1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
use crate::progress::frontier::{AntichainRef, MutableAntichain};
use crate::progress::Timestamp;
use crate::dataflow::operators::Capability;
use crate::logging::TimelyLogger as Logger;
/// Tracks requests for notification and delivers available notifications.
///
/// A `Notificator` represents a dynamic set of notifications and a fixed notification frontier.
/// One can interact with one by requesting notification with `notify_at`, and retrieving notifications
/// with `for_each` and `next`. The next notification to be delivered will be the available notification
/// with the least timestamp, with the implication that the notifications will be non-decreasing as long
/// as you do not request notifications at times prior to those that have already been delivered.
///
/// Notification requests persist across uses of `Notificator`, and it may help to think of `Notificator`
/// as a notification *session*. However, idiomatically it seems you mostly want to restrict your usage
/// to such sessions, which is why this is the main notificator type.
#[derive(Debug)]
pub struct Notificator<'a, T: Timestamp> {
frontiers: &'a [&'a MutableAntichain<T>],
inner: &'a mut FrontierNotificator<T>,
logging: &'a Option<Logger>,
}
impl<'a, T: Timestamp> Notificator<'a, T> {
/// Allocates a new `Notificator`.
///
/// This is more commonly accomplished using `input.monotonic(frontiers)`.
pub fn new(
frontiers: &'a [&'a MutableAntichain<T>],
inner: &'a mut FrontierNotificator<T>,
logging: &'a Option<Logger>) -> Self {
inner.make_available(frontiers);
Notificator {
frontiers,
inner,
logging,
}
}
/// Reveals the elements in the frontier of the indicated input.
pub fn frontier(&self, input: usize) -> AntichainRef<T> {
self.frontiers[input].frontier()
}
/// Requests a notification at the time associated with capability `cap`.
///
/// In order to request a notification at future timestamp, obtain a capability for the new
/// timestamp first, as show in the example.
///
/// # Examples
/// ```
/// use timely::dataflow::operators::ToStream;
/// use timely::dataflow::operators::generic::Operator;
/// use timely::dataflow::channels::pact::Pipeline;
///
/// timely::example(|scope| {
/// (0..10).to_stream(scope)
/// .unary_notify(Pipeline, "example", Some(0), |input, output, notificator| {
/// input.for_each(|cap, data| {
/// output.session(&cap).give_container(data);
/// let time = cap.time().clone() + 1;
/// notificator.notify_at(cap.delayed(&time));
/// });
/// notificator.for_each(|cap, count, _| {
/// println!("done with time: {:?}, requested {} times", cap.time(), count);
/// assert!(*cap.time() == 0 && count == 2 || count == 1);
/// });
/// });
/// });
/// ```
#[inline]
pub fn notify_at(&mut self, cap: Capability<T>) {
self.inner.notify_at_frontiered(cap, self.frontiers);
}
/// Repeatedly calls `logic` until exhaustion of the available notifications.
///
/// `logic` receives a capability for `t`, the timestamp being notified and a `count`
/// representing how many capabilities were requested for that specific timestamp.
#[inline]
pub fn for_each<F: FnMut(Capability<T>, u64, &mut Notificator<T>)>(&mut self, mut logic: F) {
while let Some((cap, count)) = self.next() {
self.logging.as_ref().map(|l| l.log(crate::logging::GuardedProgressEvent { is_start: true }));
logic(cap, count, self);
self.logging.as_ref().map(|l| l.log(crate::logging::GuardedProgressEvent { is_start: false }));
}
}
}
impl<T: Timestamp> Iterator for Notificator<'_, T> {
type Item = (Capability<T>, u64);
/// Retrieve the next available notification.
///
/// Returns `None` if no notification is available. Returns `Some(cap, count)` otherwise:
/// `cap` is a capability for `t`, the timestamp being notified and, `count` represents
/// how many notifications (out of those requested) are being delivered for that specific
/// timestamp.
#[inline]
fn next(&mut self) -> Option<(Capability<T>, u64)> {
self.inner.next_count(self.frontiers)
}
}
#[test]
fn notificator_delivers_notifications_in_topo_order() {
use std::rc::Rc;
use std::cell::RefCell;
use crate::progress::ChangeBatch;
use crate::progress::frontier::MutableAntichain;
use crate::order::Product;
use crate::dataflow::operators::capability::Capability;
let mut frontier = MutableAntichain::new_bottom(Product::new(0, 0));
let root_capability = Capability::new(Product::new(0,0), Rc::new(RefCell::new(ChangeBatch::new())));
let logging = None;//::logging::new_inactive_logger();
// notificator.update_frontier_from_cm(&mut vec![ChangeBatch::new_from(ts_from_tuple((0, 0)), 1)]);
let times = vec![
Product::new(3, 5),
Product::new(5, 4),
Product::new(1, 2),
Product::new(1, 1),
Product::new(1, 1),
Product::new(5, 4),
Product::new(6, 0),
Product::new(6, 2),
Product::new(5, 8),
];
// create a raw notificator with pending notifications at the times above.
let mut frontier_notificator = FrontierNotificator::from(times.iter().map(|t| root_capability.delayed(t)));
// the frontier is initially (0,0), and so we should deliver no notifications.
assert!(frontier_notificator.monotonic(&[&frontier], &logging).next().is_none());
// advance the frontier to [(5,7), (6,0)], opening up some notifications.
frontier.update_iter(vec![(Product::new(0,0),-1), (Product::new(5,7), 1), (Product::new(6,1), 1)]);
{
let frontiers = [&frontier];
let mut notificator = frontier_notificator.monotonic(&frontiers, &logging);
// we should deliver the following available notifications, in this order.
assert_eq!(notificator.next().unwrap().0.time(), &Product::new(1,1));
assert_eq!(notificator.next().unwrap().0.time(), &Product::new(1,2));
assert_eq!(notificator.next().unwrap().0.time(), &Product::new(3,5));
assert_eq!(notificator.next().unwrap().0.time(), &Product::new(5,4));
assert_eq!(notificator.next().unwrap().0.time(), &Product::new(6,0));
assert_eq!(notificator.next(), None);
}
// advance the frontier to [(6,10)] opening up all remaining notifications.
frontier.update_iter(vec![(Product::new(5,7), -1), (Product::new(6,1), -1), (Product::new(6,10), 1)]);
{
let frontiers = [&frontier];
let mut notificator = frontier_notificator.monotonic(&frontiers, &logging);
// the first available notification should be (5,8). Note: before (6,0) in the total order, but not
// in the partial order. We don't make the promise that we respect the total order.
assert_eq!(notificator.next().unwrap().0.time(), &Product::new(5, 8));
// add a new notification, mid notification session.
notificator.notify_at(root_capability.delayed(&Product::new(5,9)));
// we expect to see (5,9) before we see (6,2) before we see None.
assert_eq!(notificator.next().unwrap().0.time(), &Product::new(5,9));
assert_eq!(notificator.next().unwrap().0.time(), &Product::new(6,2));
assert_eq!(notificator.next(), None);
}
}
/// Tracks requests for notification and delivers available notifications.
///
/// `FrontierNotificator` is meant to manage the delivery of requested notifications in the
/// presence of inputs that may have outstanding messages to deliver.
/// The notificator inspects the frontiers, as presented from the outside, for each input.
/// Requested notifications can be served only once there are no frontier elements less-or-equal
/// to them, and there are no other pending notification requests less than them. Each will be
/// less-or-equal to itself, so we want to dodge that corner case.
///
/// # Examples
/// ```
/// use std::collections::HashMap;
/// use timely::dataflow::operators::{Input, Inspect, FrontierNotificator};
/// use timely::dataflow::operators::generic::operator::Operator;
/// use timely::dataflow::channels::pact::Pipeline;
///
/// timely::execute(timely::Config::thread(), |worker| {
/// let (mut in1, mut in2) = worker.dataflow::<usize,_,_>(|scope| {
/// let (in1_handle, in1) = scope.new_input();
/// let (in2_handle, in2) = scope.new_input();
/// in1.binary_frontier(&in2, Pipeline, Pipeline, "example", |mut _default_cap, _info| {
/// let mut notificator = FrontierNotificator::default();
/// let mut stash = HashMap::new();
/// move |input1, input2, output| {
/// while let Some((time, data)) = input1.next() {
/// stash.entry(time.time().clone()).or_insert(Vec::new()).extend(data.drain(..));
/// notificator.notify_at(time.retain());
/// }
/// while let Some((time, data)) = input2.next() {
/// stash.entry(time.time().clone()).or_insert(Vec::new()).extend(data.drain(..));
/// notificator.notify_at(time.retain());
/// }
/// notificator.for_each(&[input1.frontier(), input2.frontier()], |time, _| {
/// if let Some(mut vec) = stash.remove(time.time()) {
/// output.session(&time).give_iterator(vec.drain(..));
/// }
/// });
/// }
/// })
/// .container::<Vec<_>>()
/// .inspect_batch(|t, x| println!("{:?} -> {:?}", t, x));
///
/// (in1_handle, in2_handle)
/// });
///
/// for i in 1..10 {
/// in1.send(i - 1);
/// in1.advance_to(i);
/// in2.send(i - 1);
/// in2.advance_to(i);
/// }
/// in1.close();
/// in2.close();
/// }).unwrap();
/// ```
#[derive(Debug)]
pub struct FrontierNotificator<T: Timestamp> {
pending: Vec<(Capability<T>, u64)>,
available: ::std::collections::BinaryHeap<OrderReversed<T>>,
}
impl<T: Timestamp> Default for FrontierNotificator<T> {
fn default() -> Self {
FrontierNotificator {
pending: Vec::new(),
available: ::std::collections::BinaryHeap::new(),
}
}
}
impl<T: Timestamp> FrontierNotificator<T> {
/// Allocates a new `FrontierNotificator` with initial capabilities.
pub fn from<I: IntoIterator<Item=Capability<T>>>(iter: I) -> Self {
FrontierNotificator {
pending: iter.into_iter().map(|x| (x,1)).collect(),
available: ::std::collections::BinaryHeap::new(),
}
}
/// Requests a notification at the time associated with capability `cap`. Takes ownership of
/// the capability.
///
/// In order to request a notification at future timestamp, obtain a capability for the new
/// timestamp first, as shown in the example.
///
/// # Examples
/// ```
/// use timely::dataflow::operators::{ToStream, FrontierNotificator};
/// use timely::dataflow::operators::generic::operator::Operator;
/// use timely::dataflow::channels::pact::Pipeline;
///
/// timely::example(|scope| {
/// (0..10).to_stream(scope)
/// .unary_frontier(Pipeline, "example", |_, _| {
/// let mut notificator = FrontierNotificator::default();
/// move |input, output| {
/// input.for_each(|cap, data| {
/// output.session(&cap).give_container(data);
/// let time = cap.time().clone() + 1;
/// notificator.notify_at(cap.delayed(&time));
/// });
/// notificator.for_each(&[input.frontier()], |cap, _| {
/// println!("done with time: {:?}", cap.time());
/// });
/// }
/// });
/// });
/// ```
#[inline]
pub fn notify_at(&mut self, cap: Capability<T>) {
self.pending.push((cap,1));
}
/// Requests a notification at the time associated with capability `cap`.
///
/// The method takes list of frontiers from which it determines if the capability is immediately available.
/// When used with the same frontier as `make_available`, this method can ensure that notifications are
/// non-decreasing. Simply using `notify_at` will only insert new notifications into the list of pending
/// notifications, which are only re-examine with calls to `make_available`.
#[inline]
pub fn notify_at_frontiered<'a>(&mut self, cap: Capability<T>, frontiers: &'a [&'a MutableAntichain<T>]) {
if frontiers.iter().all(|f| !f.less_equal(cap.time())) {
self.available.push(OrderReversed::new(cap, 1));
}
else {
self.pending.push((cap,1));
}
}
/// Enables pending notifications not in advance of any element of `frontiers`.
pub fn make_available<'a>(&mut self, frontiers: &'a [&'a MutableAntichain<T>]) {
// By invariant, nothing in self.available is greater_equal anything in self.pending.
// It should be safe to append any ordered subset of self.pending to self.available,
// in that the sequence of capabilities in self.available will remain non-decreasing.
if !self.pending.is_empty() {
self.pending.sort_by(|x,y| x.0.time().cmp(y.0.time()));
for i in 0 .. self.pending.len() - 1 {
if self.pending[i].0.time() == self.pending[i+1].0.time() {
self.pending[i+1].1 += self.pending[i].1;
self.pending[i].1 = 0;
}
}
self.pending.retain(|x| x.1 > 0);
for i in 0 .. self.pending.len() {
if frontiers.iter().all(|f| !f.less_equal(&self.pending[i].0)) {
// TODO : This clones a capability, whereas we could move it instead.
self.available.push(OrderReversed::new(self.pending[i].0.clone(), self.pending[i].1));
self.pending[i].1 = 0;
}
}
self.pending.retain(|x| x.1 > 0);
}
}
/// Returns the next available capability with respect to the supplied frontiers, if one exists,
/// and the count of how many instances are found.
///
/// In the interest of efficiency, this method may yield capabilities in decreasing order, in certain
/// circumstances. If you want to iterate through capabilities with an in-order guarantee, either (i)
/// use `for_each`, or (ii) call `make_available` first.
#[inline]
pub fn next_count<'a>(&mut self, frontiers: &'a [&'a MutableAntichain<T>]) -> Option<(Capability<T>, u64)> {
if self.available.is_empty() {
self.make_available(frontiers);
}
self.available.pop().map(|front| {
let mut count = front.value;
while self.available.peek() == Some(&front) {
count += self.available.pop().unwrap().value;
}
(front.element, count)
})
}
/// Returns the next available capability with respect to the supplied frontiers, if one exists.
///
/// In the interest of efficiency, this method may yield capabilities in decreasing order, in certain
/// circumstances. If you want to iterate through capabilities with an in-order guarantee, either (i)
/// use `for_each`, or (ii) call `make_available` first.
#[inline]
pub fn next<'a>(&mut self, frontiers: &'a [&'a MutableAntichain<T>]) -> Option<Capability<T>> {
self.next_count(frontiers).map(|(cap, _)| cap)
}
/// Repeatedly calls `logic` till exhaustion of the notifications made available by inspecting
/// the frontiers.
///
/// `logic` receives a capability for `t`, the timestamp being notified.
#[inline]
pub fn for_each<'a, F: FnMut(Capability<T>, &mut FrontierNotificator<T>)>(&mut self, frontiers: &'a [&'a MutableAntichain<T>], mut logic: F) {
self.make_available(frontiers);
while let Some(cap) = self.next(frontiers) {
logic(cap, self);
}
}
/// Creates a notificator session in which delivered notification will be non-decreasing.
///
/// This implementation can be emulated with judicious use of `make_available` and `notify_at_frontiered`,
/// in the event that `Notificator` provides too restrictive an interface.
#[inline]
pub fn monotonic<'a>(&'a mut self, frontiers: &'a [&'a MutableAntichain<T>], logging: &'a Option<Logger>) -> Notificator<'a, T> {
Notificator::new(frontiers, self, logging)
}
/// Iterates over pending capabilities and their count. The count represents how often a
/// capability has been requested.
///
/// To make sure all pending capabilities are above the frontier, use `for_each` or exhaust
/// `next` to consume all available capabilities.
///
/// # Examples
/// ```
/// use timely::dataflow::operators::{ToStream, FrontierNotificator};
/// use timely::dataflow::operators::generic::operator::Operator;
/// use timely::dataflow::channels::pact::Pipeline;
///
/// timely::example(|scope| {
/// (0..10).to_stream(scope)
/// .unary_frontier(Pipeline, "example", |_, _| {
/// let mut notificator = FrontierNotificator::default();
/// move |input, output| {
/// input.for_each(|cap, data| {
/// output.session(&cap).give_container(data);
/// let time = cap.time().clone() + 1;
/// notificator.notify_at(cap.delayed(&time));
/// assert_eq!(notificator.pending().filter(|t| t.0.time() == &time).count(), 1);
/// });
/// notificator.for_each(&[input.frontier()], |cap, _| {
/// println!("done with time: {:?}", cap.time());
/// });
/// }
/// });
/// });
/// ```
pub fn pending(&self) -> ::std::slice::Iter<'_, (Capability<T>, u64)> {
self.pending.iter()
}
}
#[derive(Debug, PartialEq, Eq)]
struct OrderReversed<T: Timestamp> {
element: Capability<T>,
value: u64,
}
impl<T: Timestamp> OrderReversed<T> {
fn new(element: Capability<T>, value: u64) -> Self { OrderReversed { element, value} }
}
impl<T: Timestamp> PartialOrd for OrderReversed<T> {
fn partial_cmp(&self, other: &Self) -> Option<::std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<T: Timestamp> Ord for OrderReversed<T> {
fn cmp(&self, other: &Self) -> ::std::cmp::Ordering {
other.element.time().cmp(self.element.time())
}
}