mz_lowertest/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Utilities for testing lower layers of the Materialize stack.
//!
//! See [README.md].

use std::collections::BTreeMap;

pub use mz_lowertest_derive::MzReflect;
use mz_ore::result::ResultExt;
use mz_ore::str::{separated, StrExt};
use proc_macro2::{Delimiter, TokenStream, TokenTree};
use serde::de::DeserializeOwned;
use serde_json::Value;

/* #region Parts of the public interface related to collecting information
about the fields of structs and enums. */

/// For [`to_json`] to create deserializable JSON for an instance of an type,
/// the type must derive this trait.
pub trait MzReflect {
    /// Adds names and types of the fields of the struct or enum to `rti`.
    ///
    /// The corresponding implementation of this method will be recursively
    /// called for each type referenced by the struct or enum.
    /// Check out the crate README for more details.
    fn add_to_reflected_type_info(rti: &mut ReflectedTypeInfo);
}

impl<T: MzReflect> MzReflect for Vec<T> {
    fn add_to_reflected_type_info(rti: &mut ReflectedTypeInfo) {
        T::add_to_reflected_type_info(rti);
    }
}

/// Info that must be combined with a spec to form deserializable JSON.
///
/// To add information required to construct a struct or enum,
/// call `Type::add_to_reflected_type_info(enum_dict, struct_dict)`
#[derive(Debug, Default)]
pub struct ReflectedTypeInfo {
    pub enum_dict:
        BTreeMap<&'static str, BTreeMap<&'static str, (Vec<&'static str>, Vec<&'static str>)>>,
    pub struct_dict: BTreeMap<&'static str, (Vec<&'static str>, Vec<&'static str>)>,
}

/* #endregion */

/* #region Public Utilities */

/// Converts `s` into a [proc_macro2::TokenStream]
pub fn tokenize(s: &str) -> Result<TokenStream, String> {
    s.parse::<TokenStream>().map_err_to_string_with_causes()
}

/// Changes `"\"foo\""` to `"foo"`
pub fn unquote(s: &str) -> String {
    if s.starts_with('"') && s.ends_with('"') {
        s[1..(s.len() - 1)].replace("\\\"", "\"")
    } else {
        s.to_string()
    }
}

/* #endregion */

/// Simpler interface for [deserialize_optional] when no syntax overrides or extensions are needed.
pub fn deserialize_optional_generic<D, I>(
    stream_iter: &mut I,
    type_name: &'static str,
) -> Result<Option<D>, String>
where
    D: DeserializeOwned + MzReflect,
    I: Iterator<Item = TokenTree>,
{
    deserialize_optional(
        stream_iter,
        type_name,
        &mut GenericTestDeserializeContext::default(),
    )
}

/// If the `stream_iter` is not empty, deserialize the next `TokenTree` into a `D`.
///
/// See [`to_json`] for the object spec syntax.
///
/// `type_name` should be `D` in string form.
///
/// `stream_iter` will advance by one `TokenTree` no matter the result.
pub fn deserialize_optional<D, I, C>(
    stream_iter: &mut I,
    type_name: &'static str,
    ctx: &mut C,
) -> Result<Option<D>, String>
where
    C: TestDeserializeContext,
    D: DeserializeOwned + MzReflect,
    I: Iterator<Item = TokenTree>,
{
    let mut rti = ReflectedTypeInfo::default();
    D::add_to_reflected_type_info(&mut rti);
    match to_json(stream_iter, type_name, &rti, ctx)? {
        Some(j) => Ok(Some(serde_json::from_str::<D>(&j).map_err(|e| {
            format!("String while serializing: {}\nOriginal JSON: {}", e, j)
        })?)),
        None => Ok(None),
    }
}

/// Simpler interface for [deserialize] when no syntax overrides or extensions are needed.
pub fn deserialize_generic<D, I>(stream_iter: &mut I, type_name: &'static str) -> Result<D, String>
where
    D: DeserializeOwned + MzReflect,
    I: Iterator<Item = TokenTree>,
{
    deserialize(
        stream_iter,
        type_name,
        &mut GenericTestDeserializeContext::default(),
    )
}

/// Deserialize the next `TokenTree` into a `D` object.
///
/// See [`to_json`] for the object spec syntax.
///
/// `type_name` should be `D` in string form.
///
/// `stream_iter` will advance by one `TokenTree` no matter the result.
pub fn deserialize<D, I, C>(
    stream_iter: &mut I,
    type_name: &'static str,
    ctx: &mut C,
) -> Result<D, String>
where
    C: TestDeserializeContext,
    D: DeserializeOwned + MzReflect,
    I: Iterator<Item = TokenTree>,
{
    deserialize_optional(stream_iter, type_name, ctx)?
        .ok_or_else(|| format!("Empty spec for type {}", type_name))
}

/// Converts the next part of the stream into JSON deserializable into an object
/// of type `type_name`.
///
/// If the object is a zero-arg struct, this method will return
/// `Ok(Some("null"))` without looking at the stream.
///
/// Otherwise, it will try to convert the next `TokenTree` in the stream.
/// If end of stream has been reached, this method returns `Ok(None)`
///
/// The JSON string should be deserializable into an object of type
/// `type_name`.
///
/// Default object syntax:
/// * An enum is represented as `(enum_variant_snake_case <arg1> <arg2> ..)`,
///   unless it is a unit enum, in which case it can also be represented as
///   `enum_variant_snake_case`. Enums can have optional arguments, which should
///   all come at the end.
/// * A struct is represented as `(<arg1> <arg2> ..)`, unless it has no
///   arguments, in which case it is represented by the empty string.
/// * A vec or tuple is represented as `[<elem1> <elem2> ..]`
/// * None/null is represented as `null`
/// * true (resp. false) is represented as `true` (resp. `false`)
/// * Strings are represented as `"something with quotations"`.
/// * A numeric value like -1 or 1.1 is represented as is.
/// * You can delimit arguments and elements using whitespace and/or commas.
///
/// `ctx` will extend and/or override the default syntax.
pub fn to_json<I, C>(
    stream_iter: &mut I,
    type_name: &str,
    rti: &ReflectedTypeInfo,
    ctx: &mut C,
) -> Result<Option<String>, String>
where
    C: TestDeserializeContext,
    I: Iterator<Item = TokenTree>,
{
    let (type_name, option_found) = normalize_type_name(type_name);

    // If the type is an zero-argument struct, resolve without reading from the stream.
    if let Some((_, f_types)) = rti.struct_dict.get(&type_name[..]) {
        if f_types.is_empty() {
            return Ok(Some("null".to_string()));
        }
    }

    if let Some(first_arg) = stream_iter.next() {
        // If type is `Option<T>`, convert the token to None if it is null,
        // otherwise, try to convert it to an instance of `T`.
        if option_found {
            if let TokenTree::Ident(ident) = &first_arg {
                if *ident == "null" {
                    return Ok(Some("null".to_string()));
                }
            }
        }

        // If the type refers to an enum or struct defined by us, go to a
        // special branch that allows reuse of code paths for the
        // `(<arg1>..<argn>)` syntax as well as the `<only_arg>` syntax.
        // Note that `parse_as_enum_or_struct` also calls
        // `ctx.override_syntax`.
        if let Some(result) =
            parse_as_enum_or_struct(first_arg.clone(), stream_iter, &type_name, rti, ctx)?
        {
            return Ok(Some(result));
        }
        // Resolving types that are not enums or structs defined by us.
        if let Some(result) = ctx.override_syntax(first_arg.clone(), stream_iter, &type_name)? {
            return Ok(Some(result));
        }
        match first_arg {
            TokenTree::Group(group) => {
                let mut inner_iter = group.stream().into_iter();
                match group.delimiter() {
                    Delimiter::Bracket => {
                        if type_name.starts_with("Vec<") && type_name.ends_with('>') {
                            // This is a Vec<type_name>.
                            let vec = parse_as_vec(
                                &mut inner_iter,
                                &type_name[4..(type_name.len() - 1)],
                                rti,
                                ctx,
                            )?;
                            Ok(Some(format!("[{}]", separated(",", vec.iter()))))
                        } else if type_name.starts_with("[") && type_name.ends_with(']') {
                            // This is a [type_name].
                            let vec = parse_as_vec(
                                &mut inner_iter,
                                &type_name[1..(type_name.len() - 1)],
                                rti,
                                ctx,
                            )?;
                            Ok(Some(format!("[{}]", separated(",", vec.iter()))))
                        } else if type_name.starts_with('(') && type_name.ends_with(')') {
                            let vec = parse_as_tuple(
                                &mut inner_iter,
                                &type_name[1..(type_name.len() - 1)],
                                rti,
                                ctx,
                            )?;
                            Ok(Some(format!("[{}]", separated(",", vec.iter()))))
                        } else {
                            Err(format!(
                                "Object specified with brackets {:?} has unsupported type `{}`",
                                inner_iter.collect::<Vec<_>>(),
                                type_name
                            ))
                        }
                    }
                    delim => Err(format!(
                        "Object spec {:?} (type {}) has unsupported delimiter {:?}",
                        inner_iter.collect::<Vec<_>>(),
                        type_name,
                        delim
                    )),
                }
            }
            TokenTree::Punct(punct) => {
                match punct.as_char() {
                    // Pretend the comma does not exist and process the
                    // next `TokenTree`
                    ',' => to_json(stream_iter, &type_name, rti, ctx),
                    // Process the next `TokenTree` and prepend the
                    // punctuation. This enables support for negative
                    // numbers.
                    other => match to_json(stream_iter, &type_name, rti, ctx)? {
                        Some(result) => Ok(Some(format!("{}{}", other, result))),
                        None => Ok(Some(other.to_string())),
                    },
                }
            }
            TokenTree::Ident(ident) => {
                // If type_name == "String", then we are trying to construct
                // either a String or Option<String>. Thus, if ident == null,
                // we may be trying to construct a None object.
                if type_name == "String" && ident != "null" {
                    Ok(Some(ident.to_string().quoted().to_string()))
                } else {
                    Ok(Some(ident.to_string()))
                }
            }
            TokenTree::Literal(literal) => Ok(Some(literal.to_string())),
        }
    } else {
        Ok(None)
    }
}

/// A trait for extending and/or overriding the default test case syntax.
///
/// Note when creating an implementation of this trait that the
/// `[proc_macro2::TokenStream]` considers:
/// * null/true/false to be `Ident`s
/// * strings and positive numeric values (like 1 or 1.1) to be `Literal`s.
/// * negative numeric values to be a `Punct('-')` followed by a `Literal`.
pub trait TestDeserializeContext {
    /// Override the way that `first_arg` is resolved to JSON.
    ///
    /// `first_arg` is the first `TokenTree` of the `TokenStream`.
    /// `rest_of_stream` contains a reference to the rest of the stream.
    ///
    /// Returns Ok(Some(value)) if `first_arg` has been resolved.
    /// Returns Ok(None) if `first_arg` should be resolved using the default
    /// syntax. If returning Ok(None), the function implementation
    /// promises not to advance `rest_of_stream`.
    fn override_syntax<I>(
        &mut self,
        first_arg: TokenTree,
        rest_of_stream: &mut I,
        type_name: &str,
    ) -> Result<Option<String>, String>
    where
        I: Iterator<Item = TokenTree>;

    /// Converts `json` back to the extended syntax specified by
    /// [TestDeserializeContext::override_syntax].
    ///
    /// Returns `Some(value)` if `json` has been resolved.
    /// Returns `None` is `json` should be resolved in the default manner.
    fn reverse_syntax_override(&mut self, json: &Value, type_name: &str) -> Option<String>;
}

/// Default `TestDeserializeContext`.
///
/// Does not override or extend any of the default syntax.
#[derive(Default)]
struct GenericTestDeserializeContext;

impl TestDeserializeContext for GenericTestDeserializeContext {
    fn override_syntax<I>(
        &mut self,
        _first_arg: TokenTree,
        _rest_of_stream: &mut I,
        _type_name: &str,
    ) -> Result<Option<String>, String>
    where
        I: Iterator<Item = TokenTree>,
    {
        Ok(None)
    }

    fn reverse_syntax_override(&mut self, _: &Value, _: &str) -> Option<String> {
        None
    }
}

/* #region helper functions for `to_json` */

/// Converts all `TokenTree`s into JSON deserializable to `type_name`.
fn parse_as_vec<I, C>(
    stream_iter: &mut I,
    type_name: &str,
    rti: &ReflectedTypeInfo,
    ctx: &mut C,
) -> Result<Vec<String>, String>
where
    C: TestDeserializeContext,
    I: Iterator<Item = TokenTree>,
{
    let mut result = Vec::new();
    while let Some(element) = to_json(stream_iter, type_name, rti, ctx)? {
        result.push(element);
    }
    Ok(result)
}

/// Converts all `TokenTree`s into JSON.
///
/// `type_name` is assumed to have been stripped of whitespace.
fn parse_as_tuple<I, C>(
    stream_iter: &mut I,
    type_name: &str,
    rti: &ReflectedTypeInfo,
    ctx: &mut C,
) -> Result<Vec<String>, String>
where
    C: TestDeserializeContext,
    I: Iterator<Item = TokenTree>,
{
    let mut prev_elem_end = 0;
    let mut result = Vec::new();
    while let Some((next_elem_begin, next_elem_end)) =
        find_next_type_in_tuple(type_name, prev_elem_end)
    {
        match to_json(
            stream_iter,
            &type_name[next_elem_begin..next_elem_end],
            rti,
            ctx,
        )? {
            Some(elem) => result.push(elem),
            // we have reached the end of the tuple. Assume that any remaining
            // elements of the tuple are optional.
            None => break,
        }
        prev_elem_end = next_elem_end;
    }
    Ok(result)
}

/// Converts stream into JSON if `type_name` refers to an enum or struct
///
/// Returns `Ok(Some(string))` if `type_name` refers to an enum or struct, and
/// there are no stream conversion errors.
/// Returns `Ok(None)` if `type_name` does not refer to an enum or struct.
fn parse_as_enum_or_struct<I, C>(
    first_arg: TokenTree,
    rest_of_stream: &mut I,
    type_name: &str,
    rti: &ReflectedTypeInfo,
    ctx: &mut C,
) -> Result<Option<String>, String>
where
    C: TestDeserializeContext,
    I: Iterator<Item = TokenTree>,
{
    if rti.enum_dict.contains_key(type_name) || rti.struct_dict.contains_key(type_name) {
        // An enum or a struct can be specified as `(arg1 .. argn)` or
        // `only_arg`. The goal here is to feed the enum/struct specification
        // into a common inner method that takes
        // `(first_token_of_spec, rest_of_tokens_comprising_spec)`
        match first_arg {
            TokenTree::Group(group) if group.delimiter() == Delimiter::Parenthesis => {
                let mut inner_iter = group.stream().into_iter();
                match inner_iter.next() {
                    // the spec is the inner `TokenStream`
                    Some(first_arg) => parse_as_enum_or_struct_inner(
                        first_arg,
                        &mut inner_iter,
                        type_name,
                        rti,
                        ctx,
                    ),
                    None => Ok(None),
                }
            }
            TokenTree::Punct(punct) => {
                // The spec is that all consecutive puncts + the first
                // non-punct symbol count as one argument. This allows for
                // specifying structs with the first argument being something
                // like -1.1.
                let mut consecutive_punct = Vec::new();
                while let Some(token) = rest_of_stream.next() {
                    consecutive_punct.push(token);
                    match &consecutive_punct[consecutive_punct.len() - 1] {
                        TokenTree::Punct(_) => {}
                        _ => {
                            break;
                        }
                    }
                }
                parse_as_enum_or_struct_inner(
                    TokenTree::Punct(punct),
                    &mut consecutive_punct.into_iter(),
                    type_name,
                    rti,
                    ctx,
                )
            }
            other => {
                // The entire enum/struct is specified by the
                // Ident/Literal/Vec,
                // so feed in (the_thing, nothing)
                parse_as_enum_or_struct_inner(other, &mut std::iter::empty(), type_name, rti, ctx)
            }
        }
    } else {
        Ok(None)
    }
}

fn parse_as_enum_or_struct_inner<I, C>(
    first_arg: TokenTree,
    rest_of_stream: &mut I,
    type_name: &str,
    rti: &ReflectedTypeInfo,
    ctx: &mut C,
) -> Result<Option<String>, String>
where
    C: TestDeserializeContext,
    I: Iterator<Item = TokenTree>,
{
    if let Some(result) = ctx.override_syntax(first_arg.clone(), rest_of_stream, type_name)? {
        Ok(Some(result))
    } else if let Some((f_names, f_types)) = rti.struct_dict.get(type_name).map(|r| r.clone()) {
        Ok(Some(to_json_fields(
            type_name,
            &mut (&mut std::iter::once(first_arg)).chain(rest_of_stream),
            f_names,
            f_types,
            rti,
            ctx,
        )?))
    } else if let TokenTree::Ident(ident) = first_arg {
        Ok(Some(to_json_generic_enum(
            ident.to_string(),
            rest_of_stream,
            type_name,
            rti,
            ctx,
        )?))
    } else {
        Ok(None)
    }
}

/// Converts the spec of an enum into deserializable JSON
fn to_json_generic_enum<I, C>(
    variant_snake_case: String,
    rest_of_stream: &mut I,
    type_name: &str,
    rti: &ReflectedTypeInfo,
    ctx: &mut C,
) -> Result<String, String>
where
    C: TestDeserializeContext,
    I: Iterator<Item = TokenTree>,
{
    // Convert the variant from snake_case to CamelCase
    let variant_camel_case = variant_snake_case
        .split('_')
        .map(|s| {
            let mut chars = s.chars();
            let result = chars
                .next()
                .map(|c| c.to_uppercase().chain(chars).collect::<String>())
                .unwrap_or_else(String::new);
            result
        })
        .collect::<Vec<_>>()
        .concat();
    let (f_names, f_types) = rti
        .enum_dict
        .get(type_name)
        .unwrap()
        .get(&variant_camel_case[..])
        .map(|v| v.clone())
        .ok_or_else(|| {
            format!(
                "{}::{} is not a supported enum.",
                type_name, variant_camel_case
            )
        })?;
    // If we reach end of stream before getting a value for each field,
    // we assume that the fields we don't have values for are optional.
    if f_types.is_empty() {
        // The JSON for a unit enum is just `"variant"`.
        Ok(format!("\"{}\"", variant_camel_case))
    } else {
        let fields = to_json_fields(
            &variant_camel_case,
            rest_of_stream,
            f_names,
            f_types,
            rti,
            ctx,
        )?;
        Ok(format!("{{\"{}\":{}}}", variant_camel_case, fields))
    }
}

/// Converts the spec for fields of an enum/struct into deserializable JSON.
///
/// `f_names` contains the names of the fields. If the fields are unnamed,
/// `f_names` is empty.
/// `f_types` contains the types of the fields.
fn to_json_fields<I, C>(
    debug_name: &str,
    stream_iter: &mut I,
    f_names: Vec<&'static str>,
    f_types: Vec<&'static str>,
    rti: &ReflectedTypeInfo,
    ctx: &mut C,
) -> Result<String, String>
where
    C: TestDeserializeContext,
    I: Iterator<Item = TokenTree>,
{
    let mut f_values = Vec::new();
    for t in f_types.iter() {
        match to_json(stream_iter, t, rti, ctx)? {
            Some(value) => f_values.push(value),
            None => {
                break;
            }
        }
    }
    if !f_names.is_empty() {
        // The JSON for named fields is
        // `{"arg1":<val1>, ..}}`.
        Ok(format!(
            "{{{}}}",
            separated(
                ",",
                f_names
                    .iter()
                    .zip(f_values.into_iter())
                    .map(|(n, v)| format!("\"{}\":{}", n, v))
            )
        ))
    } else {
        // The JSON for unnamed fields is
        // `[<val1>, ..]}`, unless it has only one field,
        // in which case the JSON is `<val1>`
        if f_types.len() == 1 {
            Ok(f_values
                .pop()
                .ok_or_else(|| format!("Cannot use default value for {}", debug_name))?)
        } else {
            Ok(format!("[{}]", separated(",", f_values.into_iter())))
        }
    }
}

/* #endregion */

/// Simpler interface for [serialize] when no syntax overrides or extensions are needed.
pub fn serialize_generic<M>(json: &Value, type_name: &str) -> String
where
    M: MzReflect,
{
    let mut rti = ReflectedTypeInfo::default();
    M::add_to_reflected_type_info(&mut rti);
    from_json(
        json,
        type_name,
        &rti,
        &mut GenericTestDeserializeContext::default(),
    )
}

pub fn serialize<M, C>(json: &Value, type_name: &str, ctx: &mut C) -> String
where
    C: TestDeserializeContext,
    M: MzReflect,
{
    let mut rti = ReflectedTypeInfo::default();
    M::add_to_reflected_type_info(&mut rti);
    from_json(json, type_name, &rti, ctx)
}

/// Converts serialized JSON to the syntax that [to_json] handles.
///
/// `json` is assumed to have been produced by serializing an object of type
/// `type_name`.
/// `ctx` is responsible for converting serialized JSON to any syntax
/// extensions or overrides.
pub fn from_json<C>(json: &Value, type_name: &str, rti: &ReflectedTypeInfo, ctx: &mut C) -> String
where
    C: TestDeserializeContext,
{
    let (type_name, option_found) = normalize_type_name(type_name);
    // If type is `Option<T>`, convert the value to "null" if it is null,
    // otherwise, try to convert it to a spec corresponding to an object of
    // type `T`.
    if option_found {
        if let Value::Null = json {
            return "null".to_string();
        }
    }
    if let Some(result) = ctx.reverse_syntax_override(json, &type_name) {
        return result;
    }
    if let Some((names, types)) = rti.struct_dict.get(&type_name[..]) {
        if types.is_empty() {
            "".to_string()
        } else {
            format!("({})", from_json_fields(json, names, types, rti, ctx))
        }
    } else if let Some(enum_dict) = rti.enum_dict.get(&type_name[..]) {
        match json {
            // A unit enum in JSON is `"variant"`. In the spec it is `variant`.
            Value::String(s) => unquote(s),
            // An enum with fields is `{"variant": <fields>}` in JSON. In the
            // spec it is `(variant field1 .. fieldn).
            Value::Object(map) => {
                // Each enum instance only belongs to one variant.
                assert_eq!(
                    map.len(),
                    1,
                    "Multivariant instance {:?} found for enum {}",
                    map,
                    type_name
                );
                for (variant, data) in map.iter() {
                    if let Some((names, types)) = enum_dict.get(&variant[..]) {
                        return format!(
                            "({} {})",
                            variant,
                            from_json_fields(data, names, types, rti, ctx)
                        );
                    }
                }
                unreachable!()
            }
            _ => unreachable!("Invalid json {:?} for enum type {}", json, type_name),
        }
    } else {
        match json {
            Value::Array(members) => {
                let result = if type_name.starts_with("Vec<") && type_name.ends_with('>') {
                    // This is a Vec<something>.
                    members
                        .iter()
                        .map(|v| from_json(v, &type_name[4..(type_name.len() - 1)], rti, ctx))
                        .collect::<Vec<_>>()
                } else {
                    // This is a tuple.
                    let mut result = Vec::new();
                    let type_name = &type_name[1..(type_name.len() - 1)];
                    let mut prev_elem_end = 0;
                    let mut members_iter = members.into_iter();
                    while let Some((next_elem_begin, next_elem_end)) =
                        find_next_type_in_tuple(type_name, prev_elem_end)
                    {
                        match members_iter.next() {
                            Some(elem) => result.push(from_json(
                                elem,
                                &type_name[next_elem_begin..next_elem_end],
                                rti,
                                ctx,
                            )),
                            // we have reached the end of the tuple.
                            None => break,
                        }
                        prev_elem_end = next_elem_end;
                    }
                    result
                };
                // The spec for both is `[elem1 .. elemn]`
                format!("[{}]", separated(" ", result))
            }
            Value::Object(map) => {
                unreachable!("Invalid map {:?} found for type {}", map, type_name)
            }
            other => other.to_string(),
        }
    }
}

fn from_json_fields<C>(
    v: &Value,
    f_names: &[&'static str],
    f_types: &[&'static str],
    rti: &ReflectedTypeInfo,
    ctx: &mut C,
) -> String
where
    C: TestDeserializeContext,
{
    match v {
        // Named fields are specified as
        // `{"field1_name": field1, .. "fieldn_name": fieldn}`
        // not necessarily in that order because maps are unordered.
        // Thus, when converting named fields to the test spec, it is necessary
        // to retrieve values from the map in the order given by `f_names`.
        Value::Object(map) if !f_names.is_empty() => {
            let mut fields = Vec::with_capacity(f_types.len());
            for (name, typ) in f_names.iter().zip(f_types.iter()) {
                fields.push(from_json(&map[*name], typ, rti, ctx))
            }
            separated(" ", fields).to_string()
        }
        // Multiple unnamed fields are specified as `[field1 .. fieldn]` in
        // JSON.
        Value::Array(inner) if f_types.len() > 1 => {
            let mut fields = Vec::with_capacity(f_types.len());
            for (v, typ) in inner.iter().zip(f_types.iter()) {
                fields.push(from_json(v, typ, rti, ctx))
            }
            separated(" ", fields).to_string()
        }
        // A single unnamed field is specified as `field` in JSON.
        other => from_json(other, f_types.first().unwrap(), rti, ctx),
    }
}

/* #region Helper functions common to both spec-to-JSON and the JSON-to-spec
transformations. */

fn normalize_type_name(type_name: &str) -> (String, bool) {
    // Normalize the type name by stripping whitespace.
    let mut type_name = &type_name.replace([' ', '\n'], "")[..];
    let mut option_found = false;
    // Eliminate outer `Box<>` from type names because they are inconsequential
    // when it comes to creating a correctly deserializable JSON string.
    // The presence of an `Option<>` is consequential, but `serde_json` cannot
    // distinguish between `None`, `Some(None)`, `Some(Some(None))`, etc., so
    // we strip out all `Option<>`s and return whether we have seen at least one
    // option.
    loop {
        if type_name.starts_with("Option<") && type_name.ends_with('>') {
            option_found = true;
            type_name = &type_name[7..(type_name.len() - 1)]
        } else if type_name.starts_with("Box<") && type_name.ends_with('>') {
            type_name = &type_name[4..(type_name.len() - 1)]
        } else {
            break;
        }
    }

    (type_name.to_string(), option_found)
}

fn find_next_type_in_tuple(type_name: &str, prev_elem_end: usize) -> Option<(usize, usize)> {
    let current_elem_begin = if prev_elem_end > 0 {
        //skip over the comma
        prev_elem_end + 1
    } else {
        prev_elem_end
    };
    if current_elem_begin >= type_name.len() {
        return None;
    }
    // The elements of the tuple can be a plain type, a nested tuple, or a
    // Box/Vec/Option with the argument being nested tuple.
    // `type1, (type2, type3), Vec<(type4, type5)>`
    let mut i = current_elem_begin;
    let mut it = type_name.chars().skip(current_elem_begin).peekable();
    let mut paren_level = 0;
    let mut bracket_level = 0;
    while i < type_name.len()
        && !(paren_level == 0 && bracket_level == 0 && *it.peek().unwrap() == ',')
    {
        if *it.peek().unwrap() == '(' {
            paren_level += 1;
        } else if *it.peek().unwrap() == ')' {
            paren_level -= 1;
        }
        if *it.peek().unwrap() == '<' {
            bracket_level += 1;
        } else if *it.peek().unwrap() == '>' {
            bracket_level -= 1;
        }
        i += 1;
        it.next();
    }

    Some((current_elem_begin, i))
}

/* #endregion */