1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Routines for converting datum values to and from their string
//! representation.
//!
//! The functions in this module are tightly related to the variants of
//! [`ScalarType`](crate::ScalarType). Each variant has a pair of functions in
//! this module named `parse_VARIANT` and `format_VARIANT`. The type returned
//! by `parse` functions, and the type accepted by `format` functions, will
//! be a type that is easily converted into the [`Datum`](crate::Datum) variant
//! for that type. The functions do not directly convert from `Datum`s to
//! `String`s so that the logic can be reused when `Datum`s are not available or
//! desired, as in the pgrepr crate.
//!
//! The string representations used are exactly the same as the PostgreSQL
//! string representations for the corresponding PostgreSQL type. Deviations
//! should be considered a bug.

use std::borrow::Cow;
use std::collections::BTreeMap;
use std::error::Error;
use std::fmt;
use std::num::FpCategory;

use chrono::offset::{Offset, TimeZone};
use chrono::{DateTime, Datelike, Duration, NaiveDate, NaiveDateTime, NaiveTime, Timelike, Utc};
use dec::OrderedDecimal;
use fast_float::FastFloat;
use mz_lowertest::MzReflect;
use mz_ore::cast::ReinterpretCast;
use mz_ore::error::ErrorExt;
use mz_ore::fmt::FormatBuffer;
use mz_ore::lex::LexBuf;
use mz_ore::str::StrExt;
use mz_pgtz::timezone::{Timezone, TimezoneSpec};
use mz_proto::{RustType, TryFromProtoError};
use num_traits::Float as NumFloat;
use once_cell::sync::Lazy;
use proptest_derive::Arbitrary;
use regex::bytes::Regex;
use ryu::Float as RyuFloat;
use serde::{Deserialize, Serialize};
use uuid::Uuid;

use crate::adt::array::ArrayDimension;
use crate::adt::date::Date;
use crate::adt::datetime::{self, DateTimeField, ParsedDateTime};
use crate::adt::interval::Interval;
use crate::adt::jsonb::{Jsonb, JsonbRef};
use crate::adt::mz_acl_item::{AclItem, MzAclItem};
use crate::adt::numeric::{self, Numeric, NUMERIC_DATUM_MAX_PRECISION};
use crate::adt::pg_legacy_name::NAME_MAX_BYTES;
use crate::adt::range::{Range, RangeBound, RangeInner};
use crate::adt::timestamp::CheckedTimestamp;

include!(concat!(env!("OUT_DIR"), "/mz_repr.strconv.rs"));

macro_rules! bail {
    ($($arg:tt)*) => { return Err(format!($($arg)*)) };
}

/// Yes should be provided for types that will *never* return true for [`ElementEscaper::needs_escaping`]
#[derive(Debug)]
pub enum Nestable {
    Yes,
    MayNeedEscaping,
}

/// Parses a [`bool`] from `s`.
///
/// The accepted values are "true", "false", "yes", "no", "on", "off", "1", and
/// "0", or any unambiguous prefix of one of those values. Leading or trailing
/// whitespace is permissible.
pub fn parse_bool(s: &str) -> Result<bool, ParseError> {
    match s.trim().to_lowercase().as_str() {
        "t" | "tr" | "tru" | "true" | "y" | "ye" | "yes" | "on" | "1" => Ok(true),
        "f" | "fa" | "fal" | "fals" | "false" | "n" | "no" | "of" | "off" | "0" => Ok(false),
        _ => Err(ParseError::invalid_input_syntax("boolean", s)),
    }
}

/// Like `format_bool`, but returns a string with a static lifetime.
///
/// This function should be preferred to `format_bool` when applicable, as it
/// avoids an allocation.
pub fn format_bool_static(b: bool) -> &'static str {
    match b {
        true => "t",
        false => "f",
    }
}

/// Writes a boolean value into `buf`.
///
/// `true` is encoded as the char `'t'` and `false` is encoded as the char
/// `'f'`.
pub fn format_bool<F>(buf: &mut F, b: bool) -> Nestable
where
    F: FormatBuffer,
{
    buf.write_str(format_bool_static(b));
    Nestable::Yes
}

/// Parses an [`i16`] from `s`.
///
/// Valid values are whatever the [`std::str::FromStr`] implementation on `i16` accepts,
/// plus leading and trailing whitespace.
pub fn parse_int16(s: &str) -> Result<i16, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("smallint", s).with_details(e))
}

/// Writes an [`i16`] to `buf`.
pub fn format_int16<F>(buf: &mut F, i: i16) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", i);
    Nestable::Yes
}

/// Parses an [`i32`] from `s`.
///
/// Valid values are whatever the [`std::str::FromStr`] implementation on `i32` accepts,
/// plus leading and trailing whitespace.
pub fn parse_int32(s: &str) -> Result<i32, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("integer", s).with_details(e))
}

/// Writes an [`i32`] to `buf`.
pub fn format_int32<F>(buf: &mut F, i: i32) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", i);
    Nestable::Yes
}

/// Parses an `i64` from `s`.
pub fn parse_int64(s: &str) -> Result<i64, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("bigint", s).with_details(e))
}

/// Writes an `i64` to `buf`.
pub fn format_int64<F>(buf: &mut F, i: i64) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", i);
    Nestable::Yes
}

/// Parses an [`u16`] from `s`.
///
/// Valid values are whatever the [`std::str::FromStr`] implementation on `u16` accepts,
/// plus leading and trailing whitespace.
pub fn parse_uint16(s: &str) -> Result<u16, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("uint2", s).with_details(e))
}

/// Writes an `u16` to `buf`.
pub fn format_uint16<F>(buf: &mut F, u: u16) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", u);
    Nestable::Yes
}

/// Parses an [`u32`] from `s`.
///
/// Valid values are whatever the [`std::str::FromStr`] implementation on `u32` accepts,
/// plus leading and trailing whitespace.
pub fn parse_uint32(s: &str) -> Result<u32, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("uint4", s).with_details(e))
}

/// Writes an `u32` to `buf`.
pub fn format_uint32<F>(buf: &mut F, u: u32) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", u);
    Nestable::Yes
}

/// Parses an `u64` from `s`.
pub fn parse_uint64(s: &str) -> Result<u64, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("uint8", s).with_details(e))
}

/// Writes an `u64` to `buf`.
pub fn format_uint64<F>(buf: &mut F, u: u64) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", u);
    Nestable::Yes
}

/// Parses an `mz_timestamp` from `s`.
pub fn parse_mz_timestamp(s: &str) -> Result<crate::Timestamp, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("mz_timestamp", s).with_details(e))
}

/// Writes an `mz_timestamp` to `buf`.
pub fn format_mz_timestamp<F>(buf: &mut F, u: crate::Timestamp) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", u);
    Nestable::Yes
}

/// Parses an OID from `s`.
pub fn parse_oid(s: &str) -> Result<u32, ParseError> {
    // For historical reasons in PostgreSQL, OIDs are parsed as `i32`s and then
    // reinterpreted as `u32`s.
    //
    // Do not use this as a model for behavior in other contexts. OIDs should
    // not in general be thought of as freely convertible from `i32`s.
    let oid: i32 = s
        .trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("oid", s).with_details(e))?;
    Ok(u32::reinterpret_cast(oid))
}

fn parse_float<Fl>(type_name: &'static str, s: &str) -> Result<Fl, ParseError>
where
    Fl: NumFloat + FastFloat,
{
    // Matching PostgreSQL's float parsing behavior is tricky. PostgreSQL's
    // implementation delegates almost entirely to strtof(3)/strtod(3), which
    // will report an out-of-range error if a number was rounded to zero or
    // infinity. For example, parsing "1e70" as a 32-bit float will yield an
    // out-of-range error because it is rounded to infinity, but parsing an
    // explicitly-specified "inf" will yield infinity without an error.
    //
    // To @benesch's knowledge, there is no Rust implementation of float parsing
    // that reports whether underflow or overflow occurred. So we figure it out
    // ourselves after the fact. If fast_float returns infinity and the input
    // was not an explicitly-specified infinity, then we know overflow occurred.
    // If fast_float returns zero and the input was not an explicitly-specified
    // zero, then we know underflow occurred.

    // Matches `0`, `-0`, `+0`, `000000.00000`, `0.0e10`, 0., .0, et al.
    static ZERO_RE: Lazy<Regex> =
        Lazy::new(|| Regex::new(r#"(?i-u)^[-+]?(0+(\.0*)?|\.0+)(e|$)"#).unwrap());
    // Matches `inf`, `-inf`, `+inf`, `infinity`, et al.
    static INF_RE: Lazy<Regex> = Lazy::new(|| Regex::new("(?i-u)^[-+]?inf").unwrap());

    let buf = s.trim().as_bytes();
    let f: Fl =
        fast_float::parse(buf).map_err(|_| ParseError::invalid_input_syntax(type_name, s))?;
    match f.classify() {
        FpCategory::Infinite if !INF_RE.is_match(buf) => {
            Err(ParseError::out_of_range(type_name, s))
        }
        FpCategory::Zero if !ZERO_RE.is_match(buf) => Err(ParseError::out_of_range(type_name, s)),
        _ => Ok(f),
    }
}

fn format_float<F, Fl>(buf: &mut F, f: Fl) -> Nestable
where
    F: FormatBuffer,
    Fl: NumFloat + RyuFloat,
{
    // Use ryu rather than the standard library. ryu uses scientific notation
    // when possible, which better matches PostgreSQL. The standard library's
    // `ToString` implementations print all available digits, which is rather
    // verbose.
    //
    // Note that we have to fix up ryu's formatting in a few cases to match
    // PostgreSQL. PostgreSQL spells out "Infinity" in full, never emits a
    // trailing ".0", formats positive exponents as e.g. "1e+10" rather than
    // "1e10", and emits a negative sign for negative zero. If we need to speed
    // up float formatting, we can look into forking ryu and making these edits
    // directly, but for now it doesn't seem worth it.

    match f.classify() {
        FpCategory::Infinite if f.is_sign_negative() => buf.write_str("-Infinity"),
        FpCategory::Infinite => buf.write_str("Infinity"),
        FpCategory::Nan => buf.write_str("NaN"),
        FpCategory::Zero if f.is_sign_negative() => buf.write_str("-0"),
        _ => {
            debug_assert!(f.is_finite());
            let mut ryu_buf = ryu::Buffer::new();
            let mut s = ryu_buf.format_finite(f);
            if let Some(trimmed) = s.strip_suffix(".0") {
                s = trimmed;
            }
            let mut chars = s.chars().peekable();
            while let Some(ch) = chars.next() {
                buf.write_char(ch);
                if ch == 'e' && chars.peek() != Some(&'-') {
                    buf.write_char('+');
                }
            }
        }
    }

    Nestable::Yes
}

/// Parses an `f32` from `s`.
pub fn parse_float32(s: &str) -> Result<f32, ParseError> {
    parse_float("real", s)
}

/// Writes an `f32` to `buf`.
pub fn format_float32<F>(buf: &mut F, f: f32) -> Nestable
where
    F: FormatBuffer,
{
    format_float(buf, f)
}

/// Parses an `f64` from `s`.
pub fn parse_float64(s: &str) -> Result<f64, ParseError> {
    parse_float("double precision", s)
}

/// Writes an `f64` to `buf`.
pub fn format_float64<F>(buf: &mut F, f: f64) -> Nestable
where
    F: FormatBuffer,
{
    format_float(buf, f)
}

/// Use the following grammar to parse `s` into:
///
/// - `NaiveDate`
/// - `NaiveTime`
/// - Timezone string
///
/// `NaiveDate` and `NaiveTime` are appropriate to compute a `NaiveDateTime`,
/// which can be used in conjunction with a timezone string to generate a
/// `DateTime<Utc>`.
///
/// ```text
/// <unquoted timestamp string> ::=
///     <date value> <space> <time value> [ <time zone interval> ]
/// <date value> ::=
///     <years value> <minus sign> <months value> <minus sign> <days value>
/// <time zone interval> ::=
///     <sign> <hours value> <colon> <minutes value>
/// ```
fn parse_timestamp_string(s: &str) -> Result<(NaiveDate, NaiveTime, Timezone), String> {
    if s.is_empty() {
        return Err("timestamp string is empty".into());
    }

    // PostgreSQL special date-time inputs
    // https://www.postgresql.org/docs/12/datatype-datetime.html#id-1.5.7.13.18.8
    // We should add support for other values here, e.g. infinity
    // which @quodlibetor is willing to add to the chrono package.
    if s == "epoch" {
        return Ok((
            NaiveDate::from_ymd_opt(1970, 1, 1).unwrap(),
            NaiveTime::from_hms_opt(0, 0, 0).unwrap(),
            Default::default(),
        ));
    }

    let (ts_string, tz_string) = datetime::split_timestamp_string(s);

    let pdt = ParsedDateTime::build_parsed_datetime_timestamp(ts_string)?;
    let d: NaiveDate = pdt.compute_date()?;
    let t: NaiveTime = pdt.compute_time()?;

    let offset = if tz_string.is_empty() {
        Default::default()
    } else {
        Timezone::parse(tz_string, TimezoneSpec::Iso)?
    };

    Ok((d, t, offset))
}

/// Parses a [`Date`] from `s`.
pub fn parse_date(s: &str) -> Result<Date, ParseError> {
    match parse_timestamp_string(s) {
        Ok((date, _, _)) => Date::try_from(date).map_err(|_| ParseError::out_of_range("date", s)),
        Err(e) => Err(ParseError::invalid_input_syntax("date", s).with_details(e)),
    }
}

/// Writes a [`Date`] to `buf`.
pub fn format_date<F>(buf: &mut F, d: Date) -> Nestable
where
    F: FormatBuffer,
{
    let d: NaiveDate = d.into();
    let (year_ad, year) = d.year_ce();
    write!(buf, "{:04}-{}", year, d.format("%m-%d"));
    if !year_ad {
        write!(buf, " BC");
    }
    Nestable::Yes
}

/// Parses a `NaiveTime` from `s`, using the following grammar.
///
/// ```text
/// <time value> ::=
///     <hours value> <colon> <minutes value> <colon> <seconds integer value>
///     [ <period> [ <seconds fraction> ] ]
/// ```
pub fn parse_time(s: &str) -> Result<NaiveTime, ParseError> {
    ParsedDateTime::build_parsed_datetime_time(s)
        .and_then(|pdt| pdt.compute_time())
        .map_err(|e| ParseError::invalid_input_syntax("time", s).with_details(e))
}

/// Writes a [`NaiveDateTime`] timestamp to `buf`.
pub fn format_time<F>(buf: &mut F, t: NaiveTime) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", t.format("%H:%M:%S"));
    format_nanos_to_micros(buf, t.nanosecond());
    Nestable::Yes
}

/// Parses a `NaiveDateTime` from `s`.
pub fn parse_timestamp(s: &str) -> Result<CheckedTimestamp<NaiveDateTime>, ParseError> {
    match parse_timestamp_string(s) {
        Ok((date, time, _)) => CheckedTimestamp::from_timestamplike(date.and_time(time))
            .map_err(|_| ParseError::out_of_range("timestamp", s)),
        Err(e) => Err(ParseError::invalid_input_syntax("timestamp", s).with_details(e)),
    }
}

/// Writes a [`NaiveDateTime`] timestamp to `buf`.
pub fn format_timestamp<F>(buf: &mut F, ts: &NaiveDateTime) -> Nestable
where
    F: FormatBuffer,
{
    let (year_ad, year) = ts.year_ce();
    write!(buf, "{:04}-{}", year, ts.format("%m-%d %H:%M:%S"));
    format_nanos_to_micros(buf, ts.timestamp_subsec_nanos());
    if !year_ad {
        write!(buf, " BC");
    }
    // This always needs escaping because of the whitespace
    Nestable::MayNeedEscaping
}

/// Parses a `DateTime<Utc>` from `s`. See `mz_expr::scalar::func::timezone_timestamp` for timezone anomaly considerations.
pub fn parse_timestamptz(s: &str) -> Result<CheckedTimestamp<DateTime<Utc>>, ParseError> {
    parse_timestamp_string(s)
        .and_then(|(date, time, timezone)| {
            use Timezone::*;
            let mut dt = date.and_time(time);
            let offset = match timezone {
                FixedOffset(offset) => offset,
                Tz(tz) => match tz.offset_from_local_datetime(&dt).latest() {
                    Some(offset) => offset.fix(),
                    None => {
                        dt += Duration::try_hours(1).unwrap();
                        tz.offset_from_local_datetime(&dt)
                            .latest()
                            .ok_or_else(|| "invalid timezone conversion".to_owned())?
                            .fix()
                    }
                },
            };
            Ok(DateTime::from_naive_utc_and_offset(dt - offset, Utc))
        })
        .map_err(|e| {
            ParseError::invalid_input_syntax("timestamp with time zone", s).with_details(e)
        })
        .and_then(|ts| {
            CheckedTimestamp::from_timestamplike(ts)
                .map_err(|_| ParseError::out_of_range("timestamp with time zone", s))
        })
}

/// Writes a [`DateTime<Utc>`] timestamp to `buf`.
pub fn format_timestamptz<F>(buf: &mut F, ts: &DateTime<Utc>) -> Nestable
where
    F: FormatBuffer,
{
    let (year_ad, year) = ts.year_ce();
    write!(buf, "{:04}-{}", year, ts.format("%m-%d %H:%M:%S"));
    format_nanos_to_micros(buf, ts.timestamp_subsec_nanos());
    write!(buf, "+00");
    if !year_ad {
        write!(buf, " BC");
    }
    // This always needs escaping because of the whitespace
    Nestable::MayNeedEscaping
}

/// parse
///
/// ```text
/// <unquoted interval string> ::=
///   [ <sign> ] { <year-month literal> | <day-time literal> }
/// <year-month literal> ::=
///     <years value> [ <minus sign> <months value> ]
///   | <months value>
/// <day-time literal> ::=
///     <day-time interval>
///   | <time interval>
/// <day-time interval> ::=
///   <days value> [ <space> <hours value> [ <colon> <minutes value>
///       [ <colon> <seconds value> ] ] ]
/// <time interval> ::=
///     <hours value> [ <colon> <minutes value> [ <colon> <seconds value> ] ]
///   | <minutes value> [ <colon> <seconds value> ]
///   | <seconds value>
/// ```
pub fn parse_interval(s: &str) -> Result<Interval, ParseError> {
    parse_interval_w_disambiguator(s, None, DateTimeField::Second)
}

/// Parse an interval string, using an optional leading precision for time (H:M:S)
/// and a specific mz_sql_parser::ast::DateTimeField to identify ambiguous elements.
/// For more information about this operation, see the documentation on
/// ParsedDateTime::build_parsed_datetime_interval.
pub fn parse_interval_w_disambiguator(
    s: &str,
    leading_time_precision: Option<DateTimeField>,
    d: DateTimeField,
) -> Result<Interval, ParseError> {
    ParsedDateTime::build_parsed_datetime_interval(s, leading_time_precision, d)
        .and_then(|pdt| pdt.compute_interval())
        .map_err(|e| ParseError::invalid_input_syntax("interval", s).with_details(e))
}

pub fn format_interval<F>(buf: &mut F, iv: Interval) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", iv);
    Nestable::MayNeedEscaping
}

pub fn parse_numeric(s: &str) -> Result<OrderedDecimal<Numeric>, ParseError> {
    let mut cx = numeric::cx_datum();
    let mut n = match cx.parse(s.trim()) {
        Ok(n) => n,
        Err(..) => {
            return Err(ParseError::invalid_input_syntax("numeric", s));
        }
    };

    let cx_status = cx.status();

    // Check for values that can only be generated by invalid syntax.
    if (n.is_infinite() && !cx_status.overflow())
        || (n.is_nan() && n.is_negative())
        || n.is_signaling_nan()
    {
        return Err(ParseError::invalid_input_syntax("numeric", s));
    }

    // Process value; only errors if value is out of range of numeric's max precision.
    let out_of_range = numeric::munge_numeric(&mut n).is_err();

    if cx_status.overflow() || cx_status.subnormal() || out_of_range {
        Err(ParseError::out_of_range("numeric", s).with_details(format!(
            "exceeds maximum precision {}",
            NUMERIC_DATUM_MAX_PRECISION
        )))
    } else {
        Ok(OrderedDecimal(n))
    }
}

pub fn format_numeric<F>(buf: &mut F, n: &OrderedDecimal<Numeric>) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", n.0.to_standard_notation_string());
    Nestable::Yes
}

pub fn format_string<F>(buf: &mut F, s: &str) -> Nestable
where
    F: FormatBuffer,
{
    buf.write_str(s);
    Nestable::MayNeedEscaping
}

pub fn parse_pg_legacy_name(s: &str) -> String {
    // To match PostgreSQL, we truncate the string to 64 bytes, while being
    // careful not to truncate in the middle of any multibyte characters.
    let mut out = String::new();
    let mut len = 0;
    for c in s.chars() {
        len += c.len_utf8();
        if len > NAME_MAX_BYTES {
            break;
        }
        out.push(c);
    }
    out
}

pub fn parse_bytes(s: &str) -> Result<Vec<u8>, ParseError> {
    // If the input starts with "\x", then the remaining bytes are hex encoded
    // [0]. Otherwise the bytes use the traditional "escape" format. [1]
    //
    // [0]: https://www.postgresql.org/docs/current/datatype-binary.html#id-1.5.7.12.9
    // [1]: https://www.postgresql.org/docs/current/datatype-binary.html#id-1.5.7.12.10
    if let Some(remainder) = s.strip_prefix(r"\x") {
        parse_bytes_hex(remainder).map_err(|e| {
            ParseError::invalid_input_syntax("bytea", s).with_details(e.to_string_with_causes())
        })
    } else {
        parse_bytes_traditional(s)
    }
}

pub fn parse_bytes_hex(s: &str) -> Result<Vec<u8>, ParseHexError> {
    // Can't use `hex::decode` here, as it doesn't tolerate whitespace
    // between encoded bytes.

    let decode_nibble = |b| match b {
        b'a'..=b'f' => Ok(b - b'a' + 10),
        b'A'..=b'F' => Ok(b - b'A' + 10),
        b'0'..=b'9' => Ok(b - b'0'),
        _ => Err(ParseHexError::InvalidHexDigit(char::from(b))),
    };

    let mut buf = vec![];
    let mut nibbles = s.as_bytes().iter().copied();
    while let Some(n) = nibbles.next() {
        if let b' ' | b'\n' | b'\t' | b'\r' = n {
            continue;
        }
        let n = decode_nibble(n)?;
        let n2 = match nibbles.next() {
            None => return Err(ParseHexError::OddLength),
            Some(n2) => decode_nibble(n2)?,
        };
        buf.push((n << 4) | n2);
    }
    Ok(buf)
}

pub fn parse_bytes_traditional(s: &str) -> Result<Vec<u8>, ParseError> {
    // Bytes are interpreted literally, save for the special escape sequences
    // "\\", which represents a single backslash, and "\NNN", where each N
    // is an octal digit, which represents the byte whose octal value is NNN.
    let mut out = Vec::new();
    let mut bytes = s.as_bytes().iter().fuse();
    while let Some(&b) = bytes.next() {
        if b != b'\\' {
            out.push(b);
            continue;
        }
        match bytes.next() {
            None => {
                return Err(ParseError::invalid_input_syntax("bytea", s)
                    .with_details("ends with escape character"))
            }
            Some(b'\\') => out.push(b'\\'),
            b => match (b, bytes.next(), bytes.next()) {
                (Some(d2 @ b'0'..=b'3'), Some(d1 @ b'0'..=b'7'), Some(d0 @ b'0'..=b'7')) => {
                    out.push(((d2 - b'0') << 6) + ((d1 - b'0') << 3) + (d0 - b'0'));
                }
                _ => {
                    return Err(ParseError::invalid_input_syntax("bytea", s)
                        .with_details("invalid escape sequence"))
                }
            },
        }
    }
    Ok(out)
}

pub fn format_bytes<F>(buf: &mut F, bytes: &[u8]) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "\\x{}", hex::encode(bytes));
    Nestable::Yes
}

pub fn parse_jsonb(s: &str) -> Result<Jsonb, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("jsonb", s).with_details(e))
}

pub fn format_jsonb<F>(buf: &mut F, jsonb: JsonbRef) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", jsonb);
    Nestable::MayNeedEscaping
}

pub fn format_jsonb_pretty<F>(buf: &mut F, jsonb: JsonbRef)
where
    F: FormatBuffer,
{
    write!(buf, "{:#}", jsonb)
}

pub fn parse_uuid(s: &str) -> Result<Uuid, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("uuid", s).with_details(e))
}

pub fn format_uuid<F>(buf: &mut F, uuid: Uuid) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{}", uuid);
    Nestable::Yes
}

fn format_nanos_to_micros<F>(buf: &mut F, nanos: u32)
where
    F: FormatBuffer,
{
    if nanos >= 500 {
        let mut micros = nanos / 1000;
        let rem = nanos % 1000;
        if rem >= 500 {
            micros += 1;
        }
        // strip trailing zeros
        let mut width = 6;
        while micros % 10 == 0 {
            width -= 1;
            micros /= 10;
        }
        write!(buf, ".{:0width$}", micros, width = width);
    }
}

#[derive(Debug, thiserror::Error)]
enum ArrayParsingError {
    #[error("Array value must start with \"{{\"")]
    OpeningBraceMissing,
    #[error("Specifying array lower bounds is not supported")]
    DimsUnsupported,
    #[error("{0}")]
    Generic(String),
    #[error("Unexpected \"{0}\" character.")]
    UnexpectedChar(char),
    #[error("Multidimensional arrays must have sub-arrays with matching dimensions.")]
    NonRectilinearDims,
    #[error("Unexpected array element.")]
    UnexpectedElement,
    #[error("Junk after closing right brace.")]
    Junk,
    #[error("Unexpected end of input.")]
    EarlyTerm,
}

impl From<String> for ArrayParsingError {
    fn from(value: String) -> Self {
        ArrayParsingError::Generic(value)
    }
}

pub fn parse_array<'a, T, E>(
    s: &'a str,
    make_null: impl FnMut() -> T,
    gen_elem: impl FnMut(Cow<'a, str>) -> Result<T, E>,
) -> Result<(Vec<T>, Vec<ArrayDimension>), ParseError>
where
    E: ToString,
{
    parse_array_inner(s, make_null, gen_elem)
        .map_err(|details| ParseError::invalid_input_syntax("array", s).with_details(details))
}

fn parse_array_inner<'a, T, E>(
    s: &'a str,
    mut make_null: impl FnMut() -> T,
    mut gen_elem: impl FnMut(Cow<'a, str>) -> Result<T, E>,
) -> Result<(Vec<T>, Vec<ArrayDimension>), ArrayParsingError>
where
    E: ToString,
{
    use ArrayParsingError::*;

    #[derive(Clone, Debug, Default)]
    struct Dimension {
        // If None, still discovering this dimension's permitted width;
        // otherwise only permits `length` elements per dimension.
        length: Option<usize>,
        // Whether this dimension has a staged element that can be committed.
        // This prevents us from accepting "empty" elements, e.g. `{1,}` or
        // `{1,,2}`.
        staged_element: bool,
        // The total number of elements committed in this dimension since it was
        // last entered. Zeroed out when exited.
        committed_element_count: usize,
    }

    #[derive(Clone, Debug, Default)]
    struct ArrayBuilder<'a> {
        // The current character we're operating from.
        current_command_char: char,
        // The dimension information, which will get turned into
        // `ArrayDimensions`.
        dimensions: Vec<Dimension>,
        // THe current dimension we're operating on.
        current_dim: usize,
        // Whether or not this array may be modified any further.
        sealed: bool,
        // The elements extracted from the input str. This is on the array
        // builder to necessitate using `insert_element` so we understand when
        // elements are staged.
        elements: Vec<Option<Cow<'a, str>>>,
    }

    impl<'a> ArrayBuilder<'a> {
        fn build(
            s: &'a str,
        ) -> Result<(Vec<Option<Cow<'a, str>>>, Vec<ArrayDimension>), ArrayParsingError> {
            let buf = &mut LexBuf::new(s);

            // TODO: support parsing array dimensions
            if buf.consume('[') {
                Err(DimsUnsupported)?;
            }

            buf.take_while(|ch| ch.is_ascii_whitespace());

            if !buf.consume('{') {
                Err(OpeningBraceMissing)?;
            }

            let mut dimensions = 1;

            loop {
                buf.take_while(|ch| ch.is_ascii_whitespace());
                if buf.consume('{') {
                    dimensions += 1;
                } else {
                    break;
                }
            }

            let mut builder = ArrayBuilder {
                current_command_char: '{',
                dimensions: vec![Dimension::default(); dimensions],
                // We enter the builder at the element-bearing dimension, which is the last
                // dimension.
                current_dim: dimensions - 1,
                sealed: false,
                elements: vec![],
            };

            let is_special_char = |c| matches!(c, '{' | '}' | ',' | '\\' | '"');
            let is_end_of_literal = |c| matches!(c, ',' | '}');

            loop {
                buf.take_while(|ch| ch.is_ascii_whitespace());

                // Filter command state from terminal states.
                match buf.next() {
                    None if builder.sealed => {
                        break;
                    }
                    None => Err(EarlyTerm)?,
                    Some(_) if builder.sealed => Err(Junk)?,
                    Some(c) => builder.current_command_char = c,
                }

                // Run command char
                match builder.current_command_char {
                    '{' => builder.enter_dim()?,
                    '}' => builder.exit_dim()?,
                    ',' => builder.commit_element(true)?,
                    c => {
                        buf.prev();
                        let s = match c {
                            '"' => Some(lex_quoted_element(buf)?),
                            _ => lex_unquoted_element(buf, is_special_char, is_end_of_literal)?,
                        };
                        builder.insert_element(s)?;
                    }
                }
            }

            if builder.elements.is_empty() {
                // Per PG, empty arrays are represented by empty dimensions
                // rather than one dimension with 0 length.
                return Ok((vec![], vec![]));
            }

            let dims = builder
                .dimensions
                .into_iter()
                .map(|dim| ArrayDimension {
                    length: dim
                        .length
                        .expect("every dimension must have its length discovered"),
                    lower_bound: 1,
                })
                .collect();

            Ok((builder.elements, dims))
        }

        /// Descend into another dimension of the array.
        fn enter_dim(&mut self) -> Result<(), ArrayParsingError> {
            let d = &mut self.dimensions[self.current_dim];
            // Cannot enter a new dimension with an uncommitted element.
            if d.staged_element {
                return Err(UnexpectedChar(self.current_command_char));
            }

            self.current_dim += 1;

            // You have exceeded the maximum dimensions.
            if self.current_dim >= self.dimensions.len() {
                return Err(NonRectilinearDims);
            }

            Ok(())
        }

        /// Insert a new element into the array, ensuring it is in the proper dimension.
        fn insert_element(&mut self, s: Option<Cow<'a, str>>) -> Result<(), ArrayParsingError> {
            // Can only insert elements into data-bearing dimension, which is
            // the last one.
            if self.current_dim != self.dimensions.len() - 1 {
                return Err(UnexpectedElement);
            }

            self.stage_element()?;

            self.elements.push(s);

            Ok(())
        }

        /// Stage an element to be committed. Only one element can be staged at
        /// a time and staged elements must be committed before moving onto the
        /// next element or leaving the dimension.
        fn stage_element(&mut self) -> Result<(), ArrayParsingError> {
            let d = &mut self.dimensions[self.current_dim];
            // Cannot stage two elements at once, i.e. previous element wasn't
            // followed by committing token (`,` or `}`).
            if d.staged_element {
                return Err(UnexpectedElement);
            }
            d.staged_element = true;
            Ok(())
        }

        /// Commit the currently staged element, which can be made optional.
        /// This ensures that each element has an appropriate terminal character
        /// after it.
        fn commit_element(&mut self, require_staged: bool) -> Result<(), ArrayParsingError> {
            let d = &mut self.dimensions[self.current_dim];
            if !d.staged_element {
                // - , requires a preceding staged element
                // - } does not require a preceding staged element only when
                //   it's the close of an empty dimension.
                return if require_staged || d.committed_element_count > 0 {
                    Err(UnexpectedChar(self.current_command_char))
                } else {
                    // This indicates that we have an empty value in this
                    // dimension and want to exit before incrementing the
                    // committed element count.
                    Ok(())
                };
            }
            d.staged_element = false;
            d.committed_element_count += 1;

            Ok(())
        }

        /// Exit the current dimension, committing any currently staged element
        /// in this dimension, and marking the interior array that this is part
        /// of as staged itself. If this is the 0th dimension, i.e. the closed
        /// brace matching the first open brace, seal the builder from further
        /// modification.
        fn exit_dim(&mut self) -> Result<(), ArrayParsingError> {
            // Commit an element of this dimension
            self.commit_element(false)?;

            let d = &mut self.dimensions[self.current_dim];

            // Ensure that the elements in this dimension conform to the expected shape.
            match d.length {
                None => d.length = Some(d.committed_element_count),
                Some(l) => {
                    if l != d.committed_element_count {
                        return Err(NonRectilinearDims);
                    }
                }
            }

            // Reset this dimension's counter in case it's re-entered.
            d.committed_element_count = 0;

            // If we closed the last dimension, this array may not be modified
            // any longer.
            if self.current_dim == 0 {
                self.sealed = true;
            } else {
                self.current_dim -= 1;
                // This object is an element of a higher dimension.
                self.stage_element()?;
            }

            Ok(())
        }
    }

    let (raw_elems, dims) = ArrayBuilder::build(s)?;

    let mut elems = Vec::with_capacity(raw_elems.len());

    let mut gen = |elem| gen_elem(elem).map_err(|e| e.to_string());

    for elem in raw_elems.into_iter() {
        elems.push(match elem {
            Some(elem) => gen(elem)?,
            None => make_null(),
        });
    }

    Ok((elems, dims))
}

pub fn parse_list<'a, T, E>(
    s: &'a str,
    is_element_type_list: bool,
    make_null: impl FnMut() -> T,
    gen_elem: impl FnMut(Cow<'a, str>) -> Result<T, E>,
) -> Result<Vec<T>, ParseError>
where
    E: ToString,
{
    parse_list_inner(s, is_element_type_list, make_null, gen_elem)
        .map_err(|details| ParseError::invalid_input_syntax("list", s).with_details(details))
}

// `parse_list_inner`'s separation from `parse_list` simplifies error handling
// by allowing subprocedures to return `String` errors.
fn parse_list_inner<'a, T, E>(
    s: &'a str,
    is_element_type_list: bool,
    mut make_null: impl FnMut() -> T,
    mut gen_elem: impl FnMut(Cow<'a, str>) -> Result<T, E>,
) -> Result<Vec<T>, String>
where
    E: ToString,
{
    let mut elems = vec![];
    let buf = &mut LexBuf::new(s);

    // Consume opening paren.
    if !buf.consume('{') {
        bail!(
            "expected '{{', found {}",
            match buf.next() {
                Some(c) => format!("{}", c),
                None => "empty string".to_string(),
            }
        )
    }

    // Simplifies calls to `gen_elem` by handling errors
    let mut gen = |elem| gen_elem(elem).map_err(|e| e.to_string());
    let is_special_char = |c| matches!(c, '{' | '}' | ',' | '\\' | '"');
    let is_end_of_literal = |c| matches!(c, ',' | '}');

    // Consume elements.
    loop {
        buf.take_while(|ch| ch.is_ascii_whitespace());
        // Check for terminals.
        match buf.next() {
            Some('}') => {
                break;
            }
            _ if elems.len() == 0 => {
                buf.prev();
            }
            Some(',') => {}
            Some(c) => bail!("expected ',' or '}}', got '{}'", c),
            None => bail!("unexpected end of input"),
        }

        buf.take_while(|ch| ch.is_ascii_whitespace());
        // Get elements.
        let elem = match buf.peek() {
            Some('"') => gen(lex_quoted_element(buf)?)?,
            Some('{') => {
                if !is_element_type_list {
                    bail!(
                        "unescaped '{{' at beginning of element; perhaps you \
                        want a nested list, e.g. '{{a}}'::text list list"
                    )
                }
                gen(lex_embedded_element(buf)?)?
            }
            Some(_) => match lex_unquoted_element(buf, is_special_char, is_end_of_literal)? {
                Some(elem) => gen(elem)?,
                None => make_null(),
            },
            None => bail!("unexpected end of input"),
        };
        elems.push(elem);
    }

    buf.take_while(|ch| ch.is_ascii_whitespace());
    if let Some(c) = buf.next() {
        bail!(
            "malformed array literal; contains '{}' after terminal '}}'",
            c
        )
    }

    Ok(elems)
}

pub fn parse_legacy_vector<'a, T, E>(
    s: &'a str,
    gen_elem: impl FnMut(Cow<'a, str>) -> Result<T, E>,
) -> Result<Vec<T>, ParseError>
where
    E: ToString,
{
    parse_legacy_vector_inner(s, gen_elem)
        .map_err(|details| ParseError::invalid_input_syntax("int2vector", s).with_details(details))
}

pub fn parse_legacy_vector_inner<'a, T, E>(
    s: &'a str,
    mut gen_elem: impl FnMut(Cow<'a, str>) -> Result<T, E>,
) -> Result<Vec<T>, String>
where
    E: ToString,
{
    let mut elems = vec![];
    let buf = &mut LexBuf::new(s);

    let mut gen = |elem| gen_elem(elem).map_err(|e| e.to_string());

    loop {
        buf.take_while(|ch| ch.is_ascii_whitespace());
        match buf.peek() {
            Some(_) => {
                let elem = buf.take_while(|ch| !ch.is_ascii_whitespace());
                elems.push(gen(elem.into())?);
            }
            None => break,
        }
    }

    Ok(elems)
}

fn lex_quoted_element<'a>(buf: &mut LexBuf<'a>) -> Result<Cow<'a, str>, String> {
    assert!(buf.consume('"'));
    let s = buf.take_while(|ch| !matches!(ch, '"' | '\\'));

    // `Cow::Borrowed` optimization for quoted strings without escapes
    if let Some('"') = buf.peek() {
        buf.next();
        return Ok(s.into());
    }

    let mut s = s.to_string();
    loop {
        match buf.next() {
            Some('\\') => match buf.next() {
                Some(c) => s.push(c),
                None => bail!("unterminated quoted string"),
            },
            Some('"') => break,
            Some(c) => s.push(c),
            None => bail!("unterminated quoted string"),
        }
    }
    Ok(s.into())
}

fn lex_embedded_element<'a>(buf: &mut LexBuf<'a>) -> Result<Cow<'a, str>, String> {
    let pos = buf.pos();
    assert!(matches!(buf.next(), Some('{')));
    let mut depth = 1;
    let mut in_escape = false;
    while depth > 0 {
        match buf.next() {
            Some('\\') => {
                buf.next(); // Next character is escaped, so ignore it
            }
            Some('"') => in_escape = !in_escape, // Begin or end escape
            Some('{') if !in_escape => depth += 1,
            Some('}') if !in_escape => depth -= 1,
            Some(_) => (),
            None => bail!("unterminated embedded element"),
        }
    }
    let s = &buf.inner()[pos..buf.pos()];
    Ok(Cow::Borrowed(s))
}

// Result of `None` indicates element is NULL.
fn lex_unquoted_element<'a>(
    buf: &mut LexBuf<'a>,
    is_special_char: impl Fn(char) -> bool,
    is_end_of_literal: impl Fn(char) -> bool,
) -> Result<Option<Cow<'a, str>>, String> {
    // first char is guaranteed to be non-whitespace
    assert!(!buf.peek().unwrap().is_ascii_whitespace());

    let s = buf.take_while(|ch| !is_special_char(ch) && !ch.is_ascii_whitespace());

    // `Cow::Borrowed` optimization for elements without special characters.
    match buf.peek() {
        Some(',') | Some('}') if !s.is_empty() => {
            return Ok(if s.to_uppercase() == "NULL" {
                None
            } else {
                Some(s.into())
            });
        }
        _ => {}
    }

    // Track whether there are any escaped characters to determine if the string
    // "NULL" should be treated as a NULL, or if it had any escaped characters
    // and should be treated as the string "NULL".
    let mut escaped_char = false;

    let mut s = s.to_string();
    // As we go, we keep track of where to truncate to in order to remove any
    // trailing whitespace.
    let mut trimmed_len = s.len();
    loop {
        match buf.next() {
            Some('\\') => match buf.next() {
                Some(c) => {
                    escaped_char = true;
                    s.push(c);
                    trimmed_len = s.len();
                }
                None => return Err("unterminated element".into()),
            },
            Some(c) if is_end_of_literal(c) => {
                // End of literal characters as the first character indicates
                // a missing element definition.
                if s.is_empty() {
                    bail!("malformed literal; missing element")
                }
                buf.prev();
                break;
            }
            Some(c) if is_special_char(c) => {
                bail!("malformed literal; must escape special character '{}'", c)
            }
            Some(c) => {
                s.push(c);
                if !c.is_ascii_whitespace() {
                    trimmed_len = s.len();
                }
            }
            None => bail!("unterminated element"),
        }
    }
    s.truncate(trimmed_len);
    Ok(if s.to_uppercase() == "NULL" && !escaped_char {
        None
    } else {
        Some(Cow::Owned(s))
    })
}

pub fn parse_map<'a, V, E>(
    s: &'a str,
    is_value_type_map: bool,
    gen_elem: impl FnMut(Option<Cow<'a, str>>) -> Result<V, E>,
) -> Result<BTreeMap<String, V>, ParseError>
where
    E: ToString,
{
    parse_map_inner(s, is_value_type_map, gen_elem)
        .map_err(|details| ParseError::invalid_input_syntax("map", s).with_details(details))
}

fn parse_map_inner<'a, V, E>(
    s: &'a str,
    is_value_type_map: bool,
    mut gen_elem: impl FnMut(Option<Cow<'a, str>>) -> Result<V, E>,
) -> Result<BTreeMap<String, V>, String>
where
    E: ToString,
{
    let mut map = BTreeMap::new();
    let buf = &mut LexBuf::new(s);

    // Consume opening paren.
    if !buf.consume('{') {
        bail!(
            "expected '{{', found {}",
            match buf.next() {
                Some(c) => format!("{}", c),
                None => "empty string".to_string(),
            }
        )
    }

    // Simplifies calls to generators by handling errors
    let gen_key = |key: Option<Cow<'a, str>>| -> Result<String, String> {
        match key {
            Some(Cow::Owned(s)) => Ok(s),
            Some(Cow::Borrowed(s)) => Ok(s.to_owned()),
            None => Err("expected key".to_owned()),
        }
    };
    let mut gen_value = |elem| gen_elem(elem).map_err(|e| e.to_string());
    let is_special_char = |c| matches!(c, '{' | '}' | ',' | '"' | '=' | '>' | '\\');
    let is_end_of_literal = |c| matches!(c, ',' | '}' | '=');

    loop {
        // Check for terminals.
        buf.take_while(|ch| ch.is_ascii_whitespace());
        match buf.next() {
            Some('}') => break,
            _ if map.len() == 0 => {
                buf.prev();
            }
            Some(',') => {}
            Some(c) => bail!("expected ',' or end of input, got '{}'", c),
            None => bail!("unexpected end of input"),
        }

        // Get key.
        buf.take_while(|ch| ch.is_ascii_whitespace());
        let key = match buf.peek() {
            Some('"') => Some(lex_quoted_element(buf)?),
            Some(_) => lex_unquoted_element(buf, is_special_char, is_end_of_literal)?,
            None => bail!("unexpected end of input"),
        };
        let key = gen_key(key)?;

        // Assert mapping arrow (=>) is present.
        buf.take_while(|ch| ch.is_ascii_whitespace());
        if !buf.consume('=') || !buf.consume('>') {
            bail!("expected =>")
        }

        // Get value.
        buf.take_while(|ch| ch.is_ascii_whitespace());
        let value = match buf.peek() {
            Some('"') => Some(lex_quoted_element(buf)?),
            Some('{') => {
                if !is_value_type_map {
                    bail!(
                        "unescaped '{{' at beginning of value; perhaps you \
                           want a nested map, e.g. '{{a=>{{a=>1}}}}'::map[text=>map[text=>int]]"
                    )
                }
                Some(lex_embedded_element(buf)?)
            }
            Some(_) => lex_unquoted_element(buf, is_special_char, is_end_of_literal)?,
            None => bail!("unexpected end of input"),
        };
        let value = gen_value(value)?;

        // Insert elements.
        map.insert(key, value);
    }
    Ok(map)
}

pub fn format_map<F, T, E>(
    buf: &mut F,
    elems: impl IntoIterator<Item = (impl AsRef<str>, T)>,
    mut format_elem: impl FnMut(MapValueWriter<F>, T) -> Result<Nestable, E>,
) -> Result<Nestable, E>
where
    F: FormatBuffer,
{
    buf.write_char('{');
    let mut elems = elems.into_iter().peekable();
    while let Some((key, value)) = elems.next() {
        // Map key values are always Strings, which always evaluate to
        // Nestable::MayNeedEscaping.
        let key_start = buf.len();
        buf.write_str(key.as_ref());
        escape_elem::<_, MapElementEscaper>(buf, key_start);

        buf.write_str("=>");

        let value_start = buf.len();
        if let Nestable::MayNeedEscaping = format_elem(MapValueWriter(buf), value)? {
            escape_elem::<_, MapElementEscaper>(buf, value_start);
        }

        if elems.peek().is_some() {
            buf.write_char(',');
        }
    }
    buf.write_char('}');
    Ok(Nestable::Yes)
}

pub fn parse_range<'a, V, E>(
    s: &'a str,
    gen_elem: impl FnMut(Cow<'a, str>) -> Result<V, E>,
) -> Result<Range<V>, ParseError>
where
    E: ToString,
{
    Ok(Range {
        inner: parse_range_inner(s, gen_elem).map_err(|details| {
            ParseError::invalid_input_syntax("range", s).with_details(details)
        })?,
    })
}

fn parse_range_inner<'a, V, E>(
    s: &'a str,
    mut gen_elem: impl FnMut(Cow<'a, str>) -> Result<V, E>,
) -> Result<Option<RangeInner<V>>, String>
where
    E: ToString,
{
    let buf = &mut LexBuf::new(s);

    buf.take_while(|ch| ch.is_ascii_whitespace());

    if buf.consume_str("empty") {
        buf.take_while(|ch| ch.is_ascii_whitespace());
        if buf.next().is_none() {
            return Ok(None);
        } else {
            bail!("Junk after \"empty\" key word.")
        }
    }

    let lower_inclusive = match buf.next() {
        Some('[') => true,
        Some('(') => false,
        _ => bail!("Missing left parenthesis or bracket."),
    };

    let lower_bound = match buf.peek() {
        Some(',') => None,
        Some(_) => {
            let v = buf.take_while(|c| !matches!(c, ','));
            let v = gen_elem(Cow::from(v)).map_err(|e| e.to_string())?;
            Some(v)
        }
        None => bail!("Unexpected end of input."),
    };

    buf.take_while(|ch| ch.is_ascii_whitespace());

    if buf.next() != Some(',') {
        bail!("Missing comma after lower bound.")
    }

    let upper_bound = match buf.peek() {
        Some(']' | ')') => None,
        Some(_) => {
            let v = buf.take_while(|c| !matches!(c, ')' | ']'));
            let v = gen_elem(Cow::from(v)).map_err(|e| e.to_string())?;
            Some(v)
        }
        None => bail!("Unexpected end of input."),
    };

    let upper_inclusive = match buf.next() {
        Some(']') => true,
        Some(')') => false,
        _ => bail!("Missing left parenthesis or bracket."),
    };

    buf.take_while(|ch| ch.is_ascii_whitespace());

    if buf.next().is_some() {
        bail!("Junk after right parenthesis or bracket.")
    }

    let range = Some(RangeInner {
        lower: RangeBound {
            inclusive: lower_inclusive,
            bound: lower_bound,
        },
        upper: RangeBound {
            inclusive: upper_inclusive,
            bound: upper_bound,
        },
    });

    Ok(range)
}

/// Writes a [`Range`] to `buf`.
pub fn format_range<F, V, E>(
    buf: &mut F,
    r: &Range<V>,
    mut format_elem: impl FnMut(RangeElementWriter<F>, Option<&V>) -> Result<Nestable, E>,
) -> Result<Nestable, E>
where
    F: FormatBuffer,
{
    let range = match &r.inner {
        None => {
            buf.write_str("empty");
            return Ok(Nestable::Yes);
        }
        Some(i) => i,
    };

    if range.lower.inclusive {
        buf.write_char('[');
    } else {
        buf.write_char('(');
    }

    let start = buf.len();
    if let Nestable::MayNeedEscaping =
        format_elem(RangeElementWriter(buf), range.lower.bound.as_ref())?
    {
        escape_elem::<_, ListElementEscaper>(buf, start);
    }

    buf.write_char(',');

    let start = buf.len();
    if let Nestable::MayNeedEscaping =
        format_elem(RangeElementWriter(buf), range.upper.bound.as_ref())?
    {
        escape_elem::<_, ListElementEscaper>(buf, start);
    }

    if range.upper.inclusive {
        buf.write_char(']');
    } else {
        buf.write_char(')');
    }

    Ok(Nestable::Yes)
}

/// A helper for `format_range` that formats a single record element.
#[derive(Debug)]
pub struct RangeElementWriter<'a, F>(&'a mut F);

impl<'a, F> RangeElementWriter<'a, F>
where
    F: FormatBuffer,
{
    /// Marks this record element as null.
    pub fn write_null(self) -> Nestable {
        // In ranges these "null" values represent infinite bounds, which are
        // not represented as values, but rather the absence of a value.
        Nestable::Yes
    }

    /// Returns a [`FormatBuffer`] into which a non-null element can be
    /// written.
    pub fn nonnull_buffer(self) -> &'a mut F {
        self.0
    }
}

pub fn format_array<F, T, E>(
    buf: &mut F,
    dims: &[ArrayDimension],
    elems: impl IntoIterator<Item = T>,
    mut format_elem: impl FnMut(ListElementWriter<F>, T) -> Result<Nestable, E>,
) -> Result<Nestable, E>
where
    F: FormatBuffer,
{
    if dims.iter().any(|dim| dim.lower_bound != 1) {
        for d in dims.iter() {
            let (lower, upper) = d.dimension_bounds();
            write!(buf, "[{}:{}]", lower, upper);
        }
        buf.write_char('=');
    }

    format_array_inner(buf, dims, &mut elems.into_iter(), &mut format_elem)?;
    Ok(Nestable::Yes)
}

pub fn format_array_inner<F, T, E>(
    buf: &mut F,
    dims: &[ArrayDimension],
    elems: &mut impl Iterator<Item = T>,
    format_elem: &mut impl FnMut(ListElementWriter<F>, T) -> Result<Nestable, E>,
) -> Result<(), E>
where
    F: FormatBuffer,
{
    if dims.is_empty() {
        buf.write_str("{}");
        return Ok(());
    }

    buf.write_char('{');
    for j in 0..dims[0].length {
        if j > 0 {
            buf.write_char(',');
        }
        if dims.len() == 1 {
            let start = buf.len();
            let elem = elems.next().unwrap();
            if let Nestable::MayNeedEscaping = format_elem(ListElementWriter(buf), elem)? {
                escape_elem::<_, ListElementEscaper>(buf, start);
            }
        } else {
            format_array_inner(buf, &dims[1..], elems, format_elem)?;
        }
    }
    buf.write_char('}');

    Ok(())
}

pub fn format_legacy_vector<F, T, E>(
    buf: &mut F,
    elems: impl IntoIterator<Item = T>,
    format_elem: impl FnMut(ListElementWriter<F>, T) -> Result<Nestable, E>,
) -> Result<Nestable, E>
where
    F: FormatBuffer,
{
    format_elems(buf, elems, format_elem, ' ')?;
    Ok(Nestable::MayNeedEscaping)
}

pub fn format_list<F, T, E>(
    buf: &mut F,
    elems: impl IntoIterator<Item = T>,
    format_elem: impl FnMut(ListElementWriter<F>, T) -> Result<Nestable, E>,
) -> Result<Nestable, E>
where
    F: FormatBuffer,
{
    buf.write_char('{');
    format_elems(buf, elems, format_elem, ',')?;
    buf.write_char('}');
    Ok(Nestable::Yes)
}

/// Writes each `elem` into `buf`, separating the elems with `sep`.
pub fn format_elems<F, T, E>(
    buf: &mut F,
    elems: impl IntoIterator<Item = T>,
    mut format_elem: impl FnMut(ListElementWriter<F>, T) -> Result<Nestable, E>,
    sep: char,
) -> Result<(), E>
where
    F: FormatBuffer,
{
    let mut elems = elems.into_iter().peekable();
    while let Some(elem) = elems.next() {
        let start = buf.len();
        if let Nestable::MayNeedEscaping = format_elem(ListElementWriter(buf), elem)? {
            escape_elem::<_, ListElementEscaper>(buf, start);
        }
        if elems.peek().is_some() {
            buf.write_char(sep)
        }
    }
    Ok(())
}

/// Writes an `mz_acl_item` to `buf`.
pub fn format_mz_acl_item<F>(buf: &mut F, mz_acl_item: MzAclItem) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{mz_acl_item}");
    Nestable::Yes
}

/// Parses an MzAclItem from `s`.
pub fn parse_mz_acl_item(s: &str) -> Result<MzAclItem, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("mz_aclitem", s).with_details(e))
}

/// Writes an `acl_item` to `buf`.
pub fn format_acl_item<F>(buf: &mut F, acl_item: AclItem) -> Nestable
where
    F: FormatBuffer,
{
    write!(buf, "{acl_item}");
    Nestable::Yes
}

/// Parses an AclItem from `s`.
pub fn parse_acl_item(s: &str) -> Result<AclItem, ParseError> {
    s.trim()
        .parse()
        .map_err(|e| ParseError::invalid_input_syntax("aclitem", s).with_details(e))
}

pub trait ElementEscaper {
    fn needs_escaping(elem: &[u8]) -> bool;
    fn escape_char(c: u8) -> u8;
}

struct ListElementEscaper;

impl ElementEscaper for ListElementEscaper {
    fn needs_escaping(elem: &[u8]) -> bool {
        elem.is_empty()
            || elem == b"NULL"
            || elem
                .iter()
                .any(|c| matches!(c, b'{' | b'}' | b',' | b'"' | b'\\') || c.is_ascii_whitespace())
    }

    fn escape_char(_: u8) -> u8 {
        b'\\'
    }
}

struct MapElementEscaper;

impl ElementEscaper for MapElementEscaper {
    fn needs_escaping(elem: &[u8]) -> bool {
        elem.is_empty()
            || elem == b"NULL"
            || elem.iter().any(|c| {
                matches!(c, b'{' | b'}' | b',' | b'"' | b'=' | b'>' | b'\\')
                    || c.is_ascii_whitespace()
            })
    }

    fn escape_char(_: u8) -> u8 {
        b'\\'
    }
}

struct RecordElementEscaper;

impl ElementEscaper for RecordElementEscaper {
    fn needs_escaping(elem: &[u8]) -> bool {
        elem.is_empty()
            || elem
                .iter()
                .any(|c| matches!(c, b'(' | b')' | b',' | b'"' | b'\\') || c.is_ascii_whitespace())
    }

    fn escape_char(c: u8) -> u8 {
        if c == b'"' {
            b'"'
        } else {
            b'\\'
        }
    }
}

/// Escapes a list, record, or map element in place.
///
/// The element must start at `start` and extend to the end of the buffer. The
/// buffer will be resized if escaping is necessary to account for the
/// additional escape characters.
///
/// The `needs_escaping` function is used to determine whether an element needs
/// to be escaped. It is provided with the bytes of each element and should
/// return whether the element needs to be escaped.
fn escape_elem<F, E>(buf: &mut F, start: usize)
where
    F: FormatBuffer,
    E: ElementEscaper,
{
    let elem = &buf.as_ref()[start..];
    if !E::needs_escaping(elem) {
        return;
    }

    // We'll need two extra bytes for the quotes at the start and end of the
    // element, plus an extra byte for each quote and backslash.
    let extras = 2 + elem.iter().filter(|b| matches!(b, b'"' | b'\\')).count();
    let orig_end = buf.len();
    let new_end = buf.len() + extras;

    // Pad the buffer to the new length. These characters will all be
    // overwritten.
    //
    // NOTE(benesch): we never read these characters, so we could instead use
    // uninitialized memory, but that's a level of unsafety I'm currently
    // uncomfortable with. The performance gain is negligible anyway.
    for _ in 0..extras {
        buf.write_char('\0');
    }

    // SAFETY: inserting ASCII characters before other ASCII characters
    // preserves UTF-8 encoding.
    let elem = unsafe { buf.as_bytes_mut() };

    // Walk the string backwards, writing characters at the new end index while
    // reading from the old end index, adding quotes at the beginning and end,
    // and adding a backslash before every backslash or quote.
    let mut wi = new_end - 1;
    elem[wi] = b'"';
    wi -= 1;
    for ri in (start..orig_end).rev() {
        elem[wi] = elem[ri];
        wi -= 1;
        if let b'\\' | b'"' = elem[ri] {
            elem[wi] = E::escape_char(elem[ri]);
            wi -= 1;
        }
    }
    elem[wi] = b'"';

    assert!(wi == start);
}

/// A helper for `format_list` that formats a single list element.
#[derive(Debug)]
pub struct ListElementWriter<'a, F>(&'a mut F);

impl<'a, F> ListElementWriter<'a, F>
where
    F: FormatBuffer,
{
    /// Marks this list element as null.
    pub fn write_null(self) -> Nestable {
        self.0.write_str("NULL");
        Nestable::Yes
    }

    /// Returns a [`FormatBuffer`] into which a non-null element can be
    /// written.
    pub fn nonnull_buffer(self) -> &'a mut F {
        self.0
    }
}

/// A helper for `format_map` that formats a single map value.
#[derive(Debug)]
pub struct MapValueWriter<'a, F>(&'a mut F);

impl<'a, F> MapValueWriter<'a, F>
where
    F: FormatBuffer,
{
    /// Marks this value element as null.
    pub fn write_null(self) -> Nestable {
        self.0.write_str("NULL");
        Nestable::Yes
    }

    /// Returns a [`FormatBuffer`] into which a non-null element can be
    /// written.
    pub fn nonnull_buffer(self) -> &'a mut F {
        self.0
    }
}

pub fn format_record<F, T, E>(
    buf: &mut F,
    elems: impl IntoIterator<Item = T>,
    mut format_elem: impl FnMut(RecordElementWriter<F>, T) -> Result<Nestable, E>,
) -> Result<Nestable, E>
where
    F: FormatBuffer,
{
    buf.write_char('(');
    let mut elems = elems.into_iter().peekable();
    while let Some(elem) = elems.next() {
        let start = buf.len();
        if let Nestable::MayNeedEscaping = format_elem(RecordElementWriter(buf), elem)? {
            escape_elem::<_, RecordElementEscaper>(buf, start);
        }
        if elems.peek().is_some() {
            buf.write_char(',')
        }
    }
    buf.write_char(')');
    Ok(Nestable::MayNeedEscaping)
}

/// A helper for `format_record` that formats a single record element.
#[derive(Debug)]
pub struct RecordElementWriter<'a, F>(&'a mut F);

impl<'a, F> RecordElementWriter<'a, F>
where
    F: FormatBuffer,
{
    /// Marks this record element as null.
    pub fn write_null(self) -> Nestable {
        Nestable::Yes
    }

    /// Returns a [`FormatBuffer`] into which a non-null element can be
    /// written.
    pub fn nonnull_buffer(self) -> &'a mut F {
        self.0
    }
}

/// An error while parsing an input as a type.
#[derive(
    Arbitrary, Ord, PartialOrd, Clone, Debug, Eq, PartialEq, Serialize, Deserialize, Hash, MzReflect,
)]
pub struct ParseError {
    pub kind: ParseErrorKind,
    pub type_name: String,
    pub input: String,
    pub details: Option<String>,
}

#[derive(
    Arbitrary,
    Ord,
    PartialOrd,
    Clone,
    Copy,
    Debug,
    Eq,
    PartialEq,
    Serialize,
    Deserialize,
    Hash,
    MzReflect,
)]
pub enum ParseErrorKind {
    OutOfRange,
    InvalidInputSyntax,
}

impl ParseError {
    // To ensure that reversing the parameters causes a compile-time error, we
    // require that `type_name` be a string literal, even though `ParseError`
    // itself stores the type name as a `String`.
    fn new<S>(kind: ParseErrorKind, type_name: &'static str, input: S) -> ParseError
    where
        S: Into<String>,
    {
        ParseError {
            kind,
            type_name: type_name.into(),
            input: input.into(),
            details: None,
        }
    }

    fn out_of_range<S>(type_name: &'static str, input: S) -> ParseError
    where
        S: Into<String>,
    {
        ParseError::new(ParseErrorKind::OutOfRange, type_name, input)
    }

    fn invalid_input_syntax<S>(type_name: &'static str, input: S) -> ParseError
    where
        S: Into<String>,
    {
        ParseError::new(ParseErrorKind::InvalidInputSyntax, type_name, input)
    }

    fn with_details<D>(mut self, details: D) -> ParseError
    where
        D: fmt::Display,
    {
        self.details = Some(details.to_string());
        self
    }
}

impl fmt::Display for ParseError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.kind {
            ParseErrorKind::OutOfRange => {
                write!(
                    f,
                    "{} is out of range for type {}",
                    self.input.quoted(),
                    self.type_name
                )?;
                if let Some(details) = &self.details {
                    write!(f, ": {}", details)?;
                }
                Ok(())
            }
            ParseErrorKind::InvalidInputSyntax => {
                write!(f, "invalid input syntax for type {}: ", self.type_name)?;
                if let Some(details) = &self.details {
                    write!(f, "{}: ", details)?;
                }
                write!(f, "{}", self.input.quoted())
            }
        }
    }
}

impl Error for ParseError {}

impl RustType<ProtoParseError> for ParseError {
    fn into_proto(&self) -> ProtoParseError {
        use proto_parse_error::*;
        use Kind::*;
        let kind = match self.kind {
            ParseErrorKind::OutOfRange => OutOfRange(()),
            ParseErrorKind::InvalidInputSyntax => InvalidInputSyntax(()),
        };
        ProtoParseError {
            kind: Some(kind),
            type_name: self.type_name.clone(),
            input: self.input.clone(),
            details: self.details.clone(),
        }
    }

    fn from_proto(proto: ProtoParseError) -> Result<Self, TryFromProtoError> {
        use proto_parse_error::Kind::*;

        if let Some(kind) = proto.kind {
            Ok(ParseError {
                kind: match kind {
                    OutOfRange(()) => ParseErrorKind::OutOfRange,
                    InvalidInputSyntax(()) => ParseErrorKind::InvalidInputSyntax,
                },
                type_name: proto.type_name,
                input: proto.input,
                details: proto.details,
            })
        } else {
            Err(TryFromProtoError::missing_field("ProtoParseError::kind"))
        }
    }
}

#[derive(
    Arbitrary,
    Ord,
    PartialOrd,
    Copy,
    Clone,
    Debug,
    Eq,
    PartialEq,
    Serialize,
    Deserialize,
    Hash,
    MzReflect,
)]
pub enum ParseHexError {
    InvalidHexDigit(char),
    OddLength,
}
impl Error for ParseHexError {}

impl fmt::Display for ParseHexError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            ParseHexError::InvalidHexDigit(c) => {
                write!(f, "invalid hexadecimal digit: \"{}\"", c.escape_default())
            }
            ParseHexError::OddLength => {
                f.write_str("invalid hexadecimal data: odd number of digits")
            }
        }
    }
}

impl RustType<ProtoParseHexError> for ParseHexError {
    fn into_proto(&self) -> ProtoParseHexError {
        use proto_parse_hex_error::*;
        use Kind::*;
        let kind = match self {
            ParseHexError::InvalidHexDigit(v) => InvalidHexDigit(v.into_proto()),
            ParseHexError::OddLength => OddLength(()),
        };
        ProtoParseHexError { kind: Some(kind) }
    }

    fn from_proto(error: ProtoParseHexError) -> Result<Self, TryFromProtoError> {
        use proto_parse_hex_error::Kind::*;
        match error.kind {
            Some(kind) => match kind {
                InvalidHexDigit(v) => Ok(ParseHexError::InvalidHexDigit(char::from_proto(v)?)),
                OddLength(()) => Ok(ParseHexError::OddLength),
            },
            None => Err(TryFromProtoError::missing_field(
                "`ProtoParseHexError::kind`",
            )),
        }
    }
}

#[cfg(test)]
mod tests {
    use mz_proto::protobuf_roundtrip;
    use proptest::prelude::*;

    use super::*;

    proptest! {
        #[mz_ore::test]
        #[cfg_attr(miri, ignore)] // too slow
        fn parse_error_protobuf_roundtrip(expect in any::<ParseError>()) {
            let actual = protobuf_roundtrip::<_, ProtoParseError>(&expect);
            assert!(actual.is_ok());
            assert_eq!(actual.unwrap(), expect);
        }
    }

    proptest! {
        #[mz_ore::test]
        #[cfg_attr(miri, ignore)] // too slow
        fn parse_hex_error_protobuf_roundtrip(expect in any::<ParseHexError>()) {
            let actual = protobuf_roundtrip::<_, ProtoParseHexError>(&expect);
            assert!(actual.is_ok());
            assert_eq!(actual.unwrap(), expect);
        }
    }

    #[mz_ore::test]
    fn test_format_nanos_to_micros() {
        let cases: Vec<(u32, &str)> = vec![
            (0, ""),
            (1, ""),
            (499, ""),
            (500, ".000001"),
            (500_000, ".0005"),
            (5_000_000, ".005"),
            // Leap second. This is possibly wrong and should maybe be reduced (nanosecond
            // % 1_000_000_000), but we are at least now aware it does this.
            (1_999_999_999, ".2"),
        ];
        for (nanos, expect) in cases {
            let mut buf = String::new();
            format_nanos_to_micros(&mut buf, nanos);
            assert_eq!(&buf, expect);
        }
    }

    #[mz_ore::test]
    fn test_parse_pg_legacy_name() {
        let s = "hello world";
        assert_eq!(s, parse_pg_legacy_name(s));

        let s = "x".repeat(63);
        assert_eq!(s, parse_pg_legacy_name(&s));

        let s = "x".repeat(64);
        assert_eq!("x".repeat(63), parse_pg_legacy_name(&s));

        // The Hebrew character Aleph (א) has a length of 2 bytes.
        let s = format!("{}{}", "x".repeat(61), "א");
        assert_eq!(s, parse_pg_legacy_name(&s));

        let s = format!("{}{}", "x".repeat(62), "א");
        assert_eq!("x".repeat(62), parse_pg_legacy_name(&s));
    }
}