mz_sql/plan/
scope.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Handles SQL's scoping rules.
//!
//! A scope spans a single SQL `Query`. Nested subqueries create new scopes.
//! Names are resolved against the innermost scope first.
//! * If a match is found, it is returned.
//! * If no matches are found, the name is resolved against the parent scope.
//! * If multiple matches are found, the name is ambiguous and we return an
//!   error to the user.
//!
//! Matching rules:
//! * `bar` will match any column in the scope named `bar`
//! * `foo.bar` will match any column in the scope named `bar` that originated
//!    from a table named `foo`.
//! * Table aliases such as `foo AS quux` replace the old table name.
//! * Functions create unnamed columns, which can be named with columns aliases
//!   `(bar + 1) as more_bar`.
//!
//! Additionally, most databases fold some form of CSE into name resolution so
//! that eg `SELECT sum(x) FROM foo GROUP BY sum(x)` would be treated something
//! like `SELECT "sum(x)" FROM foo GROUP BY sum(x) AS "sum(x)"` rather than
//! failing to resolve `x`. We handle this by including the underlying
//! `sql_parser::ast::Expr` in cases where this is possible.
//!
//! Many SQL expressions do strange and arbitrary things to scopes. Rather than
//! try to capture them all here, we just expose the internals of `Scope` and
//! handle it in the appropriate place in `super::query`.
//!
//! NOTE(benesch): The above approach of exposing scope's internals to the
//! entire planner has not aged well. SQL scopes are now full of undocumented
//! assumptions and requirements, since various subcomponents of the planner
//! shove data into scope items to communicate with subcomponents a mile away.
//! I've tried to refactor this code several times to no avail. It works better
//! than you might expect. But you have been warned. Tread carefully!

use std::collections::BTreeSet;
use std::iter;

use mz_ore::iter::IteratorExt;
use mz_repr::ColumnName;

use crate::ast::Expr;
use crate::names::{Aug, PartialItemName};
use crate::plan::error::PlanError;
use crate::plan::expr::ColumnRef;
use crate::plan::plan_utils::JoinSide;

#[derive(Debug, Clone)]
pub struct ScopeItem {
    /// The name of the table that produced this scope item, if any.
    pub table_name: Option<PartialItemName>,
    /// The name of the column.
    pub column_name: ColumnName,
    /// The expressions from which this scope item is derived. Used by `GROUP
    /// BY`.
    pub exprs: BTreeSet<Expr<Aug>>,
    /// Whether the column is the return value of a function that produces only
    /// a single column. This accounts for a strange PostgreSQL special case
    /// around whole-row expansion.
    pub from_single_column_function: bool,
    /// Controls whether the column is only accessible via a table-qualified
    /// reference. When false, the scope item is also excluded from `SELECT *`.
    ///
    /// This should be true for almost all scope items. It is set to false for
    /// join columns in USING constraints. For example, in `t1 FULL JOIN t2
    /// USING a`, `t1.a` and `t2.a` are still available by fully-qualified
    /// reference, but a bare `a` refers to a new column whose value is
    /// `coalesce(t1.a, t2.a)`. This is a big special case because normally
    /// having three columns in scope named `a` would result in "ambiguous
    /// column reference" errors.
    pub allow_unqualified_references: bool,
    /// If set, any attempt to reference this item will return the error
    /// produced by this function.
    ///
    /// The function is provided with the table and column name in the
    /// reference. It should return a `PlanError` describing why the reference
    /// is invalid.
    ///
    /// This is useful for preventing access to certain columns in specific
    /// contexts, like columns that are on the wrong side of a `LATERAL` join.
    pub error_if_referenced: Option<fn(Option<&PartialItemName>, &ColumnName) -> PlanError>,
    /// For table functions in scalar positions, this flag is true for the
    /// ordinality column. If true, then this column represents an "exists" flag
    /// for the entire row of the table function. In that case, this column must
    /// be excluded from `*` expansion. If the corresponding datum is `NULL`, then
    /// `*` expansion should yield a single `NULL` instead of a record with various
    /// datums.
    pub is_exists_column_for_a_table_function_that_was_in_the_target_list: bool,
    // Force use of the constructor methods.
    _private: (),
}

/// An ungrouped column in a scope.
///
/// We can't simply drop these items from scope. These items need to *exist*
/// because they might shadow variables in outer scopes that would otherwise be
/// valid to reference, but accessing them needs to produce an error.
#[derive(Debug, Clone)]
pub struct ScopeUngroupedColumn {
    /// The name of the table that produced this ungrouped column, if any.
    pub table_name: Option<PartialItemName>,
    /// The name of the ungrouped column.
    pub column_name: ColumnName,
    /// Whether the original scope item allowed unqualified references.
    pub allow_unqualified_references: bool,
}

#[derive(Debug, Clone)]
pub struct Scope {
    /// The items in this scope.
    pub items: Vec<ScopeItem>,
    /// The ungrouped columns in the scope.
    pub ungrouped_columns: Vec<ScopeUngroupedColumn>,
    // Whether this scope starts a new chain of lateral outer scopes.
    //
    // It's easiest to understand with an example. Consider this query:
    //
    //     SELECT (SELECT * FROM tab1, tab2, (SELECT tab1.a, tab3.a)) FROM tab3, tab4
    //     Scope 1:                          ------------------------
    //     Scope 2:                    ----
    //     Scope 3:              ----
    //     Scope 4:                                                              ----
    //     Scope 5:                                                        ----
    //
    // Note that the because the derived table is not marked `LATERAL`, its
    // reference to `tab3.a` is valid but its reference to `tab1.a` is not.
    //
    // Scope 5 is the parent of scope 4, scope 4 is the parent of scope 3, and
    // so on. The non-lateral derived table is not allowed to access scopes 2
    // and 3, because they are part of the same lateral chain, but it *is*
    // allowed to access scope 4 and 5. So, to capture this information, we set
    // `lateral_barrier: true` for scope 4.
    pub lateral_barrier: bool,
}

impl ScopeItem {
    pub fn empty() -> ScopeItem {
        ScopeItem {
            table_name: None,
            column_name: "?column?".into(),
            exprs: BTreeSet::new(),
            from_single_column_function: false,
            allow_unqualified_references: true,
            error_if_referenced: None,
            is_exists_column_for_a_table_function_that_was_in_the_target_list: false,
            _private: (),
        }
    }

    /// Constructs a new scope item from an unqualified column name.
    pub fn from_column_name<N>(column_name: N) -> ScopeItem
    where
        N: Into<ColumnName>,
    {
        ScopeItem::from_name(None, column_name.into())
    }

    /// Constructs a new scope item from a name.
    pub fn from_name<N>(table_name: Option<PartialItemName>, column_name: N) -> ScopeItem
    where
        N: Into<ColumnName>,
    {
        let mut item = ScopeItem::empty();
        item.table_name = table_name;
        item.column_name = column_name.into();
        item
    }

    /// Constructs a new scope item with no name from an expression.
    pub fn from_expr(expr: impl Into<Option<Expr<Aug>>>) -> ScopeItem {
        let mut item = ScopeItem::empty();
        if let Some(expr) = expr.into() {
            item.exprs.insert(expr);
        }
        item
    }

    pub fn is_from_table(&self, table_name: &PartialItemName) -> bool {
        match &self.table_name {
            None => false,
            Some(n) => n.matches(table_name),
        }
    }
}

impl Scope {
    pub fn empty() -> Self {
        Scope {
            items: vec![],
            ungrouped_columns: vec![],
            lateral_barrier: false,
        }
    }

    pub fn from_source<I, N>(table_name: Option<PartialItemName>, column_names: I) -> Self
    where
        I: IntoIterator<Item = N>,
        N: Into<ColumnName>,
    {
        let mut scope = Scope::empty();
        scope.items = column_names
            .into_iter()
            .map(|column_name| ScopeItem::from_name(table_name.clone(), column_name.into()))
            .collect();
        scope
    }

    /// Constructs an iterator over the canonical name for each column.
    pub fn column_names(&self) -> impl Iterator<Item = &ColumnName> {
        self.items.iter().map(|item| &item.column_name)
    }

    pub fn len(&self) -> usize {
        self.items.len()
    }

    /// Iterates over all items in the scope.
    ///
    /// Items are returned in order of preference, where the innermost scope has
    /// the highest preference. For example, given scopes `A(B(C))`, items are
    /// presented in the order `C`, `B`, `A`.
    ///
    /// Items are returned alongside the column reference that targets that item
    /// and the item's "lateral level". The latter bears explaining. The lateral
    /// level is the number of lateral barriers between this scope and the item.
    /// See `Scope::lateral_barrier` for a diagram. Roughly speaking, items from
    /// different levels but the same lateral level are items from different
    /// joins in the same subquery, while items in different lateral levels are
    /// items from different queries entirely. Rules about ambiguity apply
    /// within an entire lateral level, not just within a single scope level.
    ///
    /// NOTE(benesch): Scope` really shows its weaknesses here. Ideally we'd
    /// have separate types like `QueryScope` and `JoinScope` that more
    /// naturally encode the concept of a "lateral level", or at least something
    /// along those lines.
    fn all_items<'a>(
        &'a self,
        outer_scopes: &'a [Scope],
    ) -> impl Iterator<Item = ScopeCursor<'a>> + 'a {
        let mut lat_level = 0;
        iter::once(self)
            .chain(outer_scopes)
            .enumerate()
            .flat_map(move |(level, scope)| {
                if scope.lateral_barrier {
                    lat_level += 1;
                }
                let items = scope
                    .items
                    .iter()
                    .enumerate()
                    .map(move |(column, item)| ScopeCursor {
                        lat_level,
                        inner: ScopeCursorInner::Item {
                            column: ColumnRef { level, column },
                            item,
                        },
                    });
                let ungrouped_columns = scope.ungrouped_columns.iter().map(move |uc| ScopeCursor {
                    lat_level,
                    inner: ScopeCursorInner::UngroupedColumn(uc),
                });
                items.chain(ungrouped_columns)
            })
    }

    /// Returns all items from the given table name in the closest scope.
    ///
    /// If no tables with the given name are in scope, returns an empty
    /// iterator.
    ///
    /// NOTE(benesch): This is wrong for zero-arity relations, because we can't
    /// distinguish between "no such table" and a table that exists but has no
    /// columns. The current design of scope makes this difficult to fix,
    /// unfortunately.
    pub fn items_from_table<'a>(
        &'a self,
        outer_scopes: &'a [Scope],
        table: &PartialItemName,
    ) -> Result<Vec<(ColumnRef, &'a ScopeItem)>, PlanError> {
        let mut seen_level = None;
        let items: Vec<_> = self
            .all_items(outer_scopes)
            .filter_map(move |c| match c.inner {
                ScopeCursorInner::Item { column, item }
                    if item.is_from_table(table)
                        && *seen_level.get_or_insert(c.lat_level) == c.lat_level =>
                {
                    Some((column, item))
                }
                _ => None,
            })
            .collect();
        if !items.iter().map(|(column, _)| column.level).all_equal() {
            return Err(PlanError::AmbiguousTable(table.clone()));
        }
        Ok(items)
    }

    /// Returns a matching [`ColumnRef`], if one exists.
    ///
    /// Filters all visible items against the provided `matches` closure, and then matches this
    /// filtered set against the provided `column_name`.
    fn resolve_internal<'a, M>(
        &'a self,
        outer_scopes: &[Scope],
        mut matches: M,
        table_name: Option<&PartialItemName>,
        column_name: &ColumnName,
    ) -> Result<ColumnRef, PlanError>
    where
        M: FnMut(&ScopeCursor) -> bool,
    {
        let mut results = self
            .all_items(outer_scopes)
            .filter(|c| (matches)(c) && c.column_name() == column_name);
        match results.next() {
            None => {
                let similar = self
                    .all_items(outer_scopes)
                    .filter(|c| (matches)(c))
                    .filter_map(|c| {
                        c.column_name()
                            .is_similar(column_name)
                            .then(|| c.column_name().clone())
                    })
                    .collect();
                Err(PlanError::UnknownColumn {
                    table: table_name.cloned(),
                    column: column_name.clone(),
                    similar,
                })
            }
            Some(c) => {
                if let Some(ambiguous) = results.find(|c2| c.lat_level == c2.lat_level) {
                    if let Some(table_name) = table_name {
                        if let (
                            ScopeCursorInner::Item {
                                column: ColumnRef { level: c_level, .. },
                                ..
                            },
                            ScopeCursorInner::Item {
                                column:
                                    ColumnRef {
                                        level: ambiguous_level,
                                        ..
                                    },
                                ..
                            },
                        ) = (c.inner, ambiguous.inner)
                        {
                            // ColumnRefs with identical levels indicate multiple columns of the
                            // same name in relation. If the levels differ then it is instead two
                            // tables with the same name, both having a column with this name.
                            if c_level == ambiguous_level {
                                return Err(PlanError::AmbiguousColumn(column_name.clone()));
                            }
                        }
                        return Err(PlanError::AmbiguousTable(table_name.clone()));
                    } else {
                        return Err(PlanError::AmbiguousColumn(column_name.clone()));
                    }
                }

                match c.inner {
                    ScopeCursorInner::UngroupedColumn(uc) => Err(PlanError::UngroupedColumn {
                        table: uc.table_name.clone(),
                        column: uc.column_name.clone(),
                    }),
                    ScopeCursorInner::Item { column, item } => {
                        if let Some(error_if_referenced) = item.error_if_referenced {
                            return Err(error_if_referenced(table_name, column_name));
                        }
                        Ok(column)
                    }
                }
            }
        }
    }

    /// Resolves references to a column name to a single column, or errors if
    /// multiple columns are equally valid references.
    pub fn resolve_column<'a>(
        &'a self,
        outer_scopes: &[Scope],
        column_name: &ColumnName,
    ) -> Result<ColumnRef, PlanError> {
        let table_name = None;
        self.resolve_internal(
            outer_scopes,
            |c| c.allow_unqualified_references(),
            table_name,
            column_name,
        )
    }

    /// Resolves a column name in a `USING` clause.
    pub fn resolve_using_column(
        &self,
        column_name: &ColumnName,
        join_side: JoinSide,
    ) -> Result<ColumnRef, PlanError> {
        self.resolve_column(&[], column_name).map_err(|e| match e {
            // Attach a bit more context to unknown and ambiguous column
            // errors to match PostgreSQL.
            PlanError::AmbiguousColumn(column) => {
                PlanError::AmbiguousColumnInUsingClause { column, join_side }
            }
            PlanError::UnknownColumn { column, .. } => {
                PlanError::UnknownColumnInUsingClause { column, join_side }
            }
            _ => e,
        })
    }

    pub fn resolve_table_column<'a>(
        &'a self,
        outer_scopes: &[Scope],
        table_name: &PartialItemName,
        column_name: &ColumnName,
    ) -> Result<ColumnRef, PlanError> {
        let mut seen_at_level = None;
        self.resolve_internal(
            outer_scopes,
            |c| {
                // Once we've matched a table name at a lateral level, even if
                // the column name did not match, we can never match an item
                // from another lateral level.
                if let Some(seen_at_level) = seen_at_level {
                    if seen_at_level != c.lat_level {
                        return false;
                    }
                }
                if c.table_name().as_ref().map(|n| n.matches(table_name)) == Some(true) {
                    seen_at_level = Some(c.lat_level);
                    true
                } else {
                    false
                }
            },
            Some(table_name),
            column_name,
        )
    }

    pub fn resolve<'a>(
        &'a self,
        outer_scopes: &[Scope],
        table_name: Option<&PartialItemName>,
        column_name: &ColumnName,
    ) -> Result<ColumnRef, PlanError> {
        match table_name {
            None => self.resolve_column(outer_scopes, column_name),
            Some(table_name) => self.resolve_table_column(outer_scopes, table_name, column_name),
        }
    }

    /// Look to see if there is an already-calculated instance of this expr.
    /// Failing to find one is not an error, so this just returns Option
    pub fn resolve_expr<'a>(&'a self, expr: &Expr<Aug>) -> Option<ColumnRef> {
        // Literal values should not be treated as "cached" because their types
        // in scope will have already been determined, but the type of the
        // reoccurence of the expr might want to have a different type.
        //
        // This is most evident in the case of literal `NULL` values. The first
        // occurrence is likely to be cast as `ScalarType::String`, but
        // subsequent `NULL` values should be untyped.
        if matches!(expr, Expr::Value(_)) {
            return None;
        }

        self.items
            .iter()
            .enumerate()
            .find(|(_, item)| item.exprs.contains(expr))
            .map(|(i, _)| ColumnRef {
                level: 0,
                column: i,
            })
    }

    pub fn product(self, right: Self) -> Result<Self, PlanError> {
        let mut l_tables = self.table_names().into_iter().collect::<Vec<_>>();
        // Make ordering deterministic for testing
        l_tables.sort_by(|l, r| l.item.cmp(&r.item));
        let r_tables = right.table_names();
        for l in l_tables {
            for r in &r_tables {
                if l.matches(r) {
                    sql_bail!("table name \"{}\" specified more than once", l.item)
                }
            }
        }
        Ok(Scope {
            items: self.items.into_iter().chain(right.items).collect(),
            ungrouped_columns: vec![],
            lateral_barrier: false,
        })
    }

    pub fn project(&self, columns: &[usize]) -> Self {
        Scope {
            items: columns.iter().map(|&i| self.items[i].clone()).collect(),
            ungrouped_columns: vec![],
            lateral_barrier: false,
        }
    }

    pub fn table_names(&self) -> BTreeSet<&PartialItemName> {
        self.items
            .iter()
            .filter_map(|name| name.table_name.as_ref())
            .collect::<BTreeSet<&PartialItemName>>()
    }
}

/// A pointer to a scope item or an ungrouped column along side its lateral
/// level. Used internally while iterating.
#[derive(Debug, Clone)]
struct ScopeCursor<'a> {
    lat_level: usize,
    inner: ScopeCursorInner<'a>,
}

#[derive(Debug, Clone)]
enum ScopeCursorInner<'a> {
    Item {
        column: ColumnRef,
        item: &'a ScopeItem,
    },
    UngroupedColumn(&'a ScopeUngroupedColumn),
}

impl ScopeCursor<'_> {
    fn table_name(&self) -> Option<&PartialItemName> {
        match &self.inner {
            ScopeCursorInner::Item { item, .. } => item.table_name.as_ref(),
            ScopeCursorInner::UngroupedColumn(uc) => uc.table_name.as_ref(),
        }
    }

    fn column_name(&self) -> &ColumnName {
        match &self.inner {
            ScopeCursorInner::Item { item, .. } => &item.column_name,
            ScopeCursorInner::UngroupedColumn(uc) => &uc.column_name,
        }
    }

    fn allow_unqualified_references(&self) -> bool {
        match &self.inner {
            ScopeCursorInner::Item { item, .. } => item.allow_unqualified_references,
            ScopeCursorInner::UngroupedColumn(uc) => uc.allow_unqualified_references,
        }
    }
}