mz_lowertest/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Utilities for testing lower layers of the Materialize stack.
//!
//! See [README.md].
use std::collections::BTreeMap;
pub use mz_lowertest_derive::MzReflect;
use mz_ore::result::ResultExt;
use mz_ore::str::{separated, StrExt};
use proc_macro2::{Delimiter, TokenStream, TokenTree};
use serde::de::DeserializeOwned;
use serde_json::Value;
/* #region Parts of the public interface related to collecting information
about the fields of structs and enums. */
/// For [`to_json`] to create deserializable JSON for an instance of an type,
/// the type must derive this trait.
pub trait MzReflect {
/// Adds names and types of the fields of the struct or enum to `rti`.
///
/// The corresponding implementation of this method will be recursively
/// called for each type referenced by the struct or enum.
/// Check out the crate README for more details.
fn add_to_reflected_type_info(rti: &mut ReflectedTypeInfo);
}
impl<T: MzReflect> MzReflect for Vec<T> {
fn add_to_reflected_type_info(rti: &mut ReflectedTypeInfo) {
T::add_to_reflected_type_info(rti);
}
}
/// Info that must be combined with a spec to form deserializable JSON.
///
/// To add information required to construct a struct or enum,
/// call `Type::add_to_reflected_type_info(enum_dict, struct_dict)`
#[derive(Debug, Default)]
pub struct ReflectedTypeInfo {
pub enum_dict:
BTreeMap<&'static str, BTreeMap<&'static str, (Vec<&'static str>, Vec<&'static str>)>>,
pub struct_dict: BTreeMap<&'static str, (Vec<&'static str>, Vec<&'static str>)>,
}
/* #endregion */
/* #region Public Utilities */
/// Converts `s` into a [proc_macro2::TokenStream]
pub fn tokenize(s: &str) -> Result<TokenStream, String> {
s.parse::<TokenStream>().map_err_to_string_with_causes()
}
/// Changes `"\"foo\""` to `"foo"`
pub fn unquote(s: &str) -> String {
if s.starts_with('"') && s.ends_with('"') {
s[1..(s.len() - 1)].replace("\\\"", "\"")
} else {
s.to_string()
}
}
/* #endregion */
/// Simpler interface for [deserialize_optional] when no syntax overrides or extensions are needed.
pub fn deserialize_optional_generic<D, I>(
stream_iter: &mut I,
type_name: &'static str,
) -> Result<Option<D>, String>
where
D: DeserializeOwned + MzReflect,
I: Iterator<Item = TokenTree>,
{
deserialize_optional(
stream_iter,
type_name,
&mut GenericTestDeserializeContext::default(),
)
}
/// If the `stream_iter` is not empty, deserialize the next `TokenTree` into a `D`.
///
/// See [`to_json`] for the object spec syntax.
///
/// `type_name` should be `D` in string form.
///
/// `stream_iter` will advance by one `TokenTree` no matter the result.
pub fn deserialize_optional<D, I, C>(
stream_iter: &mut I,
type_name: &'static str,
ctx: &mut C,
) -> Result<Option<D>, String>
where
C: TestDeserializeContext,
D: DeserializeOwned + MzReflect,
I: Iterator<Item = TokenTree>,
{
let mut rti = ReflectedTypeInfo::default();
D::add_to_reflected_type_info(&mut rti);
match to_json(stream_iter, type_name, &rti, ctx)? {
Some(j) => Ok(Some(serde_json::from_str::<D>(&j).map_err(|e| {
format!("String while serializing: {}\nOriginal JSON: {}", e, j)
})?)),
None => Ok(None),
}
}
/// Simpler interface for [deserialize] when no syntax overrides or extensions are needed.
pub fn deserialize_generic<D, I>(stream_iter: &mut I, type_name: &'static str) -> Result<D, String>
where
D: DeserializeOwned + MzReflect,
I: Iterator<Item = TokenTree>,
{
deserialize(
stream_iter,
type_name,
&mut GenericTestDeserializeContext::default(),
)
}
/// Deserialize the next `TokenTree` into a `D` object.
///
/// See [`to_json`] for the object spec syntax.
///
/// `type_name` should be `D` in string form.
///
/// `stream_iter` will advance by one `TokenTree` no matter the result.
pub fn deserialize<D, I, C>(
stream_iter: &mut I,
type_name: &'static str,
ctx: &mut C,
) -> Result<D, String>
where
C: TestDeserializeContext,
D: DeserializeOwned + MzReflect,
I: Iterator<Item = TokenTree>,
{
deserialize_optional(stream_iter, type_name, ctx)?
.ok_or_else(|| format!("Empty spec for type {}", type_name))
}
/// Converts the next part of the stream into JSON deserializable into an object
/// of type `type_name`.
///
/// If the object is a zero-arg struct, this method will return
/// `Ok(Some("null"))` without looking at the stream.
///
/// Otherwise, it will try to convert the next `TokenTree` in the stream.
/// If end of stream has been reached, this method returns `Ok(None)`
///
/// The JSON string should be deserializable into an object of type
/// `type_name`.
///
/// Default object syntax:
/// * An enum is represented as `(enum_variant_snake_case <arg1> <arg2> ..)`,
/// unless it is a unit enum, in which case it can also be represented as
/// `enum_variant_snake_case`. Enums can have optional arguments, which should
/// all come at the end.
/// * A struct is represented as `(<arg1> <arg2> ..)`, unless it has no
/// arguments, in which case it is represented by the empty string.
/// * A vec or tuple is represented as `[<elem1> <elem2> ..]`
/// * None/null is represented as `null`
/// * true (resp. false) is represented as `true` (resp. `false`)
/// * Strings are represented as `"something with quotations"`.
/// * A numeric value like -1 or 1.1 is represented as is.
/// * You can delimit arguments and elements using whitespace and/or commas.
///
/// `ctx` will extend and/or override the default syntax.
pub fn to_json<I, C>(
stream_iter: &mut I,
type_name: &str,
rti: &ReflectedTypeInfo,
ctx: &mut C,
) -> Result<Option<String>, String>
where
C: TestDeserializeContext,
I: Iterator<Item = TokenTree>,
{
let (type_name, option_found) = normalize_type_name(type_name);
// If the type is an zero-argument struct, resolve without reading from the stream.
if let Some((_, f_types)) = rti.struct_dict.get(&type_name[..]) {
if f_types.is_empty() {
return Ok(Some("null".to_string()));
}
}
if let Some(first_arg) = stream_iter.next() {
// If type is `Option<T>`, convert the token to None if it is null,
// otherwise, try to convert it to an instance of `T`.
if option_found {
if let TokenTree::Ident(ident) = &first_arg {
if *ident == "null" {
return Ok(Some("null".to_string()));
}
}
}
// If the type refers to an enum or struct defined by us, go to a
// special branch that allows reuse of code paths for the
// `(<arg1>..<argn>)` syntax as well as the `<only_arg>` syntax.
// Note that `parse_as_enum_or_struct` also calls
// `ctx.override_syntax`.
if let Some(result) =
parse_as_enum_or_struct(first_arg.clone(), stream_iter, &type_name, rti, ctx)?
{
return Ok(Some(result));
}
// Resolving types that are not enums or structs defined by us.
if let Some(result) = ctx.override_syntax(first_arg.clone(), stream_iter, &type_name)? {
return Ok(Some(result));
}
match first_arg {
TokenTree::Group(group) => {
let mut inner_iter = group.stream().into_iter();
match group.delimiter() {
Delimiter::Bracket => {
if type_name.starts_with("Vec<") && type_name.ends_with('>') {
// This is a Vec<type_name>.
let vec = parse_as_vec(
&mut inner_iter,
&type_name[4..(type_name.len() - 1)],
rti,
ctx,
)?;
Ok(Some(format!("[{}]", separated(",", vec.iter()))))
} else if type_name.starts_with("[") && type_name.ends_with(']') {
// This is a [type_name].
let vec = parse_as_vec(
&mut inner_iter,
&type_name[1..(type_name.len() - 1)],
rti,
ctx,
)?;
Ok(Some(format!("[{}]", separated(",", vec.iter()))))
} else if type_name.starts_with('(') && type_name.ends_with(')') {
let vec = parse_as_tuple(
&mut inner_iter,
&type_name[1..(type_name.len() - 1)],
rti,
ctx,
)?;
Ok(Some(format!("[{}]", separated(",", vec.iter()))))
} else {
Err(format!(
"Object specified with brackets {:?} has unsupported type `{}`",
inner_iter.collect::<Vec<_>>(),
type_name
))
}
}
delim => Err(format!(
"Object spec {:?} (type {}) has unsupported delimiter {:?}",
inner_iter.collect::<Vec<_>>(),
type_name,
delim
)),
}
}
TokenTree::Punct(punct) => {
match punct.as_char() {
// Pretend the comma does not exist and process the
// next `TokenTree`
',' => to_json(stream_iter, &type_name, rti, ctx),
// Process the next `TokenTree` and prepend the
// punctuation. This enables support for negative
// numbers.
other => match to_json(stream_iter, &type_name, rti, ctx)? {
Some(result) => Ok(Some(format!("{}{}", other, result))),
None => Ok(Some(other.to_string())),
},
}
}
TokenTree::Ident(ident) => {
// If type_name == "String", then we are trying to construct
// either a String or Option<String>. Thus, if ident == null,
// we may be trying to construct a None object.
if type_name == "String" && ident != "null" {
Ok(Some(ident.to_string().quoted().to_string()))
} else {
Ok(Some(ident.to_string()))
}
}
TokenTree::Literal(literal) => Ok(Some(literal.to_string())),
}
} else {
Ok(None)
}
}
/// A trait for extending and/or overriding the default test case syntax.
///
/// Note when creating an implementation of this trait that the
/// `[proc_macro2::TokenStream]` considers:
/// * null/true/false to be `Ident`s
/// * strings and positive numeric values (like 1 or 1.1) to be `Literal`s.
/// * negative numeric values to be a `Punct('-')` followed by a `Literal`.
pub trait TestDeserializeContext {
/// Override the way that `first_arg` is resolved to JSON.
///
/// `first_arg` is the first `TokenTree` of the `TokenStream`.
/// `rest_of_stream` contains a reference to the rest of the stream.
///
/// Returns Ok(Some(value)) if `first_arg` has been resolved.
/// Returns Ok(None) if `first_arg` should be resolved using the default
/// syntax. If returning Ok(None), the function implementation
/// promises not to advance `rest_of_stream`.
fn override_syntax<I>(
&mut self,
first_arg: TokenTree,
rest_of_stream: &mut I,
type_name: &str,
) -> Result<Option<String>, String>
where
I: Iterator<Item = TokenTree>;
/// Converts `json` back to the extended syntax specified by
/// [TestDeserializeContext::override_syntax].
///
/// Returns `Some(value)` if `json` has been resolved.
/// Returns `None` is `json` should be resolved in the default manner.
fn reverse_syntax_override(&mut self, json: &Value, type_name: &str) -> Option<String>;
}
/// Default `TestDeserializeContext`.
///
/// Does not override or extend any of the default syntax.
#[derive(Default)]
struct GenericTestDeserializeContext;
impl TestDeserializeContext for GenericTestDeserializeContext {
fn override_syntax<I>(
&mut self,
_first_arg: TokenTree,
_rest_of_stream: &mut I,
_type_name: &str,
) -> Result<Option<String>, String>
where
I: Iterator<Item = TokenTree>,
{
Ok(None)
}
fn reverse_syntax_override(&mut self, _: &Value, _: &str) -> Option<String> {
None
}
}
/* #region helper functions for `to_json` */
/// Converts all `TokenTree`s into JSON deserializable to `type_name`.
fn parse_as_vec<I, C>(
stream_iter: &mut I,
type_name: &str,
rti: &ReflectedTypeInfo,
ctx: &mut C,
) -> Result<Vec<String>, String>
where
C: TestDeserializeContext,
I: Iterator<Item = TokenTree>,
{
let mut result = Vec::new();
while let Some(element) = to_json(stream_iter, type_name, rti, ctx)? {
result.push(element);
}
Ok(result)
}
/// Converts all `TokenTree`s into JSON.
///
/// `type_name` is assumed to have been stripped of whitespace.
fn parse_as_tuple<I, C>(
stream_iter: &mut I,
type_name: &str,
rti: &ReflectedTypeInfo,
ctx: &mut C,
) -> Result<Vec<String>, String>
where
C: TestDeserializeContext,
I: Iterator<Item = TokenTree>,
{
let mut prev_elem_end = 0;
let mut result = Vec::new();
while let Some((next_elem_begin, next_elem_end)) =
find_next_type_in_tuple(type_name, prev_elem_end)
{
match to_json(
stream_iter,
&type_name[next_elem_begin..next_elem_end],
rti,
ctx,
)? {
Some(elem) => result.push(elem),
// we have reached the end of the tuple. Assume that any remaining
// elements of the tuple are optional.
None => break,
}
prev_elem_end = next_elem_end;
}
Ok(result)
}
/// Converts stream into JSON if `type_name` refers to an enum or struct
///
/// Returns `Ok(Some(string))` if `type_name` refers to an enum or struct, and
/// there are no stream conversion errors.
/// Returns `Ok(None)` if `type_name` does not refer to an enum or struct.
fn parse_as_enum_or_struct<I, C>(
first_arg: TokenTree,
rest_of_stream: &mut I,
type_name: &str,
rti: &ReflectedTypeInfo,
ctx: &mut C,
) -> Result<Option<String>, String>
where
C: TestDeserializeContext,
I: Iterator<Item = TokenTree>,
{
if rti.enum_dict.contains_key(type_name) || rti.struct_dict.contains_key(type_name) {
// An enum or a struct can be specified as `(arg1 .. argn)` or
// `only_arg`. The goal here is to feed the enum/struct specification
// into a common inner method that takes
// `(first_token_of_spec, rest_of_tokens_comprising_spec)`
match first_arg {
TokenTree::Group(group) if group.delimiter() == Delimiter::Parenthesis => {
let mut inner_iter = group.stream().into_iter();
match inner_iter.next() {
// the spec is the inner `TokenStream`
Some(first_arg) => parse_as_enum_or_struct_inner(
first_arg,
&mut inner_iter,
type_name,
rti,
ctx,
),
None => Ok(None),
}
}
TokenTree::Punct(punct) => {
// The spec is that all consecutive puncts + the first
// non-punct symbol count as one argument. This allows for
// specifying structs with the first argument being something
// like -1.1.
let mut consecutive_punct = Vec::new();
while let Some(token) = rest_of_stream.next() {
consecutive_punct.push(token);
match &consecutive_punct[consecutive_punct.len() - 1] {
TokenTree::Punct(_) => {}
_ => {
break;
}
}
}
parse_as_enum_or_struct_inner(
TokenTree::Punct(punct),
&mut consecutive_punct.into_iter(),
type_name,
rti,
ctx,
)
}
other => {
// The entire enum/struct is specified by the
// Ident/Literal/Vec,
// so feed in (the_thing, nothing)
parse_as_enum_or_struct_inner(other, &mut std::iter::empty(), type_name, rti, ctx)
}
}
} else {
Ok(None)
}
}
fn parse_as_enum_or_struct_inner<I, C>(
first_arg: TokenTree,
rest_of_stream: &mut I,
type_name: &str,
rti: &ReflectedTypeInfo,
ctx: &mut C,
) -> Result<Option<String>, String>
where
C: TestDeserializeContext,
I: Iterator<Item = TokenTree>,
{
if let Some(result) = ctx.override_syntax(first_arg.clone(), rest_of_stream, type_name)? {
Ok(Some(result))
} else if let Some((f_names, f_types)) = rti.struct_dict.get(type_name).map(|r| r.clone()) {
Ok(Some(to_json_fields(
type_name,
&mut (&mut std::iter::once(first_arg)).chain(rest_of_stream),
f_names,
f_types,
rti,
ctx,
)?))
} else if let TokenTree::Ident(ident) = first_arg {
Ok(Some(to_json_generic_enum(
ident.to_string(),
rest_of_stream,
type_name,
rti,
ctx,
)?))
} else {
Ok(None)
}
}
/// Converts the spec of an enum into deserializable JSON
fn to_json_generic_enum<I, C>(
variant_snake_case: String,
rest_of_stream: &mut I,
type_name: &str,
rti: &ReflectedTypeInfo,
ctx: &mut C,
) -> Result<String, String>
where
C: TestDeserializeContext,
I: Iterator<Item = TokenTree>,
{
// Convert the variant from snake_case to CamelCase
let variant_camel_case = variant_snake_case
.split('_')
.map(|s| {
let mut chars = s.chars();
let result = chars
.next()
.map(|c| c.to_uppercase().chain(chars).collect::<String>())
.unwrap_or_else(String::new);
result
})
.collect::<Vec<_>>()
.concat();
let (f_names, f_types) = rti
.enum_dict
.get(type_name)
.unwrap()
.get(&variant_camel_case[..])
.map(|v| v.clone())
.ok_or_else(|| {
format!(
"{}::{} is not a supported enum.",
type_name, variant_camel_case
)
})?;
// If we reach end of stream before getting a value for each field,
// we assume that the fields we don't have values for are optional.
if f_types.is_empty() {
// The JSON for a unit enum is just `"variant"`.
Ok(format!("\"{}\"", variant_camel_case))
} else {
let fields = to_json_fields(
&variant_camel_case,
rest_of_stream,
f_names,
f_types,
rti,
ctx,
)?;
Ok(format!("{{\"{}\":{}}}", variant_camel_case, fields))
}
}
/// Converts the spec for fields of an enum/struct into deserializable JSON.
///
/// `f_names` contains the names of the fields. If the fields are unnamed,
/// `f_names` is empty.
/// `f_types` contains the types of the fields.
fn to_json_fields<I, C>(
debug_name: &str,
stream_iter: &mut I,
f_names: Vec<&'static str>,
f_types: Vec<&'static str>,
rti: &ReflectedTypeInfo,
ctx: &mut C,
) -> Result<String, String>
where
C: TestDeserializeContext,
I: Iterator<Item = TokenTree>,
{
let mut f_values = Vec::new();
for t in f_types.iter() {
match to_json(stream_iter, t, rti, ctx)? {
Some(value) => f_values.push(value),
None => {
break;
}
}
}
if !f_names.is_empty() {
// The JSON for named fields is
// `{"arg1":<val1>, ..}}`.
Ok(format!(
"{{{}}}",
separated(
",",
f_names
.iter()
.zip(f_values.into_iter())
.map(|(n, v)| format!("\"{}\":{}", n, v))
)
))
} else {
// The JSON for unnamed fields is
// `[<val1>, ..]}`, unless it has only one field,
// in which case the JSON is `<val1>`
if f_types.len() == 1 {
Ok(f_values
.pop()
.ok_or_else(|| format!("Cannot use default value for {}", debug_name))?)
} else {
Ok(format!("[{}]", separated(",", f_values.into_iter())))
}
}
}
/* #endregion */
/// Simpler interface for [serialize] when no syntax overrides or extensions are needed.
pub fn serialize_generic<M>(json: &Value, type_name: &str) -> String
where
M: MzReflect,
{
let mut rti = ReflectedTypeInfo::default();
M::add_to_reflected_type_info(&mut rti);
from_json(
json,
type_name,
&rti,
&mut GenericTestDeserializeContext::default(),
)
}
pub fn serialize<M, C>(json: &Value, type_name: &str, ctx: &mut C) -> String
where
C: TestDeserializeContext,
M: MzReflect,
{
let mut rti = ReflectedTypeInfo::default();
M::add_to_reflected_type_info(&mut rti);
from_json(json, type_name, &rti, ctx)
}
/// Converts serialized JSON to the syntax that [to_json] handles.
///
/// `json` is assumed to have been produced by serializing an object of type
/// `type_name`.
/// `ctx` is responsible for converting serialized JSON to any syntax
/// extensions or overrides.
pub fn from_json<C>(json: &Value, type_name: &str, rti: &ReflectedTypeInfo, ctx: &mut C) -> String
where
C: TestDeserializeContext,
{
let (type_name, option_found) = normalize_type_name(type_name);
// If type is `Option<T>`, convert the value to "null" if it is null,
// otherwise, try to convert it to a spec corresponding to an object of
// type `T`.
if option_found {
if let Value::Null = json {
return "null".to_string();
}
}
if let Some(result) = ctx.reverse_syntax_override(json, &type_name) {
return result;
}
if let Some((names, types)) = rti.struct_dict.get(&type_name[..]) {
if types.is_empty() {
"".to_string()
} else {
format!("({})", from_json_fields(json, names, types, rti, ctx))
}
} else if let Some(enum_dict) = rti.enum_dict.get(&type_name[..]) {
match json {
// A unit enum in JSON is `"variant"`. In the spec it is `variant`.
Value::String(s) => unquote(s),
// An enum with fields is `{"variant": <fields>}` in JSON. In the
// spec it is `(variant field1 .. fieldn).
Value::Object(map) => {
// Each enum instance only belongs to one variant.
assert_eq!(
map.len(),
1,
"Multivariant instance {:?} found for enum {}",
map,
type_name
);
for (variant, data) in map.iter() {
if let Some((names, types)) = enum_dict.get(&variant[..]) {
return format!(
"({} {})",
variant,
from_json_fields(data, names, types, rti, ctx)
);
}
}
unreachable!()
}
_ => unreachable!("Invalid json {:?} for enum type {}", json, type_name),
}
} else {
match json {
Value::Array(members) => {
let result = if type_name.starts_with("Vec<") && type_name.ends_with('>') {
// This is a Vec<something>.
members
.iter()
.map(|v| from_json(v, &type_name[4..(type_name.len() - 1)], rti, ctx))
.collect::<Vec<_>>()
} else {
// This is a tuple.
let mut result = Vec::new();
let type_name = &type_name[1..(type_name.len() - 1)];
let mut prev_elem_end = 0;
let mut members_iter = members.into_iter();
while let Some((next_elem_begin, next_elem_end)) =
find_next_type_in_tuple(type_name, prev_elem_end)
{
match members_iter.next() {
Some(elem) => result.push(from_json(
elem,
&type_name[next_elem_begin..next_elem_end],
rti,
ctx,
)),
// we have reached the end of the tuple.
None => break,
}
prev_elem_end = next_elem_end;
}
result
};
// The spec for both is `[elem1 .. elemn]`
format!("[{}]", separated(" ", result))
}
Value::Object(map) => {
unreachable!("Invalid map {:?} found for type {}", map, type_name)
}
other => other.to_string(),
}
}
}
fn from_json_fields<C>(
v: &Value,
f_names: &[&'static str],
f_types: &[&'static str],
rti: &ReflectedTypeInfo,
ctx: &mut C,
) -> String
where
C: TestDeserializeContext,
{
match v {
// Named fields are specified as
// `{"field1_name": field1, .. "fieldn_name": fieldn}`
// not necessarily in that order because maps are unordered.
// Thus, when converting named fields to the test spec, it is necessary
// to retrieve values from the map in the order given by `f_names`.
Value::Object(map) if !f_names.is_empty() => {
let mut fields = Vec::with_capacity(f_types.len());
for (name, typ) in f_names.iter().zip(f_types.iter()) {
fields.push(from_json(&map[*name], typ, rti, ctx))
}
separated(" ", fields).to_string()
}
// Multiple unnamed fields are specified as `[field1 .. fieldn]` in
// JSON.
Value::Array(inner) if f_types.len() > 1 => {
let mut fields = Vec::with_capacity(f_types.len());
for (v, typ) in inner.iter().zip(f_types.iter()) {
fields.push(from_json(v, typ, rti, ctx))
}
separated(" ", fields).to_string()
}
// A single unnamed field is specified as `field` in JSON.
other => from_json(other, f_types.first().unwrap(), rti, ctx),
}
}
/* #region Helper functions common to both spec-to-JSON and the JSON-to-spec
transformations. */
fn normalize_type_name(type_name: &str) -> (String, bool) {
// Normalize the type name by stripping whitespace.
let mut type_name = &type_name.replace([' ', '\n'], "")[..];
let mut option_found = false;
// Eliminate outer `Box<>` from type names because they are inconsequential
// when it comes to creating a correctly deserializable JSON string.
// The presence of an `Option<>` is consequential, but `serde_json` cannot
// distinguish between `None`, `Some(None)`, `Some(Some(None))`, etc., so
// we strip out all `Option<>`s and return whether we have seen at least one
// option.
loop {
if type_name.starts_with("Option<") && type_name.ends_with('>') {
option_found = true;
type_name = &type_name[7..(type_name.len() - 1)]
} else if type_name.starts_with("Box<") && type_name.ends_with('>') {
type_name = &type_name[4..(type_name.len() - 1)]
} else {
break;
}
}
(type_name.to_string(), option_found)
}
fn find_next_type_in_tuple(type_name: &str, prev_elem_end: usize) -> Option<(usize, usize)> {
let current_elem_begin = if prev_elem_end > 0 {
//skip over the comma
prev_elem_end + 1
} else {
prev_elem_end
};
if current_elem_begin >= type_name.len() {
return None;
}
// The elements of the tuple can be a plain type, a nested tuple, or a
// Box/Vec/Option with the argument being nested tuple.
// `type1, (type2, type3), Vec<(type4, type5)>`
let mut i = current_elem_begin;
let mut it = type_name.chars().skip(current_elem_begin).peekable();
let mut paren_level = 0;
let mut bracket_level = 0;
while i < type_name.len()
&& !(paren_level == 0 && bracket_level == 0 && *it.peek().unwrap() == ',')
{
if *it.peek().unwrap() == '(' {
paren_level += 1;
} else if *it.peek().unwrap() == ')' {
paren_level -= 1;
}
if *it.peek().unwrap() == '<' {
bracket_level += 1;
} else if *it.peek().unwrap() == '>' {
bracket_level -= 1;
}
i += 1;
it.next();
}
Some((current_elem_begin, i))
}
/* #endregion */