1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
//! Traits and types for partially ordered sets.

/// A type that is partially ordered.
///
/// This trait is distinct from Rust's `PartialOrd` trait, because the implementation
/// of that trait precludes a distinct `Ord` implementation. We need an independent
/// trait if we want to have a partially ordered type that can also be sorted.
pub trait PartialOrder<Rhs: ?Sized = Self>: PartialEq<Rhs> {
    /// Returns `true` iff one element is strictly less than the other.
    fn less_than(&self, other: &Rhs) -> bool {
        self.less_equal(other) && self != other
    }
    /// Returns `true` iff one element is less than or equal to the other.
    fn less_equal(&self, other: &Rhs) -> bool;
}

/// A type that is totally ordered.
///
/// This trait is a "carrier trait", in the sense that it adds no additional functionality
/// over `PartialOrder`, but instead indicates that the `less_than` and `less_equal` methods
/// are total, meaning that `x.less_than(&y)` is equivalent to `!y.less_equal(&x)`.
///
/// This trait is distinct from Rust's `Ord` trait, because several implementors of
/// `PartialOrd` also implement `Ord` for efficient canonicalization, deduplication,
/// and other sanity-maintaining operations.
pub trait TotalOrder : PartialOrder { }

/// A type that does not affect total orderedness.
///
/// This trait is not useful, but must be made public and documented or else Rust
/// complains about its existence in the constraints on the implementation of
/// public traits for public types.
pub trait Empty : PartialOrder { }

impl Empty for () { }

macro_rules! implement_partial {
    ($($index_type:ty,)*) => (
        $(
            impl PartialOrder for $index_type {
                #[inline] fn less_than(&self, other: &Self) -> bool { self < other }
                #[inline] fn less_equal(&self, other: &Self) -> bool { self <= other }
            }
        )*
    )
}

macro_rules! implement_total {
    ($($index_type:ty,)*) => (
        $(
            impl TotalOrder for $index_type { }
        )*
    )
}

implement_partial!(u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize, (), ::std::time::Duration,);
implement_total!(u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize, (), ::std::time::Duration,);

pub use product::Product;
pub use product::flatcontainer::ProductRegion as FlatProductRegion;
/// A pair of timestamps, partially ordered by the product order.
mod product {
    use std::fmt::{Formatter, Error, Debug};
    use serde::{Deserialize, Serialize};

    use crate::container::columnation::{Columnation, Region};
    use crate::order::{Empty, TotalOrder};
    use crate::progress::Timestamp;
    use crate::progress::timestamp::PathSummary;
    use crate::progress::timestamp::Refines;

    /// A nested pair of timestamps, one outer and one inner.
    ///
    /// We use `Product` rather than `(TOuter, TInner)` so that we can derive our own `PartialOrder`,
    /// because Rust just uses the lexicographic total order.
    #[derive(Copy, Clone, Hash, Eq, PartialEq, Default, Ord, PartialOrd, Serialize, Deserialize)]
    pub struct Product<TOuter, TInner> {
        /// Outer timestamp.
        pub outer: TOuter,
        /// Inner timestamp.
        pub inner: TInner,
    }

    impl<TOuter, TInner> Product<TOuter, TInner> {
        /// Creates a new product from outer and inner coordinates.
        pub fn new(outer: TOuter, inner: TInner) -> Self {
            Product {
                outer,
                inner,
            }
        }
    }

    // Debug implementation to avoid seeing fully qualified path names.
    impl<TOuter: Debug, TInner: Debug> Debug for Product<TOuter, TInner> {
        fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
            f.write_str(&format!("({:?}, {:?})", self.outer, self.inner))
        }
    }

    use super::PartialOrder;
    impl<TOuter, TOuter2, TInner, TInner2> PartialOrder<Product<TOuter2, TInner2>> for Product<TOuter, TInner>
    where
        TOuter: PartialOrder<TOuter2>,
        TInner: PartialOrder<TInner2>,
        Self: PartialEq<Product<TOuter2, TInner2>>,
    {
        #[inline]
        fn less_equal(&self, other: &Product<TOuter2, TInner2>) -> bool {
            self.outer.less_equal(&other.outer) && self.inner.less_equal(&other.inner)
        }
    }

    impl<TOuter: Timestamp, TInner: Timestamp> Timestamp for Product<TOuter, TInner> {
        type Summary = Product<TOuter::Summary, TInner::Summary>;
        fn minimum() -> Self { Self { outer: TOuter::minimum(), inner: TInner::minimum() }}
    }

    impl<TOuter: Timestamp, TInner: Timestamp> PathSummary<Product<TOuter, TInner>> for Product<TOuter::Summary, TInner::Summary> {
        #[inline]
        fn results_in(&self, product: &Product<TOuter, TInner>) -> Option<Product<TOuter, TInner>> {
            self.outer.results_in(&product.outer)
                .and_then(|outer|
                    self.inner.results_in(&product.inner)
                        .map(|inner| Product::new(outer, inner))
                )
        }
        #[inline]
        fn followed_by(&self, other: &Self) -> Option<Self> {
            self.outer.followed_by(&other.outer)
                .and_then(|outer|
                    self.inner.followed_by(&other.inner)
                        .map(|inner| Product::new(outer, inner))
                )
        }
    }

    impl<TOuter: Timestamp, TInner: Timestamp> Refines<TOuter> for Product<TOuter, TInner> {
        fn to_inner(other: TOuter) -> Self {
            Product::new(other, TInner::minimum())
        }
        fn to_outer(self: Product<TOuter, TInner>) -> TOuter {
            self.outer
        }
        fn summarize(path: <Self as Timestamp>::Summary) -> <TOuter as Timestamp>::Summary {
            path.outer
        }
    }

    impl<T1: Empty, T2: Empty> Empty for Product<T1, T2> { }
    impl<T1, T2> TotalOrder for Product<T1, T2> where T1: Empty, T2: TotalOrder { }

    impl<T1: Columnation, T2: Columnation> Columnation for Product<T1, T2> {
        type InnerRegion = ProductRegion<T1::InnerRegion, T2::InnerRegion>;
    }

    #[derive(Default)]
    pub struct ProductRegion<T1, T2> {
        outer_region: T1,
        inner_region: T2,
    }

    impl<T1: Region, T2: Region> Region for ProductRegion<T1, T2> {
        type Item = Product<T1::Item, T2::Item>;

        #[inline]
        unsafe fn copy(&mut self, item: &Self::Item) -> Self::Item {
            Product { outer: self.outer_region.copy(&item.outer), inner: self.inner_region.copy(&item.inner) }
        }

        fn clear(&mut self) {
            self.outer_region.clear();
            self.inner_region.clear();
        }

        fn reserve_items<'a, I>(&mut self, items1: I) where Self: 'a, I: Iterator<Item=&'a Self::Item> + Clone {
            let items2 = items1.clone();
            self.outer_region.reserve_items(items1.map(|x| &x.outer));
            self.inner_region.reserve_items(items2.map(|x| &x.inner))
        }

        fn reserve_regions<'a, I>(&mut self, regions1: I) where Self: 'a, I: Iterator<Item=&'a Self> + Clone {
            let regions2 = regions1.clone();
            self.outer_region.reserve_regions(regions1.map(|r| &r.outer_region));
            self.inner_region.reserve_regions(regions2.map(|r| &r.inner_region));
        }

        fn heap_size(&self, mut callback: impl FnMut(usize, usize)) {
            self.outer_region.heap_size(&mut callback);
            self.inner_region.heap_size(callback);
        }
    }

    pub mod flatcontainer {
        use timely_container::flatcontainer::{IntoOwned, Push, Region, RegionPreference, ReserveItems};
        use super::Product;

        impl<TO: RegionPreference, TI: RegionPreference> RegionPreference for Product<TO, TI> {
            type Owned = Product<TO::Owned, TI::Owned>;
            type Region = ProductRegion<TO::Region, TI::Region>;
        }

        /// Region to store [`Product`] timestamps.
        #[derive(Default, Clone, Debug)]
        pub struct ProductRegion<RO: Region, RI: Region> {
            outer_region: RO,
            inner_region: RI,
        }

        impl<RO: Region, RI: Region> Region for ProductRegion<RO, RI> {
            type Owned = Product<RO::Owned, RI::Owned>;
            type ReadItem<'a> = Product<RO::ReadItem<'a>, RI::ReadItem<'a>> where Self: 'a;
            type Index = (RO::Index, RI::Index);

            #[inline]
            fn merge_regions<'a>(regions: impl Iterator<Item=&'a Self> + Clone) -> Self where Self: 'a {
                let outer_region = RO::merge_regions(regions.clone().map(|r| &r.outer_region));
                let inner_region = RI::merge_regions(regions.map(|r| &r.inner_region));
                Self { outer_region, inner_region }
            }

            #[inline]
            fn index(&self, (outer, inner): Self::Index) -> Self::ReadItem<'_> {
                Product::new(self.outer_region.index(outer), self.inner_region.index(inner))
            }

            #[inline]
            fn reserve_regions<'a, I>(&mut self, regions: I) where Self: 'a, I: Iterator<Item=&'a Self> + Clone {
                self.outer_region.reserve_regions(regions.clone().map(|r| &r.outer_region));
                self.inner_region.reserve_regions(regions.map(|r| &r.inner_region));
            }

            #[inline]
            fn clear(&mut self) {
                self.outer_region.clear();
                self.inner_region.clear();
            }

            #[inline]
            fn heap_size<F: FnMut(usize, usize)>(&self, mut callback: F) {
                self.outer_region.heap_size(&mut callback);
                self.inner_region.heap_size(callback);
            }

            #[inline]
            fn reborrow<'b, 'a: 'b>(item: Self::ReadItem<'a>) -> Self::ReadItem<'b> where Self: 'a {
                Product::new(RO::reborrow(item.outer), RI::reborrow(item.inner))
            }
        }

        impl<'a, TOuter, TInner> IntoOwned<'a> for Product<TOuter, TInner>
        where
            TOuter: IntoOwned<'a>,
            TInner: IntoOwned<'a>,
        {
            type Owned = Product<TOuter::Owned, TInner::Owned>;

            fn into_owned(self) -> Self::Owned {
                Product::new(self.outer.into_owned(), self.inner.into_owned())
            }

            fn clone_onto(self, other: &mut Self::Owned) {
                self.outer.clone_onto(&mut other.outer);
                self.inner.clone_onto(&mut other.inner);
            }

            fn borrow_as(owned: &'a Self::Owned) -> Self {
                Product::new(IntoOwned::borrow_as(&owned.outer), IntoOwned::borrow_as(&owned.inner))
            }
        }

        impl<'a, RO, RI> ReserveItems<Product<RO::ReadItem<'a>, RI::ReadItem<'a>>> for ProductRegion<RO, RI>
        where
            RO: Region + ReserveItems<<RO as Region>::ReadItem<'a>> + 'a,
            RI: Region + ReserveItems<<RI as Region>::ReadItem<'a>> + 'a,
        {
            #[inline]
            fn reserve_items<I>(&mut self, items: I) where I: Iterator<Item=Product<RO::ReadItem<'a>, RI::ReadItem<'a>>> + Clone {
                self.outer_region.reserve_items(items.clone().map(|i| i.outer));
                self.inner_region.reserve_items(items.clone().map(|i| i.inner));
            }
        }

        impl<TO, TI, RO, RI> Push<Product<TO, TI>> for ProductRegion<RO, RI>
        where
            RO: Region + Push<TO>,
            RI: Region + Push<TI>,
        {
            #[inline]
            fn push(&mut self, item: Product<TO, TI>) -> Self::Index {
                (
                    self.outer_region.push(item.outer),
                    self.inner_region.push(item.inner)
                )
            }
        }

        impl<'a, TO, TI, RO, RI> Push<&'a Product<TO, TI>> for ProductRegion<RO, RI>
        where
            RO: Region + Push<&'a TO>,
            RI: Region + Push<&'a TI>,
        {
            #[inline]
            fn push(&mut self, item: &'a Product<TO, TI>) -> Self::Index {
                (
                    self.outer_region.push(&item.outer),
                    self.inner_region.push(&item.inner)
                )
            }
        }

        impl<'a, TO, TI, RO, RI> Push<&&'a Product<TO, TI>> for ProductRegion<RO, RI>
        where
            RO: Region + Push<&'a TO>,
            RI: Region + Push<&'a TI>,
        {
            #[inline]
            fn push(&mut self, item: && 'a Product<TO, TI>) -> Self::Index {
                (
                    self.outer_region.push(&item.outer),
                    self.inner_region.push(&item.inner)
                )
            }
        }
    }
}

/// Rust tuple ordered by the lexicographic order.
mod tuple {

    use super::PartialOrder;
    impl<TOuter, TOuter2, TInner, TInner2> PartialOrder<(TOuter2, TInner2)> for (TOuter, TInner)
    where
        TOuter: PartialOrder<TOuter2>,
        TInner: PartialOrder<TInner2>,
        (TOuter, TInner): PartialEq<(TOuter2, TInner2)>,
    {
        #[inline]
        fn less_equal(&self, other: &(TOuter2, TInner2)) -> bool {
            // We avoid Rust's `PartialOrd` implementation, for reasons of correctness.
            self.0.less_than(&other.0) || (self.0.eq(&other.0) && self.1.less_equal(&other.1))
        }
    }

    use super::TotalOrder;
    impl<T1, T2> TotalOrder for (T1, T2) where T1: TotalOrder, T2: TotalOrder { }

    use crate::progress::Timestamp;
    impl<TOuter: Timestamp, TInner: Timestamp> Timestamp for (TOuter, TInner) {
        type Summary = (TOuter::Summary, TInner::Summary);
        fn minimum() -> Self { (TOuter::minimum(), TInner::minimum()) }
    }

    use crate::progress::timestamp::PathSummary;
    impl<TOuter: Timestamp, TInner: Timestamp> PathSummary<(TOuter, TInner)> for (TOuter::Summary, TInner::Summary) {
        #[inline]
        fn results_in(&self, (outer, inner): &(TOuter, TInner)) -> Option<(TOuter, TInner)> {
            self.0.results_in(outer)
                .and_then(|outer|
                    self.1.results_in(inner)
                        .map(|inner| (outer, inner))
                )
        }
        #[inline]
        fn followed_by(&self, (outer, inner): &(TOuter::Summary, TInner::Summary)) -> Option<(TOuter::Summary, TInner::Summary)> {
            self.0.followed_by(outer)
                .and_then(|outer|
                    self.1.followed_by(inner)
                        .map(|inner| (outer, inner))
                )
        }
    }

    use crate::progress::timestamp::Refines;
    impl<TOuter: Timestamp, TInner: Timestamp> Refines<TOuter> for (TOuter, TInner) {
        fn to_inner(other: TOuter) -> Self {
            (other, TInner::minimum())
        }
        fn to_outer(self: (TOuter, TInner)) -> TOuter {
            self.0
        }
        fn summarize(path: <Self as Timestamp>::Summary) -> <TOuter as Timestamp>::Summary {
            path.0
        }
    }

    use super::Empty;
    impl<T1: Empty, T2: Empty> Empty for (T1, T2) { }
}