1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
// Copyright 2015-2021 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use super::{PublicExponent, PublicModulus, N, PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN};
use crate::{
arithmetic::bigint,
bits, cpu, error,
io::{self, der, der_writer},
limb::LIMB_BYTES,
};
use alloc::boxed::Box;
use core::num::NonZeroU64;
/// An RSA Public Key.
#[derive(Clone)]
pub struct PublicKey {
inner: Inner,
serialized: Box<[u8]>,
}
derive_debug_self_as_ref_hex_bytes!(PublicKey);
impl PublicKey {
pub(super) fn from_modulus_and_exponent(
n: untrusted::Input,
e: untrusted::Input,
n_min_bits: bits::BitLength,
n_max_bits: bits::BitLength,
e_min_value: PublicExponent,
cpu_features: cpu::Features,
) -> Result<Self, error::KeyRejected> {
let inner = Inner::from_modulus_and_exponent(
n,
e,
n_min_bits,
n_max_bits,
e_min_value,
cpu_features,
)?;
let n_bytes = n;
let e_bytes = e;
// TODO: Remove this re-parsing, and stop allocating this here.
// Instead we should serialize on demand without allocation, from
// `Modulus::be_bytes()` and `Exponent::be_bytes()`. Once this is
// fixed, merge `Inner` back into `PublicKey`.
let n_bytes = io::Positive::from_be_bytes(n_bytes)
.map_err(|_: error::Unspecified| error::KeyRejected::unexpected_error())?;
let e_bytes = io::Positive::from_be_bytes(e_bytes)
.map_err(|_: error::Unspecified| error::KeyRejected::unexpected_error())?;
let serialized = der_writer::write_all(der::Tag::Sequence, &|output| {
der_writer::write_positive_integer(output, &n_bytes);
der_writer::write_positive_integer(output, &e_bytes);
});
Ok(Self { inner, serialized })
}
/// The length, in bytes, of the public modulus.
///
/// The modulus length is rounded up to a whole number of bytes if its
/// bit length isn't a multiple of 8.
pub fn modulus_len(&self) -> usize {
self.inner.n().len_bits().as_usize_bytes_rounded_up()
}
pub(super) fn inner(&self) -> &Inner {
&self.inner
}
}
/// `PublicKey` but without any superfluous allocations, optimized for one-shot
/// RSA signature verification.
#[derive(Clone)]
pub(crate) struct Inner {
n: PublicModulus,
e: PublicExponent,
}
impl Inner {
pub(super) fn from_modulus_and_exponent(
n: untrusted::Input,
e: untrusted::Input,
n_min_bits: bits::BitLength,
n_max_bits: bits::BitLength,
e_min_value: PublicExponent,
cpu_features: cpu::Features,
) -> Result<Self, error::KeyRejected> {
// This is an incomplete implementation of NIST SP800-56Br1 Section
// 6.4.2.2, "Partial Public-Key Validation for RSA." That spec defers
// to NIST SP800-89 Section 5.3.3, "(Explicit) Partial Public Key
// Validation for RSA," "with the caveat that the length of the modulus
// shall be a length that is specified in this Recommendation." In
// SP800-89, two different sets of steps are given, one set numbered,
// and one set lettered. TODO: Document this in the end-user
// documentation for RSA keys.
let n = PublicModulus::from_be_bytes(n, n_min_bits..=n_max_bits, cpu_features)?;
let e = PublicExponent::from_be_bytes(e, e_min_value)?;
// If `n` is less than `e` then somebody has probably accidentally swapped
// them. The largest acceptable `e` is smaller than the smallest acceptable
// `n`, so no additional checks need to be done.
// XXX: Steps 4 & 5 / Steps d, e, & f are not implemented. This is also the
// case in most other commonly-used crypto libraries.
Ok(Self { n, e })
}
/// The public modulus.
#[inline]
pub(super) fn n(&self) -> &PublicModulus {
&self.n
}
/// The public exponent.
#[inline]
pub(super) fn e(&self) -> PublicExponent {
self.e
}
/// Calculates base**e (mod n), filling the first part of `out_buffer` with
/// the result.
///
/// This is constant-time with respect to the value in `base` (only).
///
/// The result will be a slice of the encoded bytes of the result within
/// `out_buffer`, if successful.
pub(super) fn exponentiate<'out>(
&self,
base: untrusted::Input,
out_buffer: &'out mut [u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN],
) -> Result<&'out [u8], error::Unspecified> {
let n = &self.n.value();
// The encoded value of the base must be the same length as the modulus,
// in bytes.
if base.len() != self.n.len_bits().as_usize_bytes_rounded_up() {
return Err(error::Unspecified);
}
// RFC 8017 Section 5.2.2: RSAVP1.
// Step 1.
let s = bigint::Elem::from_be_bytes_padded(base, n)?;
if s.is_zero() {
return Err(error::Unspecified);
}
// Step 2.
let m = self.exponentiate_elem(&s);
// Step 3.
Ok(fill_be_bytes_n(m, self.n.len_bits(), out_buffer))
}
/// Calculates base**e (mod n).
///
/// This is constant-time with respect to `base` only.
pub(super) fn exponentiate_elem(&self, base: &bigint::Elem<N>) -> bigint::Elem<N> {
// The exponent was already checked to be at least 3.
let exponent_without_low_bit = NonZeroU64::try_from(self.e.value().get() & !1).unwrap();
// The exponent was already checked to be odd.
debug_assert_ne!(exponent_without_low_bit, self.e.value());
let n = &self.n.value();
let base_r = bigint::elem_mul(self.n.oneRR(), base.clone(), n);
// During RSA public key operations the exponent is almost always either
// 65537 (0b10000000000000001) or 3 (0b11), both of which have a Hamming
// weight of 2. The maximum bit length and maximum Hamming weight of the
// exponent is bounded by the value of `PublicExponent::MAX`.
let acc = bigint::elem_exp_vartime(base_r, exponent_without_low_bit, n);
// Now do the multiplication for the low bit and convert out of the Montgomery domain.
bigint::elem_mul(base, acc, n)
}
}
// XXX: Refactor `signature::KeyPair` to get rid of this.
impl AsRef<[u8]> for PublicKey {
fn as_ref(&self) -> &[u8] {
&self.serialized
}
}
/// Returns the big-endian representation of `elem` that is
/// the same length as the minimal-length big-endian representation of
/// the modulus `n`.
///
/// `n_bits` must be the bit length of the public modulus `n`.
fn fill_be_bytes_n(
elem: bigint::Elem<N>,
n_bits: bits::BitLength,
out: &mut [u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN],
) -> &[u8] {
let n_bytes = n_bits.as_usize_bytes_rounded_up();
let n_bytes_padded = ((n_bytes + (LIMB_BYTES - 1)) / LIMB_BYTES) * LIMB_BYTES;
let out = &mut out[..n_bytes_padded];
elem.fill_be_bytes(out);
let (padding, out) = out.split_at(n_bytes_padded - n_bytes);
assert!(padding.iter().all(|&b| b == 0));
out
}