1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0
 */

use std::fmt;
use std::time::{Duration, SystemTime};

/// Throughput representation for use when configuring [`super::MinimumThroughputBody`]
#[derive(Debug, Clone, Copy)]
#[cfg_attr(test, derive(Eq))]
pub struct Throughput {
    pub(super) bytes_read: u64,
    pub(super) per_time_elapsed: Duration,
}

impl Throughput {
    /// Create a new throughput with the given bytes read and time elapsed.
    pub fn new(bytes_read: u64, per_time_elapsed: Duration) -> Self {
        debug_assert!(
            !per_time_elapsed.is_zero(),
            "cannot create a throughput if per_time_elapsed == 0"
        );

        Self {
            bytes_read,
            per_time_elapsed,
        }
    }

    /// Create a new throughput in bytes per second.
    pub const fn new_bytes_per_second(bytes: u64) -> Self {
        Self {
            bytes_read: bytes,
            per_time_elapsed: Duration::from_secs(1),
        }
    }

    /// Create a new throughput in kilobytes per second.
    pub const fn new_kilobytes_per_second(kilobytes: u64) -> Self {
        Self {
            bytes_read: kilobytes * 1000,
            per_time_elapsed: Duration::from_secs(1),
        }
    }

    /// Create a new throughput in megabytes per second.
    pub const fn new_megabytes_per_second(megabytes: u64) -> Self {
        Self {
            bytes_read: megabytes * 1000 * 1000,
            per_time_elapsed: Duration::from_secs(1),
        }
    }

    pub(super) fn bytes_per_second(&self) -> f64 {
        let per_time_elapsed_secs = self.per_time_elapsed.as_secs_f64();
        if per_time_elapsed_secs == 0.0 {
            return 0.0; // Avoid dividing by zero.
        };

        self.bytes_read as f64 / per_time_elapsed_secs
    }
}

impl PartialEq for Throughput {
    fn eq(&self, other: &Self) -> bool {
        self.bytes_per_second() == other.bytes_per_second()
    }
}

impl PartialOrd for Throughput {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        self.bytes_per_second()
            .partial_cmp(&other.bytes_per_second())
    }
}

impl fmt::Display for Throughput {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // The default float formatting behavior will ensure the a number like 2.000 is rendered as 2
        // while a number like 0.9982107441748642 will be rendered as 0.9982107441748642. This
        // multiplication and division will truncate a float to have a precision of no greater than 3.
        // For example, 0.9982107441748642 would become 0.999. This will fail for very large floats
        // but should suffice for the numbers we're dealing with.
        let pretty_bytes_per_second = (self.bytes_per_second() * 1000.0).round() / 1000.0;

        write!(f, "{pretty_bytes_per_second} B/s")
    }
}

impl From<(u64, Duration)> for Throughput {
    fn from(value: (u64, Duration)) -> Self {
        Self {
            bytes_read: value.0,
            per_time_elapsed: value.1,
        }
    }
}

/// Overall label for a given bin.
#[derive(Copy, Clone, Debug, Ord, PartialOrd, Eq, PartialEq)]
enum BinLabel {
    // IMPORTANT: The order of these enums matters since it represents their priority:
    // Pending > TransferredBytes > NoPolling > Empty
    //
    /// There is no data in this bin.
    Empty,

    /// No polling took place during this bin.
    NoPolling,

    /// This many bytes were transferred during this bin.
    TransferredBytes,

    /// The user/remote was not providing/consuming data fast enough during this bin.
    ///
    /// The number is the number of bytes transferred, if this replaced TransferredBytes.
    Pending,
}

/// Represents a bin (or a cell) in a linear grid that represents a small chunk of time.
#[derive(Copy, Clone, Debug)]
struct Bin {
    label: BinLabel,
    bytes: u64,
}

impl Bin {
    const fn new(label: BinLabel, bytes: u64) -> Self {
        Self { label, bytes }
    }
    const fn empty() -> Self {
        Self::new(BinLabel::Empty, 0)
    }

    fn is_empty(&self) -> bool {
        matches!(self.label, BinLabel::Empty)
    }

    fn merge(&mut self, other: Bin) -> &mut Self {
        // Assign values based on this priority order (highest priority higher up):
        //   1. Pending
        //   2. TransferredBytes
        //   3. NoPolling
        //   4. Empty
        self.label = if other.label > self.label {
            other.label
        } else {
            self.label
        };
        self.bytes += other.bytes;
        self
    }

    /// Number of bytes transferred during this bin
    fn bytes(&self) -> u64 {
        self.bytes
    }
}

#[derive(Copy, Clone, Debug, Default)]
struct BinCounts {
    /// Number of bins with no data.
    empty: usize,
    /// Number of "no polling" bins.
    no_polling: usize,
    /// Number of "bytes transferred" bins.
    transferred: usize,
    /// Number of "pending" bins.
    pending: usize,
}

/// Underlying stack-allocated linear grid buffer for tracking
/// throughput events for [`ThroughputLogs`].
#[derive(Copy, Clone, Debug)]
struct LogBuffer<const N: usize> {
    entries: [Bin; N],
    // The length only needs to exist so that the `fill_gaps` function
    // can differentiate between `Empty` due to there not having been enough
    // time to establish a full buffer worth of data vs. `Empty` due to a
    // polling gap. Once the length reaches N, it will never change again.
    length: usize,
}
impl<const N: usize> LogBuffer<N> {
    fn new() -> Self {
        Self {
            entries: [Bin::empty(); N],
            length: 0,
        }
    }

    /// Mutably returns the tail of the buffer.
    ///
    /// ## Panics
    ///
    /// The buffer MUST have at least one bin in it before this is called.
    fn tail_mut(&mut self) -> &mut Bin {
        debug_assert!(self.length > 0);
        &mut self.entries[self.length - 1]
    }

    /// Pushes a bin into the buffer. If the buffer is already full,
    /// then this will rotate the entire buffer to the left.
    fn push(&mut self, bin: Bin) {
        if self.filled() {
            self.entries.rotate_left(1);
            self.entries[N - 1] = bin;
        } else {
            self.entries[self.length] = bin;
            self.length += 1;
        }
    }

    /// Returns the total number of bytes transferred within the time window.
    fn bytes_transferred(&self) -> u64 {
        self.entries.iter().take(self.length).map(Bin::bytes).sum()
    }

    #[inline]
    fn filled(&self) -> bool {
        self.length == N
    }

    /// Fills in missing NoData entries.
    ///
    /// We want NoData entries to represent when a future hasn't been polled.
    /// Since the future is in charge of logging in the first place, the only
    /// way we can know about these is by examining gaps in time.
    fn fill_gaps(&mut self) {
        for entry in self.entries.iter_mut().take(self.length) {
            if entry.is_empty() {
                *entry = Bin::new(BinLabel::NoPolling, 0);
            }
        }
    }

    /// Returns the counts of each bin type in the buffer.
    fn counts(&self) -> BinCounts {
        let mut counts = BinCounts::default();
        for entry in &self.entries {
            match entry.label {
                BinLabel::Empty => counts.empty += 1,
                BinLabel::NoPolling => counts.no_polling += 1,
                BinLabel::TransferredBytes => counts.transferred += 1,
                BinLabel::Pending => counts.pending += 1,
            }
        }
        counts
    }
}

/// Report/summary of all the events in a time window.
#[cfg_attr(test, derive(Debug, Eq, PartialEq))]
pub(crate) enum ThroughputReport {
    /// Not enough data to draw any conclusions. This happens early in a request/response.
    Incomplete,
    /// The stream hasn't been polled for most of this time window.
    NoPolling,
    /// The stream has been waiting for most of the time window.
    Pending,
    /// The stream transferred this amount of throughput during the time window.
    Transferred(Throughput),
}

const BIN_COUNT: usize = 10;

/// Log of throughput in a request or response stream.
///
/// Used to determine if a configured minimum throughput is being met or not
/// so that a request or response stream can be timed out in the event of a
/// stall.
///
/// Request/response streams push data transfer or pending events to this log
/// based on what's going on in their poll functions. The log tracks three kinds
/// of events despite only receiving two: the third is "no polling". The poll
/// functions cannot know when they're not being polled, so the log examines gaps
/// in the event history to know when no polling took place.
///
/// The event logging is simplified down to a linear grid consisting of 10 "bins",
/// with each bin representing 1/10th the total time window. When an event is pushed,
/// it is either merged into the current tail bin, or all the bins are rotated
/// left to create a new empty tail bin, and then it is merged into that one.
#[derive(Clone, Debug)]
pub(super) struct ThroughputLogs {
    resolution: Duration,
    current_tail: SystemTime,
    buffer: LogBuffer<BIN_COUNT>,
}

impl ThroughputLogs {
    /// Creates a new log starting at `now` with the given `time_window`.
    ///
    /// Note: the `time_window` gets divided by 10 to create smaller sub-windows
    /// to track throughput. The time window should be configured to be large enough
    /// so that these sub-windows aren't too small for network-based events.
    /// A time window of 10ms probably won't work, but 500ms might. The default
    /// is one second.
    pub(super) fn new(time_window: Duration, now: SystemTime) -> Self {
        assert!(!time_window.is_zero());
        let resolution = time_window.div_f64(BIN_COUNT as f64);
        Self {
            resolution,
            current_tail: now,
            buffer: LogBuffer::new(),
        }
    }

    /// Returns the resolution at which events are logged at.
    ///
    /// The resolution is the number of bins in the time window.
    pub(super) fn resolution(&self) -> Duration {
        self.resolution
    }

    /// Pushes a "pending" event.
    ///
    /// Pending indicates the streaming future is waiting for something.
    /// In an upload, it is waiting for data from the user, and in a download,
    /// it is waiting for data from the server.
    pub(super) fn push_pending(&mut self, time: SystemTime) {
        self.push(time, Bin::new(BinLabel::Pending, 0));
    }

    /// Pushes a data transferred event.
    ///
    /// Indicates that this number of bytes were transferred at this time.
    pub(super) fn push_bytes_transferred(&mut self, time: SystemTime, bytes: u64) {
        self.push(time, Bin::new(BinLabel::TransferredBytes, bytes));
    }

    fn push(&mut self, now: SystemTime, value: Bin) {
        self.catch_up(now);
        self.buffer.tail_mut().merge(value);
        self.buffer.fill_gaps();
    }

    /// Pushes empty bins until `current_tail` is caught up to `now`.
    fn catch_up(&mut self, now: SystemTime) {
        while now >= self.current_tail {
            self.current_tail += self.resolution;
            self.buffer.push(Bin::empty());
        }
        assert!(self.current_tail >= now);
    }

    /// Generates an overall report of the time window.
    pub(super) fn report(&mut self, now: SystemTime) -> ThroughputReport {
        self.catch_up(now);
        self.buffer.fill_gaps();

        let BinCounts {
            empty,
            no_polling,
            transferred,
            pending,
        } = self.buffer.counts();

        // If there are any empty cells at all, then we haven't been tracking
        // long enough to make any judgements about the stream's progress.
        if empty > 0 {
            return ThroughputReport::Incomplete;
        }

        let bytes = self.buffer.bytes_transferred();
        let time = self.resolution * (BIN_COUNT - empty) as u32;
        let throughput = Throughput::new(bytes, time);

        let half = BIN_COUNT / 2;
        match (transferred > 0, no_polling >= half, pending >= half) {
            (true, _, _) => ThroughputReport::Transferred(throughput),
            (_, true, _) => ThroughputReport::NoPolling,
            (_, _, true) => ThroughputReport::Pending,
            _ => ThroughputReport::Incomplete,
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::time::Duration;

    #[test]
    fn test_throughput_eq() {
        let t1 = Throughput::new(1, Duration::from_secs(1));
        let t2 = Throughput::new(25, Duration::from_secs(25));
        let t3 = Throughput::new(100, Duration::from_secs(100));

        assert_eq!(t1, t2);
        assert_eq!(t2, t3);
    }

    #[test]
    fn incomplete_no_entries() {
        let start = SystemTime::UNIX_EPOCH;
        let mut logs = ThroughputLogs::new(Duration::from_secs(1), start);
        let report = logs.report(start);
        assert_eq!(ThroughputReport::Incomplete, report);
    }

    #[test]
    fn incomplete_with_entries() {
        let start = SystemTime::UNIX_EPOCH;
        let mut logs = ThroughputLogs::new(Duration::from_secs(1), start);
        logs.push_pending(start);

        let report = logs.report(start + Duration::from_millis(300));
        assert_eq!(ThroughputReport::Incomplete, report);
    }

    #[test]
    fn incomplete_with_transferred() {
        let start = SystemTime::UNIX_EPOCH;
        let mut logs = ThroughputLogs::new(Duration::from_secs(1), start);
        logs.push_pending(start);
        logs.push_bytes_transferred(start + Duration::from_millis(100), 10);

        let report = logs.report(start + Duration::from_millis(300));
        assert_eq!(ThroughputReport::Incomplete, report);
    }

    #[test]
    fn push_pending_at_the_beginning_of_each_tick() {
        let start = SystemTime::UNIX_EPOCH;
        let mut logs = ThroughputLogs::new(Duration::from_secs(1), start);

        let mut now = start;
        for i in 1..=BIN_COUNT {
            logs.push_pending(now);
            now += logs.resolution();

            assert_eq!(i, logs.buffer.counts().pending);
        }

        let report = dbg!(&mut logs).report(now);
        assert_eq!(ThroughputReport::Pending, report);
    }

    #[test]
    fn push_pending_at_the_end_of_each_tick() {
        let start = SystemTime::UNIX_EPOCH;
        let mut logs = ThroughputLogs::new(Duration::from_secs(1), start);

        let mut now = start;
        for i in 1..BIN_COUNT {
            now += logs.resolution();
            logs.push_pending(now);

            assert_eq!(i, dbg!(&logs).buffer.counts().pending);
            assert_eq!(0, logs.buffer.counts().transferred);
            assert_eq!(1, logs.buffer.counts().no_polling);
        }
        // This should replace the initial "no polling" bin
        now += logs.resolution();
        logs.push_pending(now);
        assert_eq!(0, logs.buffer.counts().no_polling);

        let report = dbg!(&mut logs).report(now);
        assert_eq!(ThroughputReport::Pending, report);
    }

    #[test]
    fn push_transferred_at_the_beginning_of_each_tick() {
        let start = SystemTime::UNIX_EPOCH;
        let mut logs = ThroughputLogs::new(Duration::from_secs(1), start);

        let mut now = start;
        for i in 1..=BIN_COUNT {
            logs.push_bytes_transferred(now, 10);
            if i != BIN_COUNT {
                now += logs.resolution();
            }

            assert_eq!(i, logs.buffer.counts().transferred);
            assert_eq!(0, logs.buffer.counts().pending);
            assert_eq!(0, logs.buffer.counts().no_polling);
        }

        let report = dbg!(&mut logs).report(now);
        assert_eq!(
            ThroughputReport::Transferred(Throughput::new(100, Duration::from_secs(1))),
            report
        );
    }

    #[test]
    fn no_polling() {
        let start = SystemTime::UNIX_EPOCH;
        let mut logs = ThroughputLogs::new(Duration::from_secs(1), start);
        let report = logs.report(start + Duration::from_secs(2));
        assert_eq!(ThroughputReport::NoPolling, report);
    }

    // Transferred bytes MUST take priority over pending
    #[test]
    fn mixed_bag_mostly_pending() {
        let start = SystemTime::UNIX_EPOCH;
        let mut logs = ThroughputLogs::new(Duration::from_secs(1), start);

        logs.push_bytes_transferred(start + Duration::from_millis(50), 10);
        logs.push_pending(start + Duration::from_millis(150));
        logs.push_pending(start + Duration::from_millis(250));
        logs.push_bytes_transferred(start + Duration::from_millis(350), 10);
        logs.push_pending(start + Duration::from_millis(450));
        // skip 550
        logs.push_pending(start + Duration::from_millis(650));
        logs.push_pending(start + Duration::from_millis(750));
        logs.push_pending(start + Duration::from_millis(850));

        let report = logs.report(start + Duration::from_millis(999));
        assert_eq!(
            ThroughputReport::Transferred(Throughput::new_bytes_per_second(20)),
            report
        );
    }

    #[test]
    fn mixed_bag_mostly_pending_no_transferred() {
        let start = SystemTime::UNIX_EPOCH;
        let mut logs = ThroughputLogs::new(Duration::from_secs(1), start);

        logs.push_pending(start + Duration::from_millis(50));
        logs.push_pending(start + Duration::from_millis(150));
        logs.push_pending(start + Duration::from_millis(250));
        // skip 350
        logs.push_pending(start + Duration::from_millis(450));
        // skip 550
        logs.push_pending(start + Duration::from_millis(650));
        logs.push_pending(start + Duration::from_millis(750));
        logs.push_pending(start + Duration::from_millis(850));

        let report = logs.report(start + Duration::from_millis(999));
        assert_eq!(ThroughputReport::Pending, report);
    }
}