1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
//-
// Copyright 2017 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Support for combining strategies into tuples.
//!
//! There is no explicit "tuple strategy"; simply make a tuple containing the
//! strategy and that tuple is itself a strategy.
use crate::strategy::*;
use crate::test_runner::*;
/// Common `ValueTree` implementation for all tuple strategies.
#[derive(Clone, Copy, Debug)]
pub struct TupleValueTree<T> {
tree: T,
shrinker: u32,
prev_shrinker: Option<u32>,
}
impl<T> TupleValueTree<T> {
/// Create a new `TupleValueTree` wrapping `inner`.
///
/// It only makes sense for `inner` to be a tuple of an arity for which the
/// type implements `ValueTree`.
pub fn new(inner: T) -> Self {
TupleValueTree {
tree: inner,
shrinker: 0,
prev_shrinker: None,
}
}
}
macro_rules! tuple {
($($fld:tt : $typ:ident),*) => {
impl<$($typ : Strategy),*> Strategy for ($($typ,)*) {
type Tree = TupleValueTree<($($typ::Tree,)*)>;
type Value = ($($typ::Value,)*);
fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
let values = ($(self.$fld.new_tree(runner)?,)*);
Ok(TupleValueTree::new(values))
}
}
impl<$($typ : ValueTree),*> ValueTree
for TupleValueTree<($($typ,)*)> {
type Value = ($($typ::Value,)*);
fn current(&self) -> Self::Value {
($(self.tree.$fld.current(),)*)
}
fn simplify(&mut self) -> bool {
$(
if $fld == self.shrinker {
if self.tree.$fld.simplify() {
self.prev_shrinker = Some(self.shrinker);
return true;
} else {
self.shrinker += 1;
}
}
)*
false
}
fn complicate(&mut self) -> bool {
if let Some(shrinker) = self.prev_shrinker {$(
if $fld == shrinker {
if self.tree.$fld.complicate() {
self.shrinker = shrinker;
return true;
} else {
self.prev_shrinker = None;
return false;
}
}
)*}
false
}
}
}
}
tuple!(0: A);
tuple!(0: A, 1: B);
tuple!(0: A, 1: B, 2: C);
tuple!(0: A, 1: B, 2: C, 3: D);
tuple!(0: A, 1: B, 2: C, 3: D, 4: E);
tuple!(0: A, 1: B, 2: C, 3: D, 4: E, 5: F);
tuple!(0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G);
tuple!(0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H);
tuple!(0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H, 8: I);
tuple!(0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H, 8: I, 9: J);
tuple!(
0: A,
1: B,
2: C,
3: D,
4: E,
5: F,
6: G,
7: H,
8: I,
9: J,
10: K
);
tuple!(
0: A,
1: B,
2: C,
3: D,
4: E,
5: F,
6: G,
7: H,
8: I,
9: J,
10: K,
11: L
);
#[cfg(test)]
mod test {
use crate::strategy::*;
use super::*;
#[test]
fn shrinks_fully_ltr() {
fn pass(a: (i32, i32)) -> bool {
a.0 * a.1 <= 9
}
let input = (0..32, 0..32);
let mut runner = TestRunner::default();
let mut cases_tested = 0;
for _ in 0..256 {
// Find a failing test case
let mut case = input.new_tree(&mut runner).unwrap();
if pass(case.current()) {
continue;
}
loop {
if pass(case.current()) {
if !case.complicate() {
break;
}
} else {
if !case.simplify() {
break;
}
}
}
let last = case.current();
assert!(!pass(last));
// Maximally shrunken
assert!(pass((last.0 - 1, last.1)));
assert!(pass((last.0, last.1 - 1)));
cases_tested += 1;
}
assert!(cases_tested > 32, "Didn't find enough test cases");
}
#[test]
fn test_sanity() {
check_strategy_sanity((0i32..100, 0i32..1000, 0i32..10000), None);
}
}