compact_bytes/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
//! "Small string optimization" for a bytes.

use std::alloc;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::mem::ManuallyDrop;
use std::ops::Deref;
use std::ops::DerefMut;
use std::ptr::NonNull;

const INLINE_MASK: u8 = 0b1000_0000;

/// [`CompactBytes`] inlines up-to 23 bytes on the stack, if more than that is required we spill to
/// the heap. The heap representation is not reference counted like `bytes::Bytes`, it's just an
/// owned blob of bytes.
///
/// # Why?
///
/// ### 1. Do we want to do this?
///
/// Performance. A `Vec<u8>` is already 24 bytes on the stack, and then another allocation on the
/// heap. If we can avoid the heap allocation altogether it saves memory and improves runtime
/// performance.
///
/// ### 2. Did we write our own implementation?
///
/// At the time of writing (October 2023), there isn't anything else in the Rust ecosystem that
/// provides what we need. There is `smallvec` (which we used to use) but it's not space efficient.
/// A `SmallVec<[u8; 24]>` required 32 bytes on the stack, so we were wasting 8 bytes! There are
/// other small vector crates (e.g. `arrayvec` or `tinyvec`) but they have their own limitations.
/// There are also a number of small string optimizations in the Rust ecosystem, but none of them
/// work for other various reasons.
///
/// # How does this work?
///
/// A [`CompactBytes`] is 24 bytes on the stack (same as `Vec<u8>`) but it has two modes:
///
/// 1. Heap   `[ ptr<8> | len<8> | cap<8> ]`
/// 2. Inline `[   buffer<23>   | len <1> ]`
///
/// We use the most significant bit of the last byte to indicate which mode we're in.
///
pub union CompactBytes {
    heap: ManuallyDrop<HeapBytes>,
    inline: InlineBytes,
}

// SAFETY: It is safe to Send a `CompactBytes` to other threads because it owns all of its data.
unsafe impl Send for CompactBytes {}

// SAFETY: It is safe to share references of `CompactBytes` between threads because it does not
// support any kind of interior mutability, or other way to introduce races.
unsafe impl Sync for CompactBytes {}

static_assertions::assert_eq_align!(InlineBytes, HeapBytes, CompactBytes, Vec<u8>, usize);
static_assertions::assert_eq_size!(InlineBytes, HeapBytes, CompactBytes, Vec<u8>);

static_assertions::const_assert_eq!(std::mem::size_of::<CompactBytes>(), 24);

impl CompactBytes {
    /// The maximum amount of bytes that a [`CompactBytes`] can store inline.
    pub const MAX_INLINE: usize = 23;

    /// The minimum amount of bytes that a [`CompactBytes`] will store on the heap.
    pub const MIN_HEAP: usize = std::mem::size_of::<usize>() * 2;
    /// The maximum amount of bytes that a [`CompactBytes`] can store on the heap.
    pub const MAX_HEAP: usize = usize::MAX >> 1;

    /// Creates a new [`CompactBytes`] from the provided slice. Stores the bytes inline if small
    /// enough.
    ///
    /// # Examples
    ///
    /// ```
    /// use compact_bytes::CompactBytes;
    ///
    /// let inline = CompactBytes::new(&[1, 2, 3, 4]);
    /// assert!(!inline.spilled());
    /// assert_eq!(inline.len(), 4);
    ///
    /// let heap = CompactBytes::new(b"I am a bytes type that will get stored on the heap");
    /// assert!(heap.spilled());
    /// assert_eq!(heap.len(), 50);
    /// ```
    #[inline]
    pub fn new(slice: &[u8]) -> Self {
        if slice.len() <= Self::MAX_INLINE {
            // SAFETY: We just checked that slice length is less than or equal to MAX_INLINE.
            let inline = unsafe { InlineBytes::new(slice) };
            CompactBytes { inline }
        } else {
            let heap = ManuallyDrop::new(HeapBytes::new(slice));
            CompactBytes { heap }
        }
    }

    /// Creates a new [`CompactBytes`] with the specified capacity, but with a minimum of
    /// [`CompactBytes::MAX_INLINE`].
    ///
    /// # Examples
    ///
    /// ```
    /// use compact_bytes::CompactBytes;
    ///
    /// let min = CompactBytes::with_capacity(4);
    /// assert_eq!(min.capacity(), CompactBytes::MAX_INLINE);
    /// ```
    #[inline]
    pub fn with_capacity(capacity: usize) -> Self {
        if capacity <= Self::MAX_INLINE {
            let inline = InlineBytes::empty();
            CompactBytes { inline }
        } else {
            let heap = ManuallyDrop::new(HeapBytes::with_capacity(capacity));
            CompactBytes { heap }
        }
    }

    /// Creates a new [`CompactBytes`] using the provided pointer, length, and capacity.
    ///
    /// # Safety
    ///
    /// * The caller must guarantee that the provided pointer is properly aligned, and the backing
    ///   allocation was made by the same allocator that will eventually be used to free the
    ///   returned [`CompactBytes`].
    /// * `length` needs to be less than or equal to `capacity`.
    /// * `capacity` needs to be the capacity that the pointer was allocated with.
    /// * `capacity` needs to be less than or equal to [`CompactBytes::MAX_HEAP`].
    ///
    #[inline]
    pub unsafe fn from_raw_parts(ptr: *mut u8, length: usize, capacity: usize) -> Self {
        let heap = HeapBytes {
            ptr: NonNull::new_unchecked(ptr),
            len: length,
            cap: capacity,
        };
        let heap = ManuallyDrop::new(heap);
        CompactBytes { heap }
    }

    /// Returns the contents of the [`CompactBytes`] as a bytes slice.
    #[inline]
    pub fn as_slice(&self) -> &[u8] {
        let pointer = self.as_ptr();
        let length = self.len();

        unsafe { core::slice::from_raw_parts(pointer, length) }
    }

    /// Returns the contents of the [`CompactBytes`] as a mutable bytes slice.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [u8] {
        let pointer = self.as_mut_ptr();
        let length = self.len();

        unsafe { core::slice::from_raw_parts_mut(pointer, length) }
    }

    /// Returns the length of the [`CompactBytes`].
    #[inline(always)]
    pub fn len(&self) -> usize {
        // SAFETY: `InlineBytes` and `HeapBytes` share the same size and alignment. Before
        // returning this value we check whether it's valid or not.
        //
        // Note: This code is very carefully written so we can benefit from branchless
        // instructions.
        let (mut length, heap_length) = unsafe { (self.inline.len(), self.heap.len) };
        if self.spilled() {
            length = heap_length;
        }

        length
    }

    /// Returns if the [`CompactBytes`] is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the capacity of the [`CompactBytes`].
    #[inline(always)]
    pub fn capacity(&self) -> usize {
        // SAFETY: `InlineBytes` and `HeapBytes` share the same size and alignment. Before
        // returning this value we check whether it's valid or not.
        //
        // Note: This code is very carefully written so we can benefit from branchless
        // instructions.
        let (mut capacity, heap_capacity) = unsafe { (Self::MAX_INLINE, self.heap.cap) };
        if self.spilled() {
            capacity = heap_capacity;
        }
        capacity
    }

    /// Appends an additional byte to the [`CompactBytes`], resizing if necessary.
    ///
    /// Note: You should almost never call this in a loop, instead use
    /// [`CompactBytes::extend_from_slice`].
    #[inline]
    pub fn push(&mut self, byte: u8) {
        self.extend_from_slice(&[byte]);
    }

    /// Extends the [`CompactBytes`] with bytes from `slice`, resizing if necessary.
    #[inline(always)]
    pub fn extend_from_slice(&mut self, slice: &[u8]) {
        // Reserve at least enough space to fit slice.
        self.reserve(slice.len());

        let (ptr, len, cap) = self.as_mut_triple();
        // SAFTEY: `len` is less than `cap`, so we know it's within the original allocation. This
        // addition does not overflow `isize`, nor does it rely on any wrapping logic.
        let push_ptr = unsafe { ptr.add(len) };

        debug_assert!((cap - len) >= slice.len(), "failed to reserve enough space");

        // Safety:
        //
        // * src is valid for a read of len bytes, since len comes from src.
        // * dst is valid for writes of len bytes, since we just reserved extra space.
        // * src and dst are both properly aligned.
        // * src and dst to not overlap because we have a unique reference to dst.
        //
        unsafe { std::ptr::copy_nonoverlapping(slice.as_ptr(), push_ptr, slice.len()) };

        // SAFETY: We just wrote an additional len bytes, so we know this length is valid.
        unsafe { self.set_len(len + slice.len()) };
    }

    /// Truncates this [`CompactBytes`], removing all contents but without effecting the capacity.
    #[inline]
    pub fn clear(&mut self) {
        self.truncate(0);
    }

    /// Truncates this [`CompactBytes`] to the specified length without effecting the capacity. Has
    /// no effect if `new_len` is greater than the current length.
    #[inline]
    pub fn truncate(&mut self, new_len: usize) {
        if new_len >= self.len() {
            return;
        }
        unsafe { self.set_len(new_len) }
    }

    /// Reserves at least `additional` bytes for this [`CompactBytes`], possibly re-allocating if
    /// there is not enough remaining capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// use compact_bytes::CompactBytes;
    ///
    /// let mut b = CompactBytes::new(b"foo");
    /// b.reserve(100);
    ///
    /// assert_eq!(b.capacity(), 103);
    /// ```
    #[inline]
    pub fn reserve(&mut self, additional: usize) {
        let len = self.len();
        let needed_capacity = len
            .checked_add(additional)
            .expect("attempt to reserve more than usize::MAX");

        // Already have enough space, nothing to do!
        if self.capacity() >= needed_capacity {
            return;
        }

        // Note: We move the actual re-allocation code path into its own function
        // so the common case of calling `reserve(...)` when we already have
        // enough capacity can be inlined by LLVM.
        realloc(self, len, additional);

        #[cold]
        fn realloc(this: &mut CompactBytes, len: usize, additional: usize) {
            // Note: Here we are making a distinct choice to _not_ eagerly inline.
            //
            // `CompactBytes`s can get re-used, e.g. calling `CompactBytes::clear`, at which point it's
            // possible  we could have a length of 0, and 'additional' bytes would be less then
            // `MAX_INLINE`. Some implementations might opt to drop the existing heap allocation, but
            // if a `CompactBytes` is being re-used it's likely we'll need the full original capacity,
            // thus we do not eagerly inline.

            if !this.spilled() {
                let heap = HeapBytes::with_additional(this.as_slice(), additional);
                *this = CompactBytes {
                    heap: ManuallyDrop::new(heap),
                };
            } else {
                // SAFETY: `InlineBytes` and `HeapBytes` have the same size and alignment. We also
                // checked above that the current `CompactBytes` is heap allocated.
                let heap_row = unsafe { &mut this.heap };

                let amortized_capacity = HeapBytes::amortized_growth(len, additional);

                // First attempt to resize the existing allocation, if that fails then create a new one.
                if heap_row.realloc(amortized_capacity).is_err() {
                    let heap = HeapBytes::with_additional(this.as_slice(), additional);
                    let heap = ManuallyDrop::new(heap);
                    *this = CompactBytes { heap };
                }
            }
        }
    }

    /// Consumes the [`CompactBytes`], returning a `Vec<u8>`.
    #[inline]
    pub fn into_vec(self) -> Vec<u8> {
        if self.spilled() {
            // SAFETY: `InlineBytes` and `HeapBytes` have the same size and alignment. We also
            // checked above that the current `CompactBytes` is heap allocated.
            let heap = unsafe { &self.heap };
            let vec = unsafe { Vec::from_raw_parts(heap.ptr.as_ptr(), heap.len, heap.cap) };
            std::mem::forget(self);

            vec
        } else {
            self.as_slice().to_vec()
        }
    }

    /// Returns if the [`CompactBytes`] has spilled to the heap.
    #[inline(always)]
    pub fn spilled(&self) -> bool {
        // SAFETY: `InlineBytes` and `HeapBytes` have the same size and alignment. We also checked
        // above that the current `CompactBytes` is heap allocated.
        unsafe { self.inline.data < INLINE_MASK }
    }

    /// Forces the length of [`CompactBytes`] to `new_len`.
    ///
    /// # Safety
    /// * `new_len` must be less than or equal to capacity.
    /// * The bytes at `old_len..new_len` must be initialized.
    ///
    #[inline]
    unsafe fn set_len(&mut self, new_len: usize) {
        if self.spilled() {
            self.heap.set_len(new_len);
        } else {
            self.inline.set_len(new_len);
        }
    }

    #[inline(always)]
    fn as_ptr(&self) -> *const u8 {
        // SAFETY: `InlineBytes` and `HeapBytes` share the same size and alignment. Before
        // returning this value we check whether it's valid or not.
        //
        // Note: This code is very carefully written so we can benefit from branchless
        // instructions.
        let mut pointer = self as *const Self as *const u8;
        if self.spilled() {
            pointer = unsafe { self.heap.ptr }.as_ptr()
        }
        pointer
    }

    #[inline(always)]
    fn as_mut_ptr(&mut self) -> *mut u8 {
        // SAFETY: `InlineBytes` and `HeapBytes` share the same size and alignment. Before
        // returning this value we check whether it's valid or not.
        //
        // Note: This code is very carefully written so we can benefit from branchless
        // instructions.
        let mut pointer = self as *mut Self as *mut u8;
        if self.spilled() {
            pointer = unsafe { self.heap.ptr }.as_ptr()
        }
        pointer
    }

    #[inline(always)]
    fn as_mut_triple(&mut self) -> (*mut u8, usize, usize) {
        let ptr = self.as_mut_ptr();
        let len = self.len();
        let cap = self.capacity();

        (ptr, len, cap)
    }
}

impl Default for CompactBytes {
    #[inline]
    fn default() -> Self {
        CompactBytes::new(&[])
    }
}

impl Deref for CompactBytes {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &[u8] {
        self.as_slice()
    }
}

impl DerefMut for CompactBytes {
    #[inline]
    fn deref_mut(&mut self) -> &mut [u8] {
        self.as_mut_slice()
    }
}

impl AsRef<[u8]> for CompactBytes {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self.as_slice()
    }
}

impl<T: AsRef<[u8]>> PartialEq<T> for CompactBytes {
    #[inline]
    fn eq(&self, other: &T) -> bool {
        self.as_slice() == other.as_ref()
    }
}

impl Eq for CompactBytes {}

impl Hash for CompactBytes {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.as_slice().hash(state)
    }
}

impl fmt::Debug for CompactBytes {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{:?}", self.as_slice())
    }
}

impl Drop for CompactBytes {
    #[inline]
    fn drop(&mut self) {
        // Note: we hint to the compiler that dropping a heap variant is cold to improve the
        // performance of dropping the inline variant.
        #[cold]
        fn outlined_drop(this: &mut CompactBytes) {
            let heap = unsafe { &mut this.heap };
            heap.dealloc();
        }

        if self.spilled() {
            outlined_drop(self);
        }
    }
}

impl Clone for CompactBytes {
    #[inline]
    fn clone(&self) -> Self {
        // Note: we hint to the compiler that cloing a heap variant is cold to improve the
        // performance of cloning the inline variant.
        #[cold]
        fn outlined_clone(this: &CompactBytes) -> CompactBytes {
            CompactBytes::new(this.as_slice())
        }

        if self.spilled() {
            outlined_clone(self)
        } else {
            let inline = unsafe { &self.inline };
            CompactBytes { inline: *inline }
        }
    }

    #[inline]
    fn clone_from(&mut self, source: &Self) {
        self.clear();
        self.extend_from_slice(source.as_slice());
    }
}

impl From<Vec<u8>> for CompactBytes {
    #[inline]
    fn from(mut value: Vec<u8>) -> Self {
        if value.is_empty() {
            let inline = InlineBytes::empty();
            return CompactBytes { inline };
        }

        // Deconstruct the Vec so we can convert to a `CompactBytes` in constant time.
        let (ptr, len, cap) = (value.as_mut_ptr(), value.len(), value.capacity());
        // SAFETY: We checked above, and returned early, if the `Vec` was empty, thus we know this
        // pointer is not null.
        let ptr = unsafe { NonNull::new_unchecked(ptr) };
        // Forget the original Vec so it's underlying buffer does not get dropped.
        std::mem::forget(value);

        let heap = HeapBytes { ptr, len, cap };
        CompactBytes {
            heap: ManuallyDrop::new(heap),
        }
    }
}

impl serde::Serialize for CompactBytes {
    fn serialize<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        self.as_slice().serialize(serializer)
    }
}

impl<'de> serde::Deserialize<'de> for CompactBytes {
    fn deserialize<D: serde::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        deserialize_compact_bytes(deserializer)
    }
}

fn deserialize_compact_bytes<'de: 'a, 'a, D: serde::Deserializer<'de>>(
    deserializer: D,
) -> Result<CompactBytes, D::Error> {
    struct CompactBytesVisitor;

    impl<'a> serde::de::Visitor<'a> for CompactBytesVisitor {
        type Value = CompactBytes;

        fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
            formatter.write_str("bytes")
        }

        fn visit_seq<A: serde::de::SeqAccess<'a>>(
            self,
            mut seq: A,
        ) -> Result<Self::Value, A::Error> {
            let mut bytes = CompactBytes::default();
            if let Some(capacity_hint) = seq.size_hint() {
                bytes.reserve(capacity_hint);
            }

            while let Some(elem) = seq.next_element::<u8>()? {
                bytes.push(elem)
            }

            Ok(bytes)
        }

        fn visit_borrowed_bytes<E: serde::de::Error>(self, v: &'a [u8]) -> Result<Self::Value, E> {
            Ok(CompactBytes::new(v))
        }
    }

    deserializer.deserialize_bytes(CompactBytesVisitor)
}

#[repr(C, align(8))]
#[derive(Copy, Clone)]
struct InlineBytes {
    buffer: [u8; CompactBytes::MAX_INLINE],
    data: u8,
}

impl InlineBytes {
    /// Create an [`InlineBytes`] from the provided slice.
    ///
    /// Safety:
    /// * `slice` must have a length less than or equal to [`CompactBytes::MAX_INLINE`].
    ///
    #[inline]
    pub unsafe fn new(slice: &[u8]) -> Self {
        debug_assert!(slice.len() <= CompactBytes::MAX_INLINE);

        let len = slice.len();
        let mut buffer = [0u8; CompactBytes::MAX_INLINE];

        // SAFETY: We know src and dst are valid for len bytes, nor do they overlap.
        unsafe {
            buffer
                .as_mut_ptr()
                .copy_from_nonoverlapping(slice.as_ptr(), len)
        };

        let data = INLINE_MASK | (len as u8);

        InlineBytes { buffer, data }
    }

    #[inline]
    pub const fn empty() -> Self {
        let buffer = [0u8; CompactBytes::MAX_INLINE];

        // Even though the below statement as no effect, we leave it for better understanding.
        #[allow(clippy::identity_op)]
        let data = INLINE_MASK | 0;

        InlineBytes { buffer, data }
    }

    pub fn len(&self) -> usize {
        (self.data & !INLINE_MASK) as usize
    }

    /// Forces the length of [`InlineBytes`] to `new_len`.
    ///
    /// # Safety
    /// * `new_len` must be less than or equal to [`CompactBytes::MAX_INLINE`].
    /// * `new_len` must be less than or equal to capacity.
    /// * The bytes at `old_len..new_len` must be initialized.
    ///
    unsafe fn set_len(&mut self, new_len: usize) {
        debug_assert!(new_len <= CompactBytes::MAX_INLINE);
        self.data = INLINE_MASK | (new_len as u8);
    }
}

#[repr(C)]
struct HeapBytes {
    ptr: NonNull<u8>,
    len: usize,
    cap: usize,
}

impl HeapBytes {
    #[inline]
    pub fn new(slice: &[u8]) -> Self {
        let len = slice.len();
        let cap = len.max(CompactBytes::MIN_HEAP);

        debug_assert!(cap <= CompactBytes::MAX_HEAP, "too large of allocation");
        let ptr = Self::alloc_ptr(cap);

        unsafe { ptr.as_ptr().copy_from_nonoverlapping(slice.as_ptr(), len) };

        HeapBytes { ptr, len, cap }
    }

    pub fn with_capacity(capacity: usize) -> Self {
        assert!(
            capacity <= CompactBytes::MAX_HEAP,
            "too large of allocation"
        );

        let len = 0;
        let cap = capacity.max(CompactBytes::MIN_HEAP);
        let ptr = Self::alloc_ptr(cap);

        HeapBytes {
            ptr,
            len,
            cap: capacity,
        }
    }

    pub fn with_additional(slice: &[u8], additional: usize) -> Self {
        let new_capacity = Self::amortized_growth(slice.len(), additional);
        let mut row = Self::with_capacity(new_capacity);

        debug_assert!(row.cap > slice.len());

        // SAFETY: We know src and dst are both valid for len bytes, nor are they overlapping.
        unsafe {
            std::ptr::copy_nonoverlapping(slice.as_ptr(), row.ptr.as_ptr(), slice.len());
        };
        // Set our length.
        row.len = slice.len();

        row
    }

    pub unsafe fn set_len(&mut self, len: usize) {
        self.len = len;
    }

    pub fn realloc(&mut self, new_capacity: usize) -> Result<usize, ()> {
        // Can't shrink the heap allocation to be less than length, because we'd lose data.
        if new_capacity < self.len {
            return Err(());
        }
        // Do not reallocate to 0 capacity.
        if new_capacity == 0 {
            return Err(());
        }

        // Always allocate at least "4 usize" amount of bytes.
        let new_capacity = new_capacity.max(CompactBytes::MIN_HEAP);

        // Already at the appropriate size!
        if new_capacity == self.cap {
            return Ok(new_capacity);
        }

        let cur_layout = Self::layout(self.cap);
        let new_layout = Self::layout(new_capacity);

        // Check for overflow.
        let new_size = new_layout.size();
        if new_size < new_capacity {
            return Err(());
        }

        // SAFETY:
        // * Our pointer was allocated via the same allocator.
        // * We used the same layout for the previous allocation.
        // * `new_size` is correct.
        let raw_ptr = unsafe { alloc::realloc(self.ptr.as_ptr(), cur_layout, new_size) };
        let ptr = NonNull::new(raw_ptr).ok_or(())?;

        self.ptr = ptr;
        self.cap = new_capacity;

        Ok(new_capacity)
    }

    #[inline]
    fn dealloc(&mut self) {
        Self::dealloc_ptr(self.ptr, self.cap);
    }

    #[inline]
    fn alloc_ptr(capacity: usize) -> NonNull<u8> {
        let layout = Self::layout(capacity);
        debug_assert!(layout.size() > 0);

        // SAFETY: We ensure that the layout is not zero sized, by enforcing a minimum size.
        let ptr = unsafe { alloc::alloc(layout) };

        NonNull::new(ptr).expect("failed to allocate HeapRow")
    }

    #[inline]
    fn dealloc_ptr(ptr: NonNull<u8>, capacity: usize) {
        let layout = Self::layout(capacity);

        // SAFETY:
        // * The pointer was allocated via this allocator.
        // * We used the same layout when allocating.
        unsafe { alloc::dealloc(ptr.as_ptr(), layout) };
    }

    #[inline(always)]
    fn layout(capacity: usize) -> alloc::Layout {
        debug_assert!(capacity > 0, "tried to allocate a HeapRow with 0 capacity");
        alloc::Layout::array::<u8>(capacity).expect("valid capacity")
    }

    /// [`HeapBytes`] grows at an amortized rates of 1.5x
    ///
    /// Note: this is different than [`std::vec::Vec`], which grows at a rate of 2x. It's debated
    /// which is better, for now we'll stick with a rate of 1.5x
    #[inline(always)]
    pub fn amortized_growth(cur_len: usize, additional: usize) -> usize {
        let required = cur_len.saturating_add(additional);
        let amortized = cur_len.saturating_mul(3) / 2;
        amortized.max(required)
    }
}

impl Drop for HeapBytes {
    fn drop(&mut self) {
        self.dealloc()
    }
}

#[cfg(test)]
mod test {
    use proptest::prelude::*;
    use test_case::test_case;
    use test_strategy::proptest;

    use super::{CompactBytes, HeapBytes};

    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_discriminant() {
        let mut buf = vec![0u8; 32];
        let heap = HeapBytes {
            ptr: unsafe { std::ptr::NonNull::new_unchecked(buf.as_mut_ptr()) },
            len: 0,
            cap: usize::MAX >> 1,
        };
        let repr = CompactBytes {
            heap: std::mem::ManuallyDrop::new(heap),
        };
        assert!(repr.spilled());
        // mem::forget the repr since it's underlying buffer is shared.
        std::mem::forget(repr);

        let bad_heap = HeapBytes {
            ptr: unsafe { std::ptr::NonNull::new_unchecked(buf.as_mut_ptr()) },
            len: 0,
            cap: usize::MAX,
        };
        let repr = CompactBytes {
            heap: std::mem::ManuallyDrop::new(bad_heap),
        };
        // This will identify as inline since the MSB is 1.
        assert!(!repr.spilled());
        // mem::forget the repr since it's underlying buffer is shared.
        std::mem::forget(repr);
    }

    #[test_case(&[], 0 ; "empty")]
    #[test_case(b"hello world", 11 ; "short")]
    #[test_case(b"can fit 23 bytes inline", 23 ; "max_inline")]
    #[test_case(b"24 bytes and will spill!", 24 ; "first_spill")]
    #[test_case(b"i am very large and will spill to the heap", 42 ; "heap")]
    fn smoketest_row(slice: &[u8], expected_len: usize) {
        let repr = CompactBytes::new(slice);

        assert_eq!(repr.len(), expected_len);
        assert_eq!(repr.as_slice(), slice);
        assert_eq!(repr.spilled(), expected_len > CompactBytes::MAX_INLINE);
    }

    #[test_case(&[], &[] ; "empty_empty")]
    #[test_case(&[], &[1, 2, 3, 4] ; "empty_inline")]
    #[test_case(&[], b"once extended I will end up on the heap" ; "empty_heap")]
    #[test_case(&[1, 2], &[3, 4] ; "inline_inline")]
    #[test_case(&[1, 2, 3, 4], b"i am some more bytes, i will be on the heap, woohoo!" ; "inline_heap")]
    #[test_case(b"this row will start on the heap because it's large", b"and this will keep it on the heap" ; "heap_heap")]
    fn smoketest_extend(initial: &[u8], other: &[u8]) {
        let mut repr = CompactBytes::new(initial);
        repr.extend_from_slice(other);

        let mut control = initial.to_vec();
        control.extend_from_slice(other);

        assert_eq!(repr.len(), control.len());
        assert_eq!(repr.as_slice(), control.as_slice());
    }

    #[test_case(&[] ; "empty")]
    #[test_case(b"i am smol" ; "inline")]
    #[test_case(b"i am large and will end up on the heap" ; "heap")]
    fn smoketest_clear(initial: &[u8]) {
        let mut repr = CompactBytes::new(initial);
        let capacity = repr.capacity();
        assert_eq!(repr.as_slice(), initial);

        repr.clear();

        assert!(repr.as_slice().is_empty());
        assert_eq!(repr.len(), 0);

        // The capacity should not change after clearing.
        assert_eq!(repr.capacity(), capacity);
    }

    #[test_case(&[] ; "empty")]
    #[test_case(b"smol" ; "inline")]
    #[test_case(b"large large large large large large" ; "heap")]
    fn smoketest_clone(initial: &[u8]) {
        let repr_a = CompactBytes::new(initial);
        let repr_b = repr_a.clone();

        assert_eq!(repr_a.len(), repr_b.len());
        assert_eq!(repr_a.capacity(), repr_b.capacity());
        assert_eq!(repr_a.as_slice(), repr_b.as_slice());
    }

    #[test_case(&[], &[], false ; "empty_empty")]
    #[test_case(&[], b"hello", false ; "empty_inline")]
    #[test_case(&[], b"I am long and will be on the heap", true ; "empty_heap")]
    #[test_case(b"short", &[], false ; "inline_empty")]
    #[test_case(b"hello", b"world", false ; "inline_inline")]
    #[test_case(b"i am short", b"I am long and will be on the heap", true ; "inline_heap")]
    fn smoketest_clone_from(a: &[u8], b: &[u8], should_reallocate: bool) {
        let mut a = CompactBytes::new(a);
        let a_capacity = a.capacity();
        let a_pointer = a.as_slice().as_ptr();

        let b = CompactBytes::new(b);

        // If there is enough capacity in `a`, it's buffer should get re-used.
        a.clone_from(&b);

        assert_eq!(a.capacity() != a_capacity, should_reallocate);
        assert_eq!(a.as_slice().as_ptr() != a_pointer, should_reallocate);
    }

    #[test_case(vec![] ; "empty")]
    #[test_case(vec![0, 1, 2, 3, 4] ; "inline")]
    #[test_case(b"I am long and will be on the heap, yada yada yada".to_vec() ; "heap")]
    fn smoketest_from_vec(initial: Vec<u8>) {
        let control = initial.clone();
        let pointer = initial.as_ptr();
        let repr = CompactBytes::from(initial);

        assert_eq!(control.len(), repr.len());
        assert_eq!(control.as_slice(), repr.as_slice());

        // We do not eagerly inline, except if the Vec is empty.
        assert_eq!(repr.spilled(), !control.is_empty());
        // The allocation of the Vec should get re-used.
        assert_eq!(repr.as_ptr() == pointer, !control.is_empty());
    }

    #[test]
    fn test_cloning_inlines() {
        let mut c = CompactBytes::with_capacity(48);
        c.push(42);

        assert_eq!(c.as_slice(), &[42]);
        assert_eq!(c.capacity(), 48);
        assert!(c.spilled());

        let clone = c.clone();
        assert_eq!(clone.as_slice(), &[42]);
        assert_eq!(clone.capacity(), CompactBytes::MAX_INLINE);
        assert!(!clone.spilled());
    }

    #[test]
    fn test_cloning_drops_excess_capacity() {
        let mut c = CompactBytes::with_capacity(48);
        c.extend_from_slice(&[42; 32]);

        assert_eq!(c.as_slice(), &[42; 32]);
        assert_eq!(c.capacity(), 48);
        assert_eq!(c.len(), 32);
        assert!(c.spilled());

        let clone = c.clone();
        assert_eq!(clone.as_slice(), &[42; 32]);
        assert_eq!(clone.capacity(), 32);
        assert_eq!(clone.capacity(), clone.len());
        assert!(clone.spilled());
    }

    #[proptest]
    #[cfg_attr(miri, ignore)]
    fn proptest_row(initial: Vec<u8>) {
        let repr = CompactBytes::new(&initial);

        prop_assert_eq!(repr.as_slice(), initial.as_slice());
        prop_assert_eq!(repr.len(), initial.len());
    }

    #[proptest]
    #[cfg_attr(miri, ignore)]
    fn proptest_extend(initial: Vec<u8>, other: Vec<u8>) {
        let mut repr = CompactBytes::new(&initial);
        repr.extend_from_slice(other.as_slice());

        let mut control = initial;
        control.extend_from_slice(other.as_slice());

        prop_assert_eq!(repr.as_slice(), control.as_slice());
        prop_assert_eq!(repr.len(), control.len());
    }

    #[proptest]
    #[cfg_attr(miri, ignore)]
    fn proptest_clear(initial: Vec<u8>) {
        let mut repr = CompactBytes::new(&initial);
        let capacity = repr.capacity();

        repr.clear();
        assert!(repr.as_slice().is_empty());
        assert_eq!(repr.len(), 0);

        // Capacity should not have changed after clear.
        assert_eq!(repr.capacity(), capacity);
    }

    #[proptest]
    #[cfg_attr(miri, ignore)]
    fn proptest_clear_then_extend(initial: Vec<u8>, a: Vec<u8>) {
        let mut repr = CompactBytes::new(&initial);
        let capacity = repr.capacity();
        let pointer = repr.as_slice().as_ptr();

        repr.clear();
        assert!(repr.as_slice().is_empty());
        assert_eq!(repr.len(), 0);

        // Capacity should not have changed after clear.
        assert_eq!(repr.capacity(), capacity);

        repr.extend_from_slice(&a);
        assert_eq!(repr.as_slice(), &a);
        assert_eq!(repr.len(), a.len());

        // If we originall had capacity for the new extension, we should not re-allocate.
        if a.len() < capacity {
            assert_eq!(repr.capacity(), capacity);
            assert_eq!(repr.as_slice().as_ptr(), pointer);
        }
    }

    #[proptest]
    #[cfg_attr(miri, ignore)]
    fn proptest_clone(initial: Vec<u8>) {
        let repr_a = CompactBytes::new(&initial);
        let repr_b = repr_a.clone();

        assert_eq!(repr_a.len(), repr_b.len());
        assert_eq!(repr_a.capacity(), repr_b.capacity());
        assert_eq!(repr_a.as_slice(), repr_b.as_slice());
    }

    #[proptest]
    #[cfg_attr(miri, ignore)]
    fn proptest_from_vec(initial: Vec<u8>) {
        let control = initial.clone();
        let pointer = initial.as_ptr();
        let repr = CompactBytes::from(initial);

        assert_eq!(control.len(), repr.len());
        assert_eq!(control.as_slice(), repr.as_slice());

        // We do not eagerly inline, except if the Vec is empty.
        assert_eq!(repr.spilled(), !control.is_empty());
        // The allocation of the Vec should get re-used.
        assert_eq!(repr.as_ptr() == pointer, !control.is_empty());
    }

    #[proptest]
    #[cfg_attr(miri, ignore)]
    fn proptest_serde(initial: Vec<u8>) {
        let repr = CompactBytes::new(&initial);

        let (repr_json, ctrl_json) = match (
            serde_json::to_string(&repr),
            serde_json::to_string(&initial),
        ) {
            (Ok(r), Ok(c)) => (r, c),
            (Err(_), Err(_)) => return Ok(()),
            (r, c) => panic!("Got mismatched results when serializing {r:?}, {c:?}"),
        };

        prop_assert_eq!(&repr_json, &ctrl_json);

        let (repr_rnd_trip, ctrl_rnd_trip): (CompactBytes, Vec<u8>) = match (
            serde_json::from_str(&repr_json),
            serde_json::from_str(&ctrl_json),
        ) {
            (Ok(r), Ok(c)) => (r, c),
            (Err(_), Err(_)) => return Ok(()),
            (r, c) => panic!("Got mismatched results {r:?}, {c:?}"),
        };

        prop_assert_eq!(&repr, &repr_rnd_trip);
        prop_assert_eq!(repr_rnd_trip, ctrl_rnd_trip);
    }
}