push item
self.current.push(item);
// Maybe flush
if self.current.len() == self.current.capacity() {
self.pending.push_back(std::mem::take(&mut self.current));
}
}
}
impl<C: Container> ContainerBuilder for CapacityContainerBuilder<C> {
type Container = C;
#[inline]
fn extract(&mut self) -> Option<&mut C> {
if let Some(container) = self.pending.pop_front() {
self.empty = Some(container);
self.empty.as_mut()
} else {
None
}
}
#[inline]
fn finish(&mut self) -> Option<&mut C> {
if !self.current.is_empty() {
self.pending.push_back(std::mem::take(&mut self.current));
}
self.empty = self.pending.pop_front();
self.empty.as_mut()
}
}
impl<C: Container> CapacityContainerBuilder<C> {
/// Push a pre-formed container at this builder. This exists to maintain
/// API compatibility.
#[inline]
pub fn push_container(&mut self, container: &mut C) {
if !container.is_empty() {
// Flush to maintain FIFO ordering.
if self.current.len() > 0 {
self.pending.push_back(std::mem::take(&mut self.current));
}
let mut empty = self.empty.take().unwrap_or_default();
// Ideally, we'd discard non-uniformly sized containers, but we don't have
// access to `len`/`capacity` of the container.
empty.clear();
self.pending.push_back(std::mem::replace(container, empty));
}
}
}
impl<T: Clone + 'static> Container for Vec<T> {
type ItemRef<'a> = &'a T where T: 'a;
type Item<'a> = T where T: 'a;
fn len(&self) -> usize {
Vec::len(self)
}
fn is_empty(&self) -> bool {
Vec::is_empty(self)
}
fn clear(&mut self) { Vec::clear(self) }
type Iter<'a> = std::slice::Iter<'a, T>;
fn iter(&self) -> Self::Iter<'_> {
self.as_slice().iter()
}
type DrainIter<'a> = std::vec::Drain<'a, T>;
fn drain(&mut self) -> Self::DrainIter<'_> {
self.drain(..)
}
}
impl<T: Clone + 'static> SizableContainer for Vec<T> {
fn capacity(&self) -> usize {
self.capacity()
}
fn preferred_capacity() -> usize {
buffer::default_capacity::<T>()
}
fn reserve(&mut self, additional: usize) {
self.reserve(additional);
}
}
impl<T> PushInto<T> for Vec<T> {
#[inline]
fn push_into(&mut self, item: T) {
self.push(item)
}
}
impl<T: Clone> PushInto<&T> for Vec<T> {
#[inline]
fn push_into(&mut self, item: &T) {
self.push(item.clone())
}
}
impl<T: Clone> PushInto<&&T> for Vec<T> {
#[inline]
fn push_into(&mut self, item: &&T) {
self.push_into(*item)
}
}
mod rc {
use std::ops::Deref;
use std::rc::Rc;
use crate::Container;
impl<T: Container> Container for Rc<T> {
type ItemRef<'a> = T::ItemRef<'a> where Self: 'a;
type Item<'a> = T::ItemRef<'a> where Self: 'a;
fn len(&self) -> usize {
std::ops::Deref::deref(self).len()
}
fn is_empty(&self) -> bool {
std::ops::Deref::deref(self).is_empty()
}
fn clear(&mut self) {
// Try to reuse the allocation if possible
if let Some(inner) = Rc::get_mut(self) {
inner.clear();
} else {
*self = Self::default();
}
}
type Iter<'a> = T::Iter<'a>;
fn iter(&self) -> Self::Iter<'_> {
self.deref().iter()
}
type DrainIter<'a> = T::Iter<'a>;
fn drain(&mut self) -> Self::DrainIter<'_> {
self.iter()
}
}
}
mod arc {
use std::ops::Deref;
use std::sync::Arc;
use crate::Container;
impl<T: Container> Container for Arc<T> {
type ItemRef<'a> = T::ItemRef<'a> where Self: 'a;
type Item<'a> = T::ItemRef<'a> where Self: 'a;
fn len(&self) -> usize {
std::ops::Deref::deref(self).len()
}
fn is_empty(&self) -> bool {
std::ops::Deref::deref(self).is_empty()
}
fn clear(&mut self) {
// Try to reuse the allocation if possible
if let Some(inner) = Arc::get_mut(self) {
inner.clear();
} else {
*self = Self::default();
}
}
type Iter<'a> = T::Iter<'a>;
fn iter(&self) -> Self::Iter<'_> {
self.deref().iter()
}
type DrainIter<'a> = T::Iter<'a>;
fn drain(&mut self) -> Self::DrainIter<'_> {
self.iter()
}
}
}
/// A container that can partition itself into pieces.
pub trait PushPartitioned: SizableContainer {
/// Partition and push this container.
///
/// Drain all elements from `self`, and use the function `index` to determine which `buffer` to
/// append an element to. Call `flush` with an index and a buffer to send the data downstream.
fn push_partitioned<I, F>(&mut self, buffers: &mut [Self], index: I, flush: F)
where
for<'a> I: FnMut(&Self::Item<'a>) -> usize,
F: FnMut(usize, &mut Self);
}
impl<C: SizableContainer> PushPartitioned for C where for<'a> C: PushInto<C::Item<'a>> {
fn push_partitioned<I, F>(&mut self, buffers: &mut [Self], mut index: I, mut flush: F)
where
for<'a> I: FnMut(&Self::Item<'a>) -> usize,
F: FnMut(usize, &mut Self),
{
let ensure_capacity = |this: &mut Self| {
let capacity = this.capacity();
let desired_capacity = Self::preferred_capacity();
if capacity < desired_capacity {
this.reserve(desired_capacity - capacity);
}
};
for datum in self.drain() {
let index = index(&datum);
ensure_capacity(&mut buffers[index]);
buffers[index].push(datum);
if buffers[index].len() >= buffers[index].capacity() {
flush(index, &mut buffers[index]);
}
}
self.clear();
}
}
pub mod buffer {
//! Functionality related to calculating default buffer sizes
/// The upper limit for buffers to allocate, size in bytes. [default_capacity] converts
/// this to size in elements.
pub const BUFFER_SIZE_BYTES: usize = 1 << 13;
/// The maximum buffer capacity in elements. Returns a number between [BUFFER_SIZE_BYTES]
/// and 1, inclusively.
pub const fn default_capacity<T>() -> usize {
let size = std::mem::size_of::<T>();
if size == 0 {
BUFFER_SIZE_BYTES
} else if size <= BUFFER_SIZE_BYTES {
BUFFER_SIZE_BYTES / size
} else {
1
}
}
}