mz_sql/plan/scope.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Handles SQL's scoping rules.
//!
//! A scope spans a single SQL `Query`. Nested subqueries create new scopes.
//! Names are resolved against the innermost scope first.
//! * If a match is found, it is returned.
//! * If no matches are found, the name is resolved against the parent scope.
//! * If multiple matches are found, the name is ambiguous and we return an
//! error to the user.
//!
//! Matching rules:
//! * `bar` will match any column in the scope named `bar`
//! * `foo.bar` will match any column in the scope named `bar` that originated
//! from a table named `foo`.
//! * Table aliases such as `foo AS quux` replace the old table name.
//! * Functions create unnamed columns, which can be named with columns aliases
//! `(bar + 1) as more_bar`.
//!
//! Additionally, most databases fold some form of CSE into name resolution so
//! that eg `SELECT sum(x) FROM foo GROUP BY sum(x)` would be treated something
//! like `SELECT "sum(x)" FROM foo GROUP BY sum(x) AS "sum(x)"` rather than
//! failing to resolve `x`. We handle this by including the underlying
//! `sql_parser::ast::Expr` in cases where this is possible.
//!
//! Many SQL expressions do strange and arbitrary things to scopes. Rather than
//! try to capture them all here, we just expose the internals of `Scope` and
//! handle it in the appropriate place in `super::query`.
//!
//! NOTE(benesch): The above approach of exposing scope's internals to the
//! entire planner has not aged well. SQL scopes are now full of undocumented
//! assumptions and requirements, since various subcomponents of the planner
//! shove data into scope items to communicate with subcomponents a mile away.
//! I've tried to refactor this code several times to no avail. It works better
//! than you might expect. But you have been warned. Tread carefully!
use std::collections::BTreeSet;
use std::iter;
use mz_ore::iter::IteratorExt;
use mz_repr::ColumnName;
use crate::ast::Expr;
use crate::names::{Aug, PartialItemName};
use crate::plan::error::PlanError;
use crate::plan::expr::ColumnRef;
use crate::plan::plan_utils::JoinSide;
#[derive(Debug, Clone)]
pub struct ScopeItem {
/// The name of the table that produced this scope item, if any.
pub table_name: Option<PartialItemName>,
/// The name of the column.
pub column_name: ColumnName,
/// The expressions from which this scope item is derived. Used by `GROUP
/// BY`.
pub exprs: BTreeSet<Expr<Aug>>,
/// Whether the column is the return value of a function that produces only
/// a single column. This accounts for a strange PostgreSQL special case
/// around whole-row expansion.
pub from_single_column_function: bool,
/// Controls whether the column is only accessible via a table-qualified
/// reference. When false, the scope item is also excluded from `SELECT *`.
///
/// This should be true for almost all scope items. It is set to false for
/// join columns in USING constraints. For example, in `t1 FULL JOIN t2
/// USING a`, `t1.a` and `t2.a` are still available by fully-qualified
/// reference, but a bare `a` refers to a new column whose value is
/// `coalesce(t1.a, t2.a)`. This is a big special case because normally
/// having three columns in scope named `a` would result in "ambiguous
/// column reference" errors.
pub allow_unqualified_references: bool,
/// If set, any attempt to reference this item will return the error
/// produced by this function.
///
/// The function is provided with the table and column name in the
/// reference. It should return a `PlanError` describing why the reference
/// is invalid.
///
/// This is useful for preventing access to certain columns in specific
/// contexts, like columns that are on the wrong side of a `LATERAL` join.
pub error_if_referenced: Option<fn(Option<&PartialItemName>, &ColumnName) -> PlanError>,
/// For table functions in scalar positions, this flag is true for the
/// ordinality column. If true, then this column represents an "exists" flag
/// for the entire row of the table function. In that case, this column must
/// be excluded from `*` expansion. If the corresponding datum is `NULL`, then
/// `*` expansion should yield a single `NULL` instead of a record with various
/// datums.
pub is_exists_column_for_a_table_function_that_was_in_the_target_list: bool,
// Force use of the constructor methods.
_private: (),
}
/// An ungrouped column in a scope.
///
/// We can't simply drop these items from scope. These items need to *exist*
/// because they might shadow variables in outer scopes that would otherwise be
/// valid to reference, but accessing them needs to produce an error.
#[derive(Debug, Clone)]
pub struct ScopeUngroupedColumn {
/// The name of the table that produced this ungrouped column, if any.
pub table_name: Option<PartialItemName>,
/// The name of the ungrouped column.
pub column_name: ColumnName,
/// Whether the original scope item allowed unqualified references.
pub allow_unqualified_references: bool,
}
#[derive(Debug, Clone)]
pub struct Scope {
/// The items in this scope.
pub items: Vec<ScopeItem>,
/// The ungrouped columns in the scope.
pub ungrouped_columns: Vec<ScopeUngroupedColumn>,
// Whether this scope starts a new chain of lateral outer scopes.
//
// It's easiest to understand with an example. Consider this query:
//
// SELECT (SELECT * FROM tab1, tab2, (SELECT tab1.a, tab3.a)) FROM tab3, tab4
// Scope 1: ------------------------
// Scope 2: ----
// Scope 3: ----
// Scope 4: ----
// Scope 5: ----
//
// Note that the because the derived table is not marked `LATERAL`, its
// reference to `tab3.a` is valid but its reference to `tab1.a` is not.
//
// Scope 5 is the parent of scope 4, scope 4 is the parent of scope 3, and
// so on. The non-lateral derived table is not allowed to access scopes 2
// and 3, because they are part of the same lateral chain, but it *is*
// allowed to access scope 4 and 5. So, to capture this information, we set
// `lateral_barrier: true` for scope 4.
pub lateral_barrier: bool,
}
impl ScopeItem {
pub fn empty() -> ScopeItem {
ScopeItem {
table_name: None,
column_name: "?column?".into(),
exprs: BTreeSet::new(),
from_single_column_function: false,
allow_unqualified_references: true,
error_if_referenced: None,
is_exists_column_for_a_table_function_that_was_in_the_target_list: false,
_private: (),
}
}
/// Constructs a new scope item from an unqualified column name.
pub fn from_column_name<N>(column_name: N) -> ScopeItem
where
N: Into<ColumnName>,
{
ScopeItem::from_name(None, column_name.into())
}
/// Constructs a new scope item from a name.
pub fn from_name<N>(table_name: Option<PartialItemName>, column_name: N) -> ScopeItem
where
N: Into<ColumnName>,
{
let mut item = ScopeItem::empty();
item.table_name = table_name;
item.column_name = column_name.into();
item
}
/// Constructs a new scope item with no name from an expression.
pub fn from_expr(expr: impl Into<Option<Expr<Aug>>>) -> ScopeItem {
let mut item = ScopeItem::empty();
if let Some(expr) = expr.into() {
item.exprs.insert(expr);
}
item
}
pub fn is_from_table(&self, table_name: &PartialItemName) -> bool {
match &self.table_name {
None => false,
Some(n) => n.matches(table_name),
}
}
}
impl Scope {
pub fn empty() -> Self {
Scope {
items: vec![],
ungrouped_columns: vec![],
lateral_barrier: false,
}
}
pub fn from_source<I, N>(table_name: Option<PartialItemName>, column_names: I) -> Self
where
I: IntoIterator<Item = N>,
N: Into<ColumnName>,
{
let mut scope = Scope::empty();
scope.items = column_names
.into_iter()
.map(|column_name| ScopeItem::from_name(table_name.clone(), column_name.into()))
.collect();
scope
}
/// Constructs an iterator over the canonical name for each column.
pub fn column_names(&self) -> impl Iterator<Item = &ColumnName> {
self.items.iter().map(|item| &item.column_name)
}
pub fn len(&self) -> usize {
self.items.len()
}
/// Iterates over all items in the scope.
///
/// Items are returned in order of preference, where the innermost scope has
/// the highest preference. For example, given scopes `A(B(C))`, items are
/// presented in the order `C`, `B`, `A`.
///
/// Items are returned alongside the column reference that targets that item
/// and the item's "lateral level". The latter bears explaining. The lateral
/// level is the number of lateral barriers between this scope and the item.
/// See `Scope::lateral_barrier` for a diagram. Roughly speaking, items from
/// different levels but the same lateral level are items from different
/// joins in the same subquery, while items in different lateral levels are
/// items from different queries entirely. Rules about ambiguity apply
/// within an entire lateral level, not just within a single scope level.
///
/// NOTE(benesch): Scope` really shows its weaknesses here. Ideally we'd
/// have separate types like `QueryScope` and `JoinScope` that more
/// naturally encode the concept of a "lateral level", or at least something
/// along those lines.
fn all_items<'a>(
&'a self,
outer_scopes: &'a [Scope],
) -> impl Iterator<Item = ScopeCursor<'a>> + 'a {
let mut lat_level = 0;
iter::once(self)
.chain(outer_scopes)
.enumerate()
.flat_map(move |(level, scope)| {
if scope.lateral_barrier {
lat_level += 1;
}
let items = scope
.items
.iter()
.enumerate()
.map(move |(column, item)| ScopeCursor {
lat_level,
inner: ScopeCursorInner::Item {
column: ColumnRef { level, column },
item,
},
});
let ungrouped_columns = scope.ungrouped_columns.iter().map(move |uc| ScopeCursor {
lat_level,
inner: ScopeCursorInner::UngroupedColumn(uc),
});
items.chain(ungrouped_columns)
})
}
/// Returns all items from the given table name in the closest scope.
///
/// If no tables with the given name are in scope, returns an empty
/// iterator.
///
/// NOTE(benesch): This is wrong for zero-arity relations, because we can't
/// distinguish between "no such table" and a table that exists but has no
/// columns. The current design of scope makes this difficult to fix,
/// unfortunately.
pub fn items_from_table<'a>(
&'a self,
outer_scopes: &'a [Scope],
table: &PartialItemName,
) -> Result<Vec<(ColumnRef, &'a ScopeItem)>, PlanError> {
let mut seen_level = None;
let items: Vec<_> = self
.all_items(outer_scopes)
.filter_map(move |c| match c.inner {
ScopeCursorInner::Item { column, item }
if item.is_from_table(table)
&& *seen_level.get_or_insert(c.lat_level) == c.lat_level =>
{
Some((column, item))
}
_ => None,
})
.collect();
if !items.iter().map(|(column, _)| column.level).all_equal() {
return Err(PlanError::AmbiguousTable(table.clone()));
}
Ok(items)
}
/// Returns a matching [`ColumnRef`], if one exists.
///
/// Filters all visible items against the provided `matches` closure, and then matches this
/// filtered set against the provided `column_name`.
fn resolve_internal<'a, M>(
&'a self,
outer_scopes: &[Scope],
mut matches: M,
table_name: Option<&PartialItemName>,
column_name: &ColumnName,
) -> Result<ColumnRef, PlanError>
where
M: FnMut(&ScopeCursor) -> bool,
{
let mut results = self
.all_items(outer_scopes)
.filter(|c| (matches)(c) && c.column_name() == column_name);
match results.next() {
None => {
let similar = self
.all_items(outer_scopes)
.filter(|c| (matches)(c))
.filter_map(|c| {
c.column_name()
.is_similar(column_name)
.then(|| c.column_name().clone())
})
.collect();
Err(PlanError::UnknownColumn {
table: table_name.cloned(),
column: column_name.clone(),
similar,
})
}
Some(c) => {
if let Some(ambiguous) = results.find(|c2| c.lat_level == c2.lat_level) {
if let Some(table_name) = table_name {
if let (
ScopeCursorInner::Item {
column: ColumnRef { level: c_level, .. },
..
},
ScopeCursorInner::Item {
column:
ColumnRef {
level: ambiguous_level,
..
},
..
},
) = (c.inner, ambiguous.inner)
{
// ColumnRefs with identical levels indicate multiple columns of the
// same name in relation. If the levels differ then it is instead two
// tables with the same name, both having a column with this name.
if c_level == ambiguous_level {
return Err(PlanError::AmbiguousColumn(column_name.clone()));
}
}
return Err(PlanError::AmbiguousTable(table_name.clone()));
} else {
return Err(PlanError::AmbiguousColumn(column_name.clone()));
}
}
match c.inner {
ScopeCursorInner::UngroupedColumn(uc) => Err(PlanError::UngroupedColumn {
table: uc.table_name.clone(),
column: uc.column_name.clone(),
}),
ScopeCursorInner::Item { column, item } => {
if let Some(error_if_referenced) = item.error_if_referenced {
return Err(error_if_referenced(table_name, column_name));
}
Ok(column)
}
}
}
}
}
/// Resolves references to a column name to a single column, or errors if
/// multiple columns are equally valid references.
pub fn resolve_column<'a>(
&'a self,
outer_scopes: &[Scope],
column_name: &ColumnName,
) -> Result<ColumnRef, PlanError> {
let table_name = None;
self.resolve_internal(
outer_scopes,
|c| c.allow_unqualified_references(),
table_name,
column_name,
)
}
/// Resolves a column name in a `USING` clause.
pub fn resolve_using_column(
&self,
column_name: &ColumnName,
join_side: JoinSide,
) -> Result<ColumnRef, PlanError> {
self.resolve_column(&[], column_name).map_err(|e| match e {
// Attach a bit more context to unknown and ambiguous column
// errors to match PostgreSQL.
PlanError::AmbiguousColumn(column) => {
PlanError::AmbiguousColumnInUsingClause { column, join_side }
}
PlanError::UnknownColumn { column, .. } => {
PlanError::UnknownColumnInUsingClause { column, join_side }
}
_ => e,
})
}
pub fn resolve_table_column<'a>(
&'a self,
outer_scopes: &[Scope],
table_name: &PartialItemName,
column_name: &ColumnName,
) -> Result<ColumnRef, PlanError> {
let mut seen_at_level = None;
self.resolve_internal(
outer_scopes,
|c| {
// Once we've matched a table name at a lateral level, even if
// the column name did not match, we can never match an item
// from another lateral level.
if let Some(seen_at_level) = seen_at_level {
if seen_at_level != c.lat_level {
return false;
}
}
if c.table_name().as_ref().map(|n| n.matches(table_name)) == Some(true) {
seen_at_level = Some(c.lat_level);
true
} else {
false
}
},
Some(table_name),
column_name,
)
}
pub fn resolve<'a>(
&'a self,
outer_scopes: &[Scope],
table_name: Option<&PartialItemName>,
column_name: &ColumnName,
) -> Result<ColumnRef, PlanError> {
match table_name {
None => self.resolve_column(outer_scopes, column_name),
Some(table_name) => self.resolve_table_column(outer_scopes, table_name, column_name),
}
}
/// Look to see if there is an already-calculated instance of this expr.
/// Failing to find one is not an error, so this just returns Option
pub fn resolve_expr<'a>(&'a self, expr: &Expr<Aug>) -> Option<ColumnRef> {
// Literal values should not be treated as "cached" because their types
// in scope will have already been determined, but the type of the
// reoccurence of the expr might want to have a different type.
//
// This is most evident in the case of literal `NULL` values. The first
// occurrence is likely to be cast as `ScalarType::String`, but
// subsequent `NULL` values should be untyped.
if matches!(expr, Expr::Value(_)) {
return None;
}
self.items
.iter()
.enumerate()
.find(|(_, item)| item.exprs.contains(expr))
.map(|(i, _)| ColumnRef {
level: 0,
column: i,
})
}
pub fn product(self, right: Self) -> Result<Self, PlanError> {
let mut l_tables = self.table_names().into_iter().collect::<Vec<_>>();
// Make ordering deterministic for testing
l_tables.sort_by(|l, r| l.item.cmp(&r.item));
let r_tables = right.table_names();
for l in l_tables {
for r in &r_tables {
if l.matches(r) {
sql_bail!("table name \"{}\" specified more than once", l.item)
}
}
}
Ok(Scope {
items: self.items.into_iter().chain(right.items).collect(),
ungrouped_columns: vec![],
lateral_barrier: false,
})
}
pub fn project(&self, columns: &[usize]) -> Self {
Scope {
items: columns.iter().map(|&i| self.items[i].clone()).collect(),
ungrouped_columns: vec![],
lateral_barrier: false,
}
}
pub fn table_names(&self) -> BTreeSet<&PartialItemName> {
self.items
.iter()
.filter_map(|name| name.table_name.as_ref())
.collect::<BTreeSet<&PartialItemName>>()
}
}
/// A pointer to a scope item or an ungrouped column along side its lateral
/// level. Used internally while iterating.
#[derive(Debug, Clone)]
struct ScopeCursor<'a> {
lat_level: usize,
inner: ScopeCursorInner<'a>,
}
#[derive(Debug, Clone)]
enum ScopeCursorInner<'a> {
Item {
column: ColumnRef,
item: &'a ScopeItem,
},
UngroupedColumn(&'a ScopeUngroupedColumn),
}
impl ScopeCursor<'_> {
fn table_name(&self) -> Option<&PartialItemName> {
match &self.inner {
ScopeCursorInner::Item { item, .. } => item.table_name.as_ref(),
ScopeCursorInner::UngroupedColumn(uc) => uc.table_name.as_ref(),
}
}
fn column_name(&self) -> &ColumnName {
match &self.inner {
ScopeCursorInner::Item { item, .. } => &item.column_name,
ScopeCursorInner::UngroupedColumn(uc) => &uc.column_name,
}
}
fn allow_unqualified_references(&self) -> bool {
match &self.inner {
ScopeCursorInner::Item { item, .. } => item.allow_unqualified_references,
ScopeCursorInner::UngroupedColumn(uc) => uc.allow_unqualified_references,
}
}
}