libm/math/
pow.rs

1/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
2/*
3 * ====================================================
4 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12// pow(x,y) return x**y
13//
14//                    n
15// Method:  Let x =  2   * (1+f)
16//      1. Compute and return log2(x) in two pieces:
17//              log2(x) = w1 + w2,
18//         where w1 has 53-24 = 29 bit trailing zeros.
19//      2. Perform y*log2(x) = n+y' by simulating muti-precision
20//         arithmetic, where |y'|<=0.5.
21//      3. Return x**y = 2**n*exp(y'*log2)
22//
23// Special cases:
24//      1.  (anything) ** 0  is 1
25//      2.  1 ** (anything)  is 1
26//      3.  (anything except 1) ** NAN is NAN
27//      4.  NAN ** (anything except 0) is NAN
28//      5.  +-(|x| > 1) **  +INF is +INF
29//      6.  +-(|x| > 1) **  -INF is +0
30//      7.  +-(|x| < 1) **  +INF is +0
31//      8.  +-(|x| < 1) **  -INF is +INF
32//      9.  -1          ** +-INF is 1
33//      10. +0 ** (+anything except 0, NAN)               is +0
34//      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
35//      12. +0 ** (-anything except 0, NAN)               is +INF, raise divbyzero
36//      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise divbyzero
37//      14. -0 ** (+odd integer) is -0
38//      15. -0 ** (-odd integer) is -INF, raise divbyzero
39//      16. +INF ** (+anything except 0,NAN) is +INF
40//      17. +INF ** (-anything except 0,NAN) is +0
41//      18. -INF ** (+odd integer) is -INF
42//      19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
43//      20. (anything) ** 1 is (anything)
44//      21. (anything) ** -1 is 1/(anything)
45//      22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
46//      23. (-anything except 0 and inf) ** (non-integer) is NAN
47//
48// Accuracy:
49//      pow(x,y) returns x**y nearly rounded. In particular
50//                      pow(integer,integer)
51//      always returns the correct integer provided it is
52//      representable.
53//
54// Constants :
55// The hexadecimal values are the intended ones for the following
56// constants. The decimal values may be used, provided that the
57// compiler will convert from decimal to binary accurately enough
58// to produce the hexadecimal values shown.
59//
60use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word};
61
62const BP: [f64; 2] = [1.0, 1.5];
63const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
64const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
65const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
66const HUGE: f64 = 1.0e300;
67const TINY: f64 = 1.0e-300;
68
69// poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
70const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
71const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
72const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
73const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
74const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
75const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
76const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
77const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
78const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
79const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
80const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
81const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
82const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
83const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
84const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
85const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
86const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
87const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
88const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
89const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
90const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
91
92#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
93pub fn pow(x: f64, y: f64) -> f64 {
94    let t1: f64;
95    let t2: f64;
96
97    let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
98    let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
99
100    let mut ix: i32 = (hx & 0x7fffffff) as i32;
101    let iy: i32 = (hy & 0x7fffffff) as i32;
102
103    /* x**0 = 1, even if x is NaN */
104    if ((iy as u32) | ly) == 0 {
105        return 1.0;
106    }
107
108    /* 1**y = 1, even if y is NaN */
109    if hx == 0x3ff00000 && lx == 0 {
110        return 1.0;
111    }
112
113    /* NaN if either arg is NaN */
114    if ix > 0x7ff00000
115        || (ix == 0x7ff00000 && lx != 0)
116        || iy > 0x7ff00000
117        || (iy == 0x7ff00000 && ly != 0)
118    {
119        return x + y;
120    }
121
122    /* determine if y is an odd int when x < 0
123     * yisint = 0       ... y is not an integer
124     * yisint = 1       ... y is an odd int
125     * yisint = 2       ... y is an even int
126     */
127    let mut yisint: i32 = 0;
128    let mut k: i32;
129    let mut j: i32;
130    if hx < 0 {
131        if iy >= 0x43400000 {
132            yisint = 2; /* even integer y */
133        } else if iy >= 0x3ff00000 {
134            k = (iy >> 20) - 0x3ff; /* exponent */
135
136            if k > 20 {
137                j = (ly >> (52 - k)) as i32;
138
139                if (j << (52 - k)) == (ly as i32) {
140                    yisint = 2 - (j & 1);
141                }
142            } else if ly == 0 {
143                j = iy >> (20 - k);
144
145                if (j << (20 - k)) == iy {
146                    yisint = 2 - (j & 1);
147                }
148            }
149        }
150    }
151
152    if ly == 0 {
153        /* special value of y */
154        if iy == 0x7ff00000 {
155            /* y is +-inf */
156
157            return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
158                /* (-1)**+-inf is 1 */
159                1.0
160            } else if ix >= 0x3ff00000 {
161                /* (|x|>1)**+-inf = inf,0 */
162                if hy >= 0 {
163                    y
164                } else {
165                    0.0
166                }
167            } else {
168                /* (|x|<1)**+-inf = 0,inf */
169                if hy >= 0 {
170                    0.0
171                } else {
172                    -y
173                }
174            };
175        }
176
177        if iy == 0x3ff00000 {
178            /* y is +-1 */
179            return if hy >= 0 { x } else { 1.0 / x };
180        }
181
182        if hy == 0x40000000 {
183            /* y is 2 */
184            return x * x;
185        }
186
187        if hy == 0x3fe00000 {
188            /* y is 0.5 */
189            if hx >= 0 {
190                /* x >= +0 */
191                return sqrt(x);
192            }
193        }
194    }
195
196    let mut ax: f64 = fabs(x);
197    if lx == 0 {
198        /* special value of x */
199        if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
200            /* x is +-0,+-inf,+-1 */
201            let mut z: f64 = ax;
202
203            if hy < 0 {
204                /* z = (1/|x|) */
205                z = 1.0 / z;
206            }
207
208            if hx < 0 {
209                if ((ix - 0x3ff00000) | yisint) == 0 {
210                    z = (z - z) / (z - z); /* (-1)**non-int is NaN */
211                } else if yisint == 1 {
212                    z = -z; /* (x<0)**odd = -(|x|**odd) */
213                }
214            }
215
216            return z;
217        }
218    }
219
220    let mut s: f64 = 1.0; /* sign of result */
221    if hx < 0 {
222        if yisint == 0 {
223            /* (x<0)**(non-int) is NaN */
224            return (x - x) / (x - x);
225        }
226
227        if yisint == 1 {
228            /* (x<0)**(odd int) */
229            s = -1.0;
230        }
231    }
232
233    /* |y| is HUGE */
234    if iy > 0x41e00000 {
235        /* if |y| > 2**31 */
236        if iy > 0x43f00000 {
237            /* if |y| > 2**64, must o/uflow */
238            if ix <= 0x3fefffff {
239                return if hy < 0 { HUGE * HUGE } else { TINY * TINY };
240            }
241
242            if ix >= 0x3ff00000 {
243                return if hy > 0 { HUGE * HUGE } else { TINY * TINY };
244            }
245        }
246
247        /* over/underflow if x is not close to one */
248        if ix < 0x3fefffff {
249            return if hy < 0 {
250                s * HUGE * HUGE
251            } else {
252                s * TINY * TINY
253            };
254        }
255        if ix > 0x3ff00000 {
256            return if hy > 0 {
257                s * HUGE * HUGE
258            } else {
259                s * TINY * TINY
260            };
261        }
262
263        /* now |1-x| is TINY <= 2**-20, suffice to compute
264        log(x) by x-x^2/2+x^3/3-x^4/4 */
265        let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
266        let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
267        let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
268        let v: f64 = t * IVLN2_L - w * IVLN2;
269        t1 = with_set_low_word(u + v, 0);
270        t2 = v - (t1 - u);
271    } else {
272        // double ss,s2,s_h,s_l,t_h,t_l;
273        let mut n: i32 = 0;
274
275        if ix < 0x00100000 {
276            /* take care subnormal number */
277            ax *= TWO53;
278            n -= 53;
279            ix = get_high_word(ax) as i32;
280        }
281
282        n += (ix >> 20) - 0x3ff;
283        j = ix & 0x000fffff;
284
285        /* determine interval */
286        let k: i32;
287        ix = j | 0x3ff00000; /* normalize ix */
288        if j <= 0x3988E {
289            /* |x|<sqrt(3/2) */
290            k = 0;
291        } else if j < 0xBB67A {
292            /* |x|<sqrt(3)   */
293            k = 1;
294        } else {
295            k = 0;
296            n += 1;
297            ix -= 0x00100000;
298        }
299        ax = with_set_high_word(ax, ix as u32);
300
301        /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
302        let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
303        let v: f64 = 1.0 / (ax + i!(BP, k as usize));
304        let ss: f64 = u * v;
305        let s_h = with_set_low_word(ss, 0);
306
307        /* t_h=ax+bp[k] High */
308        let t_h: f64 = with_set_high_word(
309            0.0,
310            ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
311        );
312        let t_l: f64 = ax - (t_h - i!(BP, k as usize));
313        let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
314
315        /* compute log(ax) */
316        let s2: f64 = ss * ss;
317        let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
318        r += s_l * (s_h + ss);
319        let s2: f64 = s_h * s_h;
320        let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
321        let t_l: f64 = r - ((t_h - 3.0) - s2);
322
323        /* u+v = ss*(1+...) */
324        let u: f64 = s_h * t_h;
325        let v: f64 = s_l * t_h + t_l * ss;
326
327        /* 2/(3log2)*(ss+...) */
328        let p_h: f64 = with_set_low_word(u + v, 0);
329        let p_l = v - (p_h - u);
330        let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
331        let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
332
333        /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
334        let t: f64 = n as f64;
335        t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
336        t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
337    }
338
339    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
340    let y1: f64 = with_set_low_word(y, 0);
341    let p_l: f64 = (y - y1) * t1 + y * t2;
342    let mut p_h: f64 = y1 * t1;
343    let z: f64 = p_l + p_h;
344    let mut j: i32 = (z.to_bits() >> 32) as i32;
345    let i: i32 = z.to_bits() as i32;
346    // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
347
348    if j >= 0x40900000 {
349        /* z >= 1024 */
350        if (j - 0x40900000) | i != 0 {
351            /* if z > 1024 */
352            return s * HUGE * HUGE; /* overflow */
353        }
354
355        if p_l + OVT > z - p_h {
356            return s * HUGE * HUGE; /* overflow */
357        }
358    } else if (j & 0x7fffffff) >= 0x4090cc00 {
359        /* z <= -1075 */
360        // FIXME: instead of abs(j) use unsigned j
361
362        if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
363            /* z < -1075 */
364            return s * TINY * TINY; /* underflow */
365        }
366
367        if p_l <= z - p_h {
368            return s * TINY * TINY; /* underflow */
369        }
370    }
371
372    /* compute 2**(p_h+p_l) */
373    let i: i32 = j & (0x7fffffff as i32);
374    k = (i >> 20) - 0x3ff;
375    let mut n: i32 = 0;
376
377    if i > 0x3fe00000 {
378        /* if |z| > 0.5, set n = [z+0.5] */
379        n = j + (0x00100000 >> (k + 1));
380        k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
381        let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
382        n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
383        if j < 0 {
384            n = -n;
385        }
386        p_h -= t;
387    }
388
389    let t: f64 = with_set_low_word(p_l + p_h, 0);
390    let u: f64 = t * LG2_H;
391    let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
392    let mut z: f64 = u + v;
393    let w: f64 = v - (z - u);
394    let t: f64 = z * z;
395    let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
396    let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
397    z = 1.0 - (r - z);
398    j = get_high_word(z) as i32;
399    j += n << 20;
400
401    if (j >> 20) <= 0 {
402        /* subnormal output */
403        z = scalbn(z, n);
404    } else {
405        z = with_set_high_word(z, j as u32);
406    }
407
408    s * z
409}
410
411#[cfg(test)]
412mod tests {
413    extern crate core;
414
415    use self::core::f64::consts::{E, PI};
416    use self::core::f64::{EPSILON, INFINITY, MAX, MIN, MIN_POSITIVE, NAN, NEG_INFINITY};
417    use super::pow;
418
419    const POS_ZERO: &[f64] = &[0.0];
420    const NEG_ZERO: &[f64] = &[-0.0];
421    const POS_ONE: &[f64] = &[1.0];
422    const NEG_ONE: &[f64] = &[-1.0];
423    const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI];
424    const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI];
425    const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), MIN_POSITIVE, EPSILON];
426    const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -MIN_POSITIVE, -EPSILON];
427    const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, MAX];
428    const NEG_EVENS: &[f64] = &[MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
429    const POS_ODDS: &[f64] = &[3.0, 7.0];
430    const NEG_ODDS: &[f64] = &[-7.0, -3.0];
431    const NANS: &[f64] = &[NAN];
432    const POS_INF: &[f64] = &[INFINITY];
433    const NEG_INF: &[f64] = &[NEG_INFINITY];
434
435    const ALL: &[&[f64]] = &[
436        POS_ZERO,
437        NEG_ZERO,
438        NANS,
439        NEG_SMALL_FLOATS,
440        POS_SMALL_FLOATS,
441        NEG_FLOATS,
442        POS_FLOATS,
443        NEG_EVENS,
444        POS_EVENS,
445        NEG_ODDS,
446        POS_ODDS,
447        NEG_INF,
448        POS_INF,
449        NEG_ONE,
450        POS_ONE,
451    ];
452    const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
453    const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
454
455    fn pow_test(base: f64, exponent: f64, expected: f64) {
456        let res = pow(base, exponent);
457        assert!(
458            if expected.is_nan() {
459                res.is_nan()
460            } else {
461                pow(base, exponent) == expected
462            },
463            "{} ** {} was {} instead of {}",
464            base,
465            exponent,
466            res,
467            expected
468        );
469    }
470
471    fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
472        sets.iter()
473            .for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected)));
474    }
475
476    fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
477        sets.iter()
478            .for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected)));
479    }
480
481    fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) {
482        sets.iter().for_each(|s| {
483            s.iter().for_each(|val| {
484                let exp = expected(*val);
485                let res = computed(*val);
486
487                #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
488                let exp = force_eval!(exp);
489                #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
490                let res = force_eval!(res);
491                assert!(
492                    if exp.is_nan() {
493                        res.is_nan()
494                    } else {
495                        exp == res
496                    },
497                    "test for {} was {} instead of {}",
498                    val,
499                    res,
500                    exp
501                );
502            })
503        });
504    }
505
506    #[test]
507    fn zero_as_exponent() {
508        test_sets_as_base(ALL, 0.0, 1.0);
509        test_sets_as_base(ALL, -0.0, 1.0);
510    }
511
512    #[test]
513    fn one_as_base() {
514        test_sets_as_exponent(1.0, ALL, 1.0);
515    }
516
517    #[test]
518    fn nan_inputs() {
519        // NAN as the base:
520        // (NAN ^ anything *but 0* should be NAN)
521        test_sets_as_exponent(NAN, &ALL[2..], NAN);
522
523        // NAN as the exponent:
524        // (anything *but 1* ^ NAN should be NAN)
525        test_sets_as_base(&ALL[..(ALL.len() - 2)], NAN, NAN);
526    }
527
528    #[test]
529    fn infinity_as_base() {
530        // Positive Infinity as the base:
531        // (+Infinity ^ positive anything but 0 and NAN should be +Infinity)
532        test_sets_as_exponent(INFINITY, &POS[1..], INFINITY);
533
534        // (+Infinity ^ negative anything except 0 and NAN should be 0.0)
535        test_sets_as_exponent(INFINITY, &NEG[1..], 0.0);
536
537        // Negative Infinity as the base:
538        // (-Infinity ^ positive odd ints should be -Infinity)
539        test_sets_as_exponent(NEG_INFINITY, &[POS_ODDS], NEG_INFINITY);
540
541        // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
542        // We can lump in pos/neg odd ints here because they don't seem to
543        // cause panics (div by zero) in release mode (I think).
544        test_sets(ALL, &|v: f64| pow(NEG_INFINITY, v), &|v: f64| pow(-0.0, -v));
545    }
546
547    #[test]
548    fn infinity_as_exponent() {
549        // Positive/Negative base greater than 1:
550        // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes NAN as the base)
551        test_sets_as_base(&ALL[5..(ALL.len() - 2)], INFINITY, INFINITY);
552
553        // (pos/neg > 1 ^ -Infinity should be 0.0)
554        test_sets_as_base(&ALL[5..ALL.len() - 2], NEG_INFINITY, 0.0);
555
556        // Positive/Negative base less than 1:
557        let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
558
559        // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes NAN as the base)
560        test_sets_as_base(base_below_one, INFINITY, 0.0);
561
562        // (pos/neg < 1 ^ -Infinity should be Infinity)
563        test_sets_as_base(base_below_one, NEG_INFINITY, INFINITY);
564
565        // Positive/Negative 1 as the base:
566        // (pos/neg 1 ^ Infinity should be 1)
567        test_sets_as_base(&[NEG_ONE, POS_ONE], INFINITY, 1.0);
568
569        // (pos/neg 1 ^ -Infinity should be 1)
570        test_sets_as_base(&[NEG_ONE, POS_ONE], NEG_INFINITY, 1.0);
571    }
572
573    #[test]
574    fn zero_as_base() {
575        // Positive Zero as the base:
576        // (+0 ^ anything positive but 0 and NAN should be +0)
577        test_sets_as_exponent(0.0, &POS[1..], 0.0);
578
579        // (+0 ^ anything negative but 0 and NAN should be Infinity)
580        // (this should panic because we're dividing by zero)
581        test_sets_as_exponent(0.0, &NEG[1..], INFINITY);
582
583        // Negative Zero as the base:
584        // (-0 ^ anything positive but 0, NAN, and odd ints should be +0)
585        test_sets_as_exponent(-0.0, &POS[3..], 0.0);
586
587        // (-0 ^ anything negative but 0, NAN, and odd ints should be Infinity)
588        // (should panic because of divide by zero)
589        test_sets_as_exponent(-0.0, &NEG[3..], INFINITY);
590
591        // (-0 ^ positive odd ints should be -0)
592        test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
593
594        // (-0 ^ negative odd ints should be -Infinity)
595        // (should panic because of divide by zero)
596        test_sets_as_exponent(-0.0, &[NEG_ODDS], NEG_INFINITY);
597    }
598
599    #[test]
600    fn special_cases() {
601        // One as the exponent:
602        // (anything ^ 1 should be anything - i.e. the base)
603        test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v);
604
605        // Negative One as the exponent:
606        // (anything ^ -1 should be 1/anything)
607        test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v);
608
609        // Factoring -1 out:
610        // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
611        (&[POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS])
612            .iter()
613            .for_each(|int_set| {
614                int_set.iter().for_each(|int| {
615                    test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| {
616                        pow(-1.0, *int) * pow(v, *int)
617                    });
618                })
619            });
620
621        // Negative base (imaginary results):
622        // (-anything except 0 and Infinity ^ non-integer should be NAN)
623        (&NEG[1..(NEG.len() - 1)]).iter().for_each(|set| {
624            set.iter().for_each(|val| {
625                test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| NAN);
626            })
627        });
628    }
629
630    #[test]
631    fn normal_cases() {
632        assert_eq!(pow(2.0, 20.0), (1 << 20) as f64);
633        assert_eq!(pow(-1.0, 9.0), -1.0);
634        assert!(pow(-1.0, 2.2).is_nan());
635        assert!(pow(-1.0, -1.14).is_nan());
636    }
637}