compact_bytes/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
//! "Small string optimization" for a bytes.
use std::alloc;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::mem::ManuallyDrop;
use std::ops::Deref;
use std::ops::DerefMut;
use std::ptr::NonNull;
const INLINE_MASK: u8 = 0b1000_0000;
/// [`CompactBytes`] inlines up-to 23 bytes on the stack, if more than that is required we spill to
/// the heap. The heap representation is not reference counted like `bytes::Bytes`, it's just an
/// owned blob of bytes.
///
/// # Why?
///
/// ### 1. Do we want to do this?
///
/// Performance. A `Vec<u8>` is already 24 bytes on the stack, and then another allocation on the
/// heap. If we can avoid the heap allocation altogether it saves memory and improves runtime
/// performance.
///
/// ### 2. Did we write our own implementation?
///
/// At the time of writing (October 2023), there isn't anything else in the Rust ecosystem that
/// provides what we need. There is `smallvec` (which we used to use) but it's not space efficient.
/// A `SmallVec<[u8; 24]>` required 32 bytes on the stack, so we were wasting 8 bytes! There are
/// other small vector crates (e.g. `arrayvec` or `tinyvec`) but they have their own limitations.
/// There are also a number of small string optimizations in the Rust ecosystem, but none of them
/// work for other various reasons.
///
/// # How does this work?
///
/// A [`CompactBytes`] is 24 bytes on the stack (same as `Vec<u8>`) but it has two modes:
///
/// 1. Heap `[ ptr<8> | len<8> | cap<8> ]`
/// 2. Inline `[ buffer<23> | len <1> ]`
///
/// We use the most significant bit of the last byte to indicate which mode we're in.
///
pub union CompactBytes {
heap: ManuallyDrop<HeapBytes>,
inline: InlineBytes,
}
// SAFETY: It is safe to Send a `CompactBytes` to other threads because it owns all of its data.
unsafe impl Send for CompactBytes {}
// SAFETY: It is safe to share references of `CompactBytes` between threads because it does not
// support any kind of interior mutability, or other way to introduce races.
unsafe impl Sync for CompactBytes {}
static_assertions::assert_eq_align!(InlineBytes, HeapBytes, CompactBytes, Vec<u8>, usize);
static_assertions::assert_eq_size!(InlineBytes, HeapBytes, CompactBytes, Vec<u8>);
static_assertions::const_assert_eq!(std::mem::size_of::<CompactBytes>(), 24);
impl CompactBytes {
/// The maximum amount of bytes that a [`CompactBytes`] can store inline.
pub const MAX_INLINE: usize = 23;
/// The minimum amount of bytes that a [`CompactBytes`] will store on the heap.
pub const MIN_HEAP: usize = std::mem::size_of::<usize>() * 2;
/// The maximum amount of bytes that a [`CompactBytes`] can store on the heap.
pub const MAX_HEAP: usize = usize::MAX >> 1;
/// Creates a new [`CompactBytes`] from the provided slice. Stores the bytes inline if small
/// enough.
///
/// # Examples
///
/// ```
/// use compact_bytes::CompactBytes;
///
/// let inline = CompactBytes::new(&[1, 2, 3, 4]);
/// assert!(!inline.spilled());
/// assert_eq!(inline.len(), 4);
///
/// let heap = CompactBytes::new(b"I am a bytes type that will get stored on the heap");
/// assert!(heap.spilled());
/// assert_eq!(heap.len(), 50);
/// ```
#[inline]
pub fn new(slice: &[u8]) -> Self {
if slice.len() <= Self::MAX_INLINE {
// SAFETY: We just checked that slice length is less than or equal to MAX_INLINE.
let inline = unsafe { InlineBytes::new(slice) };
CompactBytes { inline }
} else {
let heap = ManuallyDrop::new(HeapBytes::new(slice));
CompactBytes { heap }
}
}
/// Creates a new [`CompactBytes`] with the specified capacity, but with a minimum of
/// [`CompactBytes::MAX_INLINE`].
///
/// # Examples
///
/// ```
/// use compact_bytes::CompactBytes;
///
/// let min = CompactBytes::with_capacity(4);
/// assert_eq!(min.capacity(), CompactBytes::MAX_INLINE);
/// ```
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
if capacity <= Self::MAX_INLINE {
let inline = InlineBytes::empty();
CompactBytes { inline }
} else {
let heap = ManuallyDrop::new(HeapBytes::with_capacity(capacity));
CompactBytes { heap }
}
}
/// Creates a new [`CompactBytes`] using the provided pointer, length, and capacity.
///
/// # Safety
///
/// * The caller must guarantee that the provided pointer is properly aligned, and the backing
/// allocation was made by the same allocator that will eventually be used to free the
/// returned [`CompactBytes`].
/// * `length` needs to be less than or equal to `capacity`.
/// * `capacity` needs to be the capacity that the pointer was allocated with.
/// * `capacity` needs to be less than or equal to [`CompactBytes::MAX_HEAP`].
///
#[inline]
pub unsafe fn from_raw_parts(ptr: *mut u8, length: usize, capacity: usize) -> Self {
let heap = HeapBytes {
ptr: NonNull::new_unchecked(ptr),
len: length,
cap: capacity,
};
let heap = ManuallyDrop::new(heap);
CompactBytes { heap }
}
/// Returns the contents of the [`CompactBytes`] as a bytes slice.
#[inline]
pub fn as_slice(&self) -> &[u8] {
let pointer = self.as_ptr();
let length = self.len();
unsafe { core::slice::from_raw_parts(pointer, length) }
}
/// Returns the contents of the [`CompactBytes`] as a mutable bytes slice.
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [u8] {
let pointer = self.as_mut_ptr();
let length = self.len();
unsafe { core::slice::from_raw_parts_mut(pointer, length) }
}
/// Returns the length of the [`CompactBytes`].
#[inline(always)]
pub fn len(&self) -> usize {
// SAFETY: `InlineBytes` and `HeapBytes` share the same size and alignment. Before
// returning this value we check whether it's valid or not.
//
// Note: This code is very carefully written so we can benefit from branchless
// instructions.
let (mut length, heap_length) = unsafe { (self.inline.len(), self.heap.len) };
if self.spilled() {
length = heap_length;
}
length
}
/// Returns if the [`CompactBytes`] is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the capacity of the [`CompactBytes`].
#[inline(always)]
pub fn capacity(&self) -> usize {
// SAFETY: `InlineBytes` and `HeapBytes` share the same size and alignment. Before
// returning this value we check whether it's valid or not.
//
// Note: This code is very carefully written so we can benefit from branchless
// instructions.
let (mut capacity, heap_capacity) = unsafe { (Self::MAX_INLINE, self.heap.cap) };
if self.spilled() {
capacity = heap_capacity;
}
capacity
}
/// Appends an additional byte to the [`CompactBytes`], resizing if necessary.
///
/// Note: You should almost never call this in a loop, instead use
/// [`CompactBytes::extend_from_slice`].
#[inline]
pub fn push(&mut self, byte: u8) {
self.extend_from_slice(&[byte]);
}
/// Extends the [`CompactBytes`] with bytes from `slice`, resizing if necessary.
#[inline(always)]
pub fn extend_from_slice(&mut self, slice: &[u8]) {
// Reserve at least enough space to fit slice.
self.reserve(slice.len());
let (ptr, len, cap) = self.as_mut_triple();
// SAFTEY: `len` is less than `cap`, so we know it's within the original allocation. This
// addition does not overflow `isize`, nor does it rely on any wrapping logic.
let push_ptr = unsafe { ptr.add(len) };
debug_assert!((cap - len) >= slice.len(), "failed to reserve enough space");
// Safety:
//
// * src is valid for a read of len bytes, since len comes from src.
// * dst is valid for writes of len bytes, since we just reserved extra space.
// * src and dst are both properly aligned.
// * src and dst to not overlap because we have a unique reference to dst.
//
unsafe { std::ptr::copy_nonoverlapping(slice.as_ptr(), push_ptr, slice.len()) };
// SAFETY: We just wrote an additional len bytes, so we know this length is valid.
unsafe { self.set_len(len + slice.len()) };
}
/// Truncates this [`CompactBytes`], removing all contents but without effecting the capacity.
#[inline]
pub fn clear(&mut self) {
self.truncate(0);
}
/// Truncates this [`CompactBytes`] to the specified length without effecting the capacity. Has
/// no effect if `new_len` is greater than the current length.
#[inline]
pub fn truncate(&mut self, new_len: usize) {
if new_len >= self.len() {
return;
}
unsafe { self.set_len(new_len) }
}
/// Reserves at least `additional` bytes for this [`CompactBytes`], possibly re-allocating if
/// there is not enough remaining capacity.
///
/// # Examples
///
/// ```
/// use compact_bytes::CompactBytes;
///
/// let mut b = CompactBytes::new(b"foo");
/// b.reserve(100);
///
/// assert_eq!(b.capacity(), 103);
/// ```
#[inline]
pub fn reserve(&mut self, additional: usize) {
let len = self.len();
let needed_capacity = len
.checked_add(additional)
.expect("attempt to reserve more than usize::MAX");
// Already have enough space, nothing to do!
if self.capacity() >= needed_capacity {
return;
}
// Note: We move the actual re-allocation code path into its own function
// so the common case of calling `reserve(...)` when we already have
// enough capacity can be inlined by LLVM.
realloc(self, len, additional);
#[cold]
fn realloc(this: &mut CompactBytes, len: usize, additional: usize) {
// Note: Here we are making a distinct choice to _not_ eagerly inline.
//
// `CompactBytes`s can get re-used, e.g. calling `CompactBytes::clear`, at which point it's
// possible we could have a length of 0, and 'additional' bytes would be less then
// `MAX_INLINE`. Some implementations might opt to drop the existing heap allocation, but
// if a `CompactBytes` is being re-used it's likely we'll need the full original capacity,
// thus we do not eagerly inline.
if !this.spilled() {
let heap = HeapBytes::with_additional(this.as_slice(), additional);
*this = CompactBytes {
heap: ManuallyDrop::new(heap),
};
} else {
// SAFETY: `InlineBytes` and `HeapBytes` have the same size and alignment. We also
// checked above that the current `CompactBytes` is heap allocated.
let heap_row = unsafe { &mut this.heap };
let amortized_capacity = HeapBytes::amortized_growth(len, additional);
// First attempt to resize the existing allocation, if that fails then create a new one.
if heap_row.realloc(amortized_capacity).is_err() {
let heap = HeapBytes::with_additional(this.as_slice(), additional);
let heap = ManuallyDrop::new(heap);
*this = CompactBytes { heap };
}
}
}
}
/// Consumes the [`CompactBytes`], returning a `Vec<u8>`.
#[inline]
pub fn into_vec(self) -> Vec<u8> {
if self.spilled() {
// SAFETY: `InlineBytes` and `HeapBytes` have the same size and alignment. We also
// checked above that the current `CompactBytes` is heap allocated.
let heap = unsafe { &self.heap };
let vec = unsafe { Vec::from_raw_parts(heap.ptr.as_ptr(), heap.len, heap.cap) };
std::mem::forget(self);
vec
} else {
self.as_slice().to_vec()
}
}
/// Returns if the [`CompactBytes`] has spilled to the heap.
#[inline(always)]
pub fn spilled(&self) -> bool {
// SAFETY: `InlineBytes` and `HeapBytes` have the same size and alignment. We also checked
// above that the current `CompactBytes` is heap allocated.
unsafe { self.inline.data < INLINE_MASK }
}
/// Forces the length of [`CompactBytes`] to `new_len`.
///
/// # Safety
/// * `new_len` must be less than or equal to capacity.
/// * The bytes at `old_len..new_len` must be initialized.
///
#[inline]
unsafe fn set_len(&mut self, new_len: usize) {
if self.spilled() {
self.heap.set_len(new_len);
} else {
self.inline.set_len(new_len);
}
}
#[inline(always)]
fn as_ptr(&self) -> *const u8 {
// SAFETY: `InlineBytes` and `HeapBytes` share the same size and alignment. Before
// returning this value we check whether it's valid or not.
//
// Note: This code is very carefully written so we can benefit from branchless
// instructions.
let mut pointer = self as *const Self as *const u8;
if self.spilled() {
pointer = unsafe { self.heap.ptr }.as_ptr()
}
pointer
}
#[inline(always)]
fn as_mut_ptr(&mut self) -> *mut u8 {
// SAFETY: `InlineBytes` and `HeapBytes` share the same size and alignment. Before
// returning this value we check whether it's valid or not.
//
// Note: This code is very carefully written so we can benefit from branchless
// instructions.
let mut pointer = self as *mut Self as *mut u8;
if self.spilled() {
pointer = unsafe { self.heap.ptr }.as_ptr()
}
pointer
}
#[inline(always)]
fn as_mut_triple(&mut self) -> (*mut u8, usize, usize) {
let ptr = self.as_mut_ptr();
let len = self.len();
let cap = self.capacity();
(ptr, len, cap)
}
}
impl Default for CompactBytes {
#[inline]
fn default() -> Self {
CompactBytes::new(&[])
}
}
impl Deref for CompactBytes {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.as_slice()
}
}
impl DerefMut for CompactBytes {
#[inline]
fn deref_mut(&mut self) -> &mut [u8] {
self.as_mut_slice()
}
}
impl AsRef<[u8]> for CompactBytes {
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_slice()
}
}
impl<T: AsRef<[u8]>> PartialEq<T> for CompactBytes {
#[inline]
fn eq(&self, other: &T) -> bool {
self.as_slice() == other.as_ref()
}
}
impl Eq for CompactBytes {}
impl Hash for CompactBytes {
fn hash<H: Hasher>(&self, state: &mut H) {
self.as_slice().hash(state)
}
}
impl fmt::Debug for CompactBytes {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.as_slice())
}
}
impl Drop for CompactBytes {
#[inline]
fn drop(&mut self) {
// Note: we hint to the compiler that dropping a heap variant is cold to improve the
// performance of dropping the inline variant.
#[cold]
fn outlined_drop(this: &mut CompactBytes) {
let heap = unsafe { &mut this.heap };
heap.dealloc();
}
if self.spilled() {
outlined_drop(self);
}
}
}
impl Clone for CompactBytes {
#[inline]
fn clone(&self) -> Self {
// Note: we hint to the compiler that cloing a heap variant is cold to improve the
// performance of cloning the inline variant.
#[cold]
fn outlined_clone(this: &CompactBytes) -> CompactBytes {
CompactBytes::new(this.as_slice())
}
if self.spilled() {
outlined_clone(self)
} else {
let inline = unsafe { &self.inline };
CompactBytes { inline: *inline }
}
}
#[inline]
fn clone_from(&mut self, source: &Self) {
self.clear();
self.extend_from_slice(source.as_slice());
}
}
impl From<Vec<u8>> for CompactBytes {
#[inline]
fn from(mut value: Vec<u8>) -> Self {
if value.is_empty() {
let inline = InlineBytes::empty();
return CompactBytes { inline };
}
// Deconstruct the Vec so we can convert to a `CompactBytes` in constant time.
let (ptr, len, cap) = (value.as_mut_ptr(), value.len(), value.capacity());
// SAFETY: We checked above, and returned early, if the `Vec` was empty, thus we know this
// pointer is not null.
let ptr = unsafe { NonNull::new_unchecked(ptr) };
// Forget the original Vec so it's underlying buffer does not get dropped.
std::mem::forget(value);
let heap = HeapBytes { ptr, len, cap };
CompactBytes {
heap: ManuallyDrop::new(heap),
}
}
}
impl serde::Serialize for CompactBytes {
fn serialize<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
self.as_slice().serialize(serializer)
}
}
impl<'de> serde::Deserialize<'de> for CompactBytes {
fn deserialize<D: serde::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
deserialize_compact_bytes(deserializer)
}
}
fn deserialize_compact_bytes<'de: 'a, 'a, D: serde::Deserializer<'de>>(
deserializer: D,
) -> Result<CompactBytes, D::Error> {
struct CompactBytesVisitor;
impl<'a> serde::de::Visitor<'a> for CompactBytesVisitor {
type Value = CompactBytes;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("bytes")
}
fn visit_seq<A: serde::de::SeqAccess<'a>>(
self,
mut seq: A,
) -> Result<Self::Value, A::Error> {
let mut bytes = CompactBytes::default();
if let Some(capacity_hint) = seq.size_hint() {
bytes.reserve(capacity_hint);
}
while let Some(elem) = seq.next_element::<u8>()? {
bytes.push(elem)
}
Ok(bytes)
}
fn visit_borrowed_bytes<E: serde::de::Error>(self, v: &'a [u8]) -> Result<Self::Value, E> {
Ok(CompactBytes::new(v))
}
}
deserializer.deserialize_bytes(CompactBytesVisitor)
}
#[repr(C, align(8))]
#[derive(Copy, Clone)]
struct InlineBytes {
buffer: [u8; CompactBytes::MAX_INLINE],
data: u8,
}
impl InlineBytes {
/// Create an [`InlineBytes`] from the provided slice.
///
/// Safety:
/// * `slice` must have a length less than or equal to [`CompactBytes::MAX_INLINE`].
///
#[inline]
pub unsafe fn new(slice: &[u8]) -> Self {
debug_assert!(slice.len() <= CompactBytes::MAX_INLINE);
let len = slice.len();
let mut buffer = [0u8; CompactBytes::MAX_INLINE];
// SAFETY: We know src and dst are valid for len bytes, nor do they overlap.
unsafe {
buffer
.as_mut_ptr()
.copy_from_nonoverlapping(slice.as_ptr(), len)
};
let data = INLINE_MASK | (len as u8);
InlineBytes { buffer, data }
}
#[inline]
pub const fn empty() -> Self {
let buffer = [0u8; CompactBytes::MAX_INLINE];
// Even though the below statement as no effect, we leave it for better understanding.
#[allow(clippy::identity_op)]
let data = INLINE_MASK | 0;
InlineBytes { buffer, data }
}
pub fn len(&self) -> usize {
(self.data & !INLINE_MASK) as usize
}
/// Forces the length of [`InlineBytes`] to `new_len`.
///
/// # Safety
/// * `new_len` must be less than or equal to [`CompactBytes::MAX_INLINE`].
/// * `new_len` must be less than or equal to capacity.
/// * The bytes at `old_len..new_len` must be initialized.
///
unsafe fn set_len(&mut self, new_len: usize) {
debug_assert!(new_len <= CompactBytes::MAX_INLINE);
self.data = INLINE_MASK | (new_len as u8);
}
}
#[repr(C)]
struct HeapBytes {
ptr: NonNull<u8>,
len: usize,
cap: usize,
}
impl HeapBytes {
#[inline]
pub fn new(slice: &[u8]) -> Self {
let len = slice.len();
let cap = len.max(CompactBytes::MIN_HEAP);
debug_assert!(cap <= CompactBytes::MAX_HEAP, "too large of allocation");
let ptr = Self::alloc_ptr(cap);
unsafe { ptr.as_ptr().copy_from_nonoverlapping(slice.as_ptr(), len) };
HeapBytes { ptr, len, cap }
}
pub fn with_capacity(capacity: usize) -> Self {
assert!(
capacity <= CompactBytes::MAX_HEAP,
"too large of allocation"
);
let len = 0;
let cap = capacity.max(CompactBytes::MIN_HEAP);
let ptr = Self::alloc_ptr(cap);
HeapBytes {
ptr,
len,
cap: capacity,
}
}
pub fn with_additional(slice: &[u8], additional: usize) -> Self {
let new_capacity = Self::amortized_growth(slice.len(), additional);
let mut row = Self::with_capacity(new_capacity);
debug_assert!(row.cap > slice.len());
// SAFETY: We know src and dst are both valid for len bytes, nor are they overlapping.
unsafe {
std::ptr::copy_nonoverlapping(slice.as_ptr(), row.ptr.as_ptr(), slice.len());
};
// Set our length.
row.len = slice.len();
row
}
pub unsafe fn set_len(&mut self, len: usize) {
self.len = len;
}
pub fn realloc(&mut self, new_capacity: usize) -> Result<usize, ()> {
// Can't shrink the heap allocation to be less than length, because we'd lose data.
if new_capacity < self.len {
return Err(());
}
// Do not reallocate to 0 capacity.
if new_capacity == 0 {
return Err(());
}
// Always allocate at least "4 usize" amount of bytes.
let new_capacity = new_capacity.max(CompactBytes::MIN_HEAP);
// Already at the appropriate size!
if new_capacity == self.cap {
return Ok(new_capacity);
}
let cur_layout = Self::layout(self.cap);
let new_layout = Self::layout(new_capacity);
// Check for overflow.
let new_size = new_layout.size();
if new_size < new_capacity {
return Err(());
}
// SAFETY:
// * Our pointer was allocated via the same allocator.
// * We used the same layout for the previous allocation.
// * `new_size` is correct.
let raw_ptr = unsafe { alloc::realloc(self.ptr.as_ptr(), cur_layout, new_size) };
let ptr = NonNull::new(raw_ptr).ok_or(())?;
self.ptr = ptr;
self.cap = new_capacity;
Ok(new_capacity)
}
#[inline]
fn dealloc(&mut self) {
Self::dealloc_ptr(self.ptr, self.cap);
}
#[inline]
fn alloc_ptr(capacity: usize) -> NonNull<u8> {
let layout = Self::layout(capacity);
debug_assert!(layout.size() > 0);
// SAFETY: We ensure that the layout is not zero sized, by enforcing a minimum size.
let ptr = unsafe { alloc::alloc(layout) };
NonNull::new(ptr).expect("failed to allocate HeapRow")
}
#[inline]
fn dealloc_ptr(ptr: NonNull<u8>, capacity: usize) {
let layout = Self::layout(capacity);
// SAFETY:
// * The pointer was allocated via this allocator.
// * We used the same layout when allocating.
unsafe { alloc::dealloc(ptr.as_ptr(), layout) };
}
#[inline(always)]
fn layout(capacity: usize) -> alloc::Layout {
debug_assert!(capacity > 0, "tried to allocate a HeapRow with 0 capacity");
alloc::Layout::array::<u8>(capacity).expect("valid capacity")
}
/// [`HeapBytes`] grows at an amortized rates of 1.5x
///
/// Note: this is different than [`std::vec::Vec`], which grows at a rate of 2x. It's debated
/// which is better, for now we'll stick with a rate of 1.5x
#[inline(always)]
pub fn amortized_growth(cur_len: usize, additional: usize) -> usize {
let required = cur_len.saturating_add(additional);
let amortized = cur_len.saturating_mul(3) / 2;
amortized.max(required)
}
}
impl Drop for HeapBytes {
fn drop(&mut self) {
self.dealloc()
}
}
#[cfg(test)]
mod test {
use proptest::prelude::*;
use test_case::test_case;
use test_strategy::proptest;
use super::{CompactBytes, HeapBytes};
#[test]
#[cfg_attr(miri, ignore)]
fn test_discriminant() {
let mut buf = vec![0u8; 32];
let heap = HeapBytes {
ptr: unsafe { std::ptr::NonNull::new_unchecked(buf.as_mut_ptr()) },
len: 0,
cap: usize::MAX >> 1,
};
let repr = CompactBytes {
heap: std::mem::ManuallyDrop::new(heap),
};
assert!(repr.spilled());
// mem::forget the repr since it's underlying buffer is shared.
std::mem::forget(repr);
let bad_heap = HeapBytes {
ptr: unsafe { std::ptr::NonNull::new_unchecked(buf.as_mut_ptr()) },
len: 0,
cap: usize::MAX,
};
let repr = CompactBytes {
heap: std::mem::ManuallyDrop::new(bad_heap),
};
// This will identify as inline since the MSB is 1.
assert!(!repr.spilled());
// mem::forget the repr since it's underlying buffer is shared.
std::mem::forget(repr);
}
#[test_case(&[], 0 ; "empty")]
#[test_case(b"hello world", 11 ; "short")]
#[test_case(b"can fit 23 bytes inline", 23 ; "max_inline")]
#[test_case(b"24 bytes and will spill!", 24 ; "first_spill")]
#[test_case(b"i am very large and will spill to the heap", 42 ; "heap")]
fn smoketest_row(slice: &[u8], expected_len: usize) {
let repr = CompactBytes::new(slice);
assert_eq!(repr.len(), expected_len);
assert_eq!(repr.as_slice(), slice);
assert_eq!(repr.spilled(), expected_len > CompactBytes::MAX_INLINE);
}
#[test_case(&[], &[] ; "empty_empty")]
#[test_case(&[], &[1, 2, 3, 4] ; "empty_inline")]
#[test_case(&[], b"once extended I will end up on the heap" ; "empty_heap")]
#[test_case(&[1, 2], &[3, 4] ; "inline_inline")]
#[test_case(&[1, 2, 3, 4], b"i am some more bytes, i will be on the heap, woohoo!" ; "inline_heap")]
#[test_case(b"this row will start on the heap because it's large", b"and this will keep it on the heap" ; "heap_heap")]
fn smoketest_extend(initial: &[u8], other: &[u8]) {
let mut repr = CompactBytes::new(initial);
repr.extend_from_slice(other);
let mut control = initial.to_vec();
control.extend_from_slice(other);
assert_eq!(repr.len(), control.len());
assert_eq!(repr.as_slice(), control.as_slice());
}
#[test_case(&[] ; "empty")]
#[test_case(b"i am smol" ; "inline")]
#[test_case(b"i am large and will end up on the heap" ; "heap")]
fn smoketest_clear(initial: &[u8]) {
let mut repr = CompactBytes::new(initial);
let capacity = repr.capacity();
assert_eq!(repr.as_slice(), initial);
repr.clear();
assert!(repr.as_slice().is_empty());
assert_eq!(repr.len(), 0);
// The capacity should not change after clearing.
assert_eq!(repr.capacity(), capacity);
}
#[test_case(&[] ; "empty")]
#[test_case(b"smol" ; "inline")]
#[test_case(b"large large large large large large" ; "heap")]
fn smoketest_clone(initial: &[u8]) {
let repr_a = CompactBytes::new(initial);
let repr_b = repr_a.clone();
assert_eq!(repr_a.len(), repr_b.len());
assert_eq!(repr_a.capacity(), repr_b.capacity());
assert_eq!(repr_a.as_slice(), repr_b.as_slice());
}
#[test_case(&[], &[], false ; "empty_empty")]
#[test_case(&[], b"hello", false ; "empty_inline")]
#[test_case(&[], b"I am long and will be on the heap", true ; "empty_heap")]
#[test_case(b"short", &[], false ; "inline_empty")]
#[test_case(b"hello", b"world", false ; "inline_inline")]
#[test_case(b"i am short", b"I am long and will be on the heap", true ; "inline_heap")]
fn smoketest_clone_from(a: &[u8], b: &[u8], should_reallocate: bool) {
let mut a = CompactBytes::new(a);
let a_capacity = a.capacity();
let a_pointer = a.as_slice().as_ptr();
let b = CompactBytes::new(b);
// If there is enough capacity in `a`, it's buffer should get re-used.
a.clone_from(&b);
assert_eq!(a.capacity() != a_capacity, should_reallocate);
assert_eq!(a.as_slice().as_ptr() != a_pointer, should_reallocate);
}
#[test_case(vec![] ; "empty")]
#[test_case(vec![0, 1, 2, 3, 4] ; "inline")]
#[test_case(b"I am long and will be on the heap, yada yada yada".to_vec() ; "heap")]
fn smoketest_from_vec(initial: Vec<u8>) {
let control = initial.clone();
let pointer = initial.as_ptr();
let repr = CompactBytes::from(initial);
assert_eq!(control.len(), repr.len());
assert_eq!(control.as_slice(), repr.as_slice());
// We do not eagerly inline, except if the Vec is empty.
assert_eq!(repr.spilled(), !control.is_empty());
// The allocation of the Vec should get re-used.
assert_eq!(repr.as_ptr() == pointer, !control.is_empty());
}
#[test]
fn test_cloning_inlines() {
let mut c = CompactBytes::with_capacity(48);
c.push(42);
assert_eq!(c.as_slice(), &[42]);
assert_eq!(c.capacity(), 48);
assert!(c.spilled());
let clone = c.clone();
assert_eq!(clone.as_slice(), &[42]);
assert_eq!(clone.capacity(), CompactBytes::MAX_INLINE);
assert!(!clone.spilled());
}
#[test]
fn test_cloning_drops_excess_capacity() {
let mut c = CompactBytes::with_capacity(48);
c.extend_from_slice(&[42; 32]);
assert_eq!(c.as_slice(), &[42; 32]);
assert_eq!(c.capacity(), 48);
assert_eq!(c.len(), 32);
assert!(c.spilled());
let clone = c.clone();
assert_eq!(clone.as_slice(), &[42; 32]);
assert_eq!(clone.capacity(), 32);
assert_eq!(clone.capacity(), clone.len());
assert!(clone.spilled());
}
#[proptest]
#[cfg_attr(miri, ignore)]
fn proptest_row(initial: Vec<u8>) {
let repr = CompactBytes::new(&initial);
prop_assert_eq!(repr.as_slice(), initial.as_slice());
prop_assert_eq!(repr.len(), initial.len());
}
#[proptest]
#[cfg_attr(miri, ignore)]
fn proptest_extend(initial: Vec<u8>, other: Vec<u8>) {
let mut repr = CompactBytes::new(&initial);
repr.extend_from_slice(other.as_slice());
let mut control = initial;
control.extend_from_slice(other.as_slice());
prop_assert_eq!(repr.as_slice(), control.as_slice());
prop_assert_eq!(repr.len(), control.len());
}
#[proptest]
#[cfg_attr(miri, ignore)]
fn proptest_clear(initial: Vec<u8>) {
let mut repr = CompactBytes::new(&initial);
let capacity = repr.capacity();
repr.clear();
assert!(repr.as_slice().is_empty());
assert_eq!(repr.len(), 0);
// Capacity should not have changed after clear.
assert_eq!(repr.capacity(), capacity);
}
#[proptest]
#[cfg_attr(miri, ignore)]
fn proptest_clear_then_extend(initial: Vec<u8>, a: Vec<u8>) {
let mut repr = CompactBytes::new(&initial);
let capacity = repr.capacity();
let pointer = repr.as_slice().as_ptr();
repr.clear();
assert!(repr.as_slice().is_empty());
assert_eq!(repr.len(), 0);
// Capacity should not have changed after clear.
assert_eq!(repr.capacity(), capacity);
repr.extend_from_slice(&a);
assert_eq!(repr.as_slice(), &a);
assert_eq!(repr.len(), a.len());
// If we originall had capacity for the new extension, we should not re-allocate.
if a.len() < capacity {
assert_eq!(repr.capacity(), capacity);
assert_eq!(repr.as_slice().as_ptr(), pointer);
}
}
#[proptest]
#[cfg_attr(miri, ignore)]
fn proptest_clone(initial: Vec<u8>) {
let repr_a = CompactBytes::new(&initial);
let repr_b = repr_a.clone();
assert_eq!(repr_a.len(), repr_b.len());
assert_eq!(repr_a.capacity(), repr_b.capacity());
assert_eq!(repr_a.as_slice(), repr_b.as_slice());
}
#[proptest]
#[cfg_attr(miri, ignore)]
fn proptest_from_vec(initial: Vec<u8>) {
let control = initial.clone();
let pointer = initial.as_ptr();
let repr = CompactBytes::from(initial);
assert_eq!(control.len(), repr.len());
assert_eq!(control.as_slice(), repr.as_slice());
// We do not eagerly inline, except if the Vec is empty.
assert_eq!(repr.spilled(), !control.is_empty());
// The allocation of the Vec should get re-used.
assert_eq!(repr.as_ptr() == pointer, !control.is_empty());
}
#[proptest]
#[cfg_attr(miri, ignore)]
fn proptest_serde(initial: Vec<u8>) {
let repr = CompactBytes::new(&initial);
let (repr_json, ctrl_json) = match (
serde_json::to_string(&repr),
serde_json::to_string(&initial),
) {
(Ok(r), Ok(c)) => (r, c),
(Err(_), Err(_)) => return Ok(()),
(r, c) => panic!("Got mismatched results when serializing {r:?}, {c:?}"),
};
prop_assert_eq!(&repr_json, &ctrl_json);
let (repr_rnd_trip, ctrl_rnd_trip): (CompactBytes, Vec<u8>) = match (
serde_json::from_str(&repr_json),
serde_json::from_str(&ctrl_json),
) {
(Ok(r), Ok(c)) => (r, c),
(Err(_), Err(_)) => return Ok(()),
(r, c) => panic!("Got mismatched results {r:?}, {c:?}"),
};
prop_assert_eq!(&repr, &repr_rnd_trip);
prop_assert_eq!(repr_rnd_trip, ctrl_rnd_trip);
}
}