1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Timely operators for the crate

use std::any::Any;
use std::fmt::Debug;
use std::future::Future;
use std::sync::mpsc::TryRecvError;
use std::sync::{mpsc, Arc};
use std::time::Duration;

use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::Hashable;
use futures::StreamExt;
use mz_dyncfg::{Config, ConfigSet, ConfigUpdates};
use mz_ore::cast::CastFrom;
use mz_ore::task::JoinHandleExt;
use mz_persist_client::cfg::{RetryParameters, USE_GLOBAL_TXN_CACHE_SOURCE};
use mz_persist_client::operators::shard_source::{shard_source, SnapshotMode};
use mz_persist_client::project::ProjectionPushdown;
use mz_persist_client::{Diagnostics, PersistClient, ShardId};
use mz_persist_types::codec_impls::{StringSchema, UnitSchema};
use mz_persist_types::txn::TxnsCodec;
use mz_persist_types::{Codec, Codec64, StepForward};
use mz_timely_util::builder_async::{
    AsyncInputHandle, Event as AsyncEvent, InputConnection,
    OperatorBuilder as AsyncOperatorBuilder, PressOnDropButton,
};
use timely::container::CapacityContainerBuilder;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::operators::capture::Event;
use timely::dataflow::operators::{Broadcast, Capture, Leave, Map, Probe};
use timely::dataflow::{ProbeHandle, Scope, Stream};
use timely::order::TotalOrder;
use timely::progress::{Antichain, Timestamp};
use timely::worker::Worker;
use timely::{Data, PartialOrder, WorkerConfig};
use tracing::debug;

use crate::txn_cache::TxnsCache;
use crate::txn_read::{DataListenNext, DataRemapEntry, TxnsRead};
use crate::TxnsCodecDefault;

/// An operator for translating physical data shard frontiers into logical ones.
///
/// A data shard in the txns set logically advances its upper each time a txn is
/// committed, but the upper is not physically advanced unless that data shard
/// was involved in the txn. This means that a shard_source (or any read)
/// pointed at a data shard would appear to stall at the time of the most recent
/// write. We fix this for shard_source by flowing its output through a new
/// `txns_progress` dataflow operator, which ensures that the
/// frontier/capability is advanced as the txns shard progresses, as long as the
/// shard_source is up to date with the latest committed write to that data
/// shard.
///
/// Example:
///
/// - A data shard has most recently been written to at 3.
/// - The txns shard's upper is at 6.
/// - We render a dataflow containing a shard_source with an as_of of 5.
/// - A txn NOT involving the data shard is committed at 7.
/// - A txn involving the data shard is committed at 9.
///
/// How it works:
///
/// - The shard_source operator is rendered. Its single output is hooked up as a
///   _disconnected_ input to txns_progress. The txns_progress single output is
///   a stream of the same type, which is used by downstream operators. This
///   txns_progress operator is targeted at one data_shard; rendering a
///   shard_source for a second data shard requires a second txns_progress
///   operator.
/// - The shard_source operator emits data through 3 and advances the frontier.
/// - The txns_progress operator passes through these writes and frontier
///   advancements unchanged. (Recall that it's always correct to read a data
///   shard "normally", it just might stall.) Because the txns_progress operator
///   knows there are no writes in `[3,5]`, it then downgrades its own
///   capability past 5 (to 6). Because the input is disconnected, this means
///   the overall frontier of the output is downgraded to 6.
/// - The txns_progress operator learns about the write at 7 (the upper is now
///   8). Because it knows that the data shard was not involved in this, it's
///   free to downgrade its capability to 8.
/// - The txns_progress operator learns about the write at 9 (the upper is now
///   10). It knows that the data shard _WAS_ involved in this, so it forwards
///   on data from its input until the input has progressed to 10, at which
///   point it can itself downgrade to 10.
pub fn txns_progress<K, V, T, D, P, C, F, G>(
    passthrough: Stream<G, P>,
    name: &str,
    ctx: &TxnsContext,
    worker_dyncfgs: &ConfigSet,
    client_fn: impl Fn() -> F,
    txns_id: ShardId,
    data_id: ShardId,
    as_of: T,
    until: Antichain<T>,
    data_key_schema: Arc<K::Schema>,
    data_val_schema: Arc<V::Schema>,
) -> (Stream<G, P>, Vec<PressOnDropButton>)
where
    K: Debug + Codec + Send + Sync,
    V: Debug + Codec + Send + Sync,
    T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
    D: Debug + Data + Semigroup + Ord + Codec64 + Send + Sync,
    P: Debug + Data,
    C: TxnsCodec + 'static,
    F: Future<Output = PersistClient> + Send + 'static,
    G: Scope<Timestamp = T>,
{
    let unique_id = (name, passthrough.scope().addr()).hashed();
    let (remap, source_button) = if USE_GLOBAL_TXN_CACHE_SOURCE.get(worker_dyncfgs) {
        txns_progress_source_global::<K, V, T, D, P, C, G>(
            passthrough.scope(),
            name,
            ctx.clone(),
            client_fn(),
            txns_id,
            data_id,
            as_of,
            data_key_schema,
            data_val_schema,
            unique_id,
        )
    } else {
        txns_progress_source_local::<K, V, T, D, P, C, G>(
            passthrough.scope(),
            name,
            client_fn(),
            txns_id,
            data_id,
            as_of,
            data_key_schema,
            data_val_schema,
            unique_id,
        )
    };
    // Each of the `txns_frontiers` workers wants the full copy of the remap
    // information.
    let remap = remap.broadcast();
    let (passthrough, frontiers_button) = txns_progress_frontiers::<K, V, T, D, P, C, G>(
        remap,
        passthrough,
        name,
        data_id,
        until,
        unique_id,
    );
    (passthrough, vec![source_button, frontiers_button])
}

/// An alternative implementation of [`txns_progress_source_global`] that opens
/// a new [`TxnsCache`] local to the operator.
fn txns_progress_source_local<K, V, T, D, P, C, G>(
    scope: G,
    name: &str,
    client: impl Future<Output = PersistClient> + 'static,
    txns_id: ShardId,
    data_id: ShardId,
    as_of: T,
    data_key_schema: Arc<K::Schema>,
    data_val_schema: Arc<V::Schema>,
    unique_id: u64,
) -> (Stream<G, DataRemapEntry<T>>, PressOnDropButton)
where
    K: Debug + Codec + Send + Sync,
    V: Debug + Codec + Send + Sync,
    T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
    D: Debug + Data + Semigroup + Ord + Codec64 + Send + Sync,
    P: Debug + Data,
    C: TxnsCodec + 'static,
    G: Scope<Timestamp = T>,
{
    let worker_idx = scope.index();
    let chosen_worker = usize::cast_from(name.hashed()) % scope.peers();
    let name = format!("txns_progress_source({})", name);
    let mut builder = AsyncOperatorBuilder::new(name.clone(), scope);
    let name = format!("{} [{}] {:.9}", name, unique_id, data_id.to_string());
    let (remap_output, remap_stream) = builder.new_output();

    let shutdown_button = builder.build(move |capabilities| async move {
        if worker_idx != chosen_worker {
            return;
        }

        let [mut cap]: [_; 1] = capabilities.try_into().expect("one capability per output");
        let client = client.await;
        let mut txns_cache = TxnsCache::<T, C>::open(&client, txns_id, Some(data_id)).await;

        let _ = txns_cache.update_gt(&as_of).await;
        let mut subscribe = txns_cache.data_subscribe(data_id, as_of.clone());
        let data_write = client
            .open_writer::<K, V, T, D>(
                data_id,
                Arc::clone(&data_key_schema),
                Arc::clone(&data_val_schema),
                Diagnostics::from_purpose("data read physical upper"),
            )
            .await
            .expect("schema shouldn't change");
        if let Some(snapshot) = subscribe.snapshot.take() {
            snapshot.unblock_read(data_write).await;
        }

        debug!("{} emitting {:?}", name, subscribe.remap);
        remap_output.give(&cap, subscribe.remap.clone());

        loop {
            let _ = txns_cache.update_ge(&subscribe.remap.logical_upper).await;
            cap.downgrade(&subscribe.remap.logical_upper);
            let data_listen_next =
                txns_cache.data_listen_next(&subscribe.data_id, &subscribe.remap.logical_upper);
            debug!(
                "{} data_listen_next at {:?}: {:?}",
                name, subscribe.remap.logical_upper, data_listen_next,
            );
            match data_listen_next {
                // We've caught up to the txns upper and we have to wait for it
                // to advance before asking again.
                //
                // Note that we're asking again with the same input, but once
                // the cache is past remap.logical_upper (as it will be after
                // this update_gt call), we're guaranteed to get an answer.
                DataListenNext::WaitForTxnsProgress => {
                    let _ = txns_cache.update_gt(&subscribe.remap.logical_upper).await;
                }
                // The data shard got a write!
                DataListenNext::ReadDataTo(new_upper) => {
                    // A write means both the physical and logical upper advance.
                    subscribe.remap = DataRemapEntry {
                        physical_upper: new_upper.clone(),
                        logical_upper: new_upper,
                    };
                    debug!("{} emitting {:?}", name, subscribe.remap);
                    remap_output.give(&cap, subscribe.remap.clone());
                }
                // We know there are no writes in `[logical_upper,
                // new_progress)`, so advance our output frontier.
                DataListenNext::EmitLogicalProgress(new_progress) => {
                    assert!(subscribe.remap.physical_upper < new_progress);
                    assert!(subscribe.remap.logical_upper < new_progress);

                    subscribe.remap.logical_upper = new_progress;
                    // As mentioned in the docs on `DataRemapEntry`, we only
                    // emit updates when the physical upper changes (which
                    // happens to makes the protocol a tiny bit more
                    // remap-like).
                    debug!("{} not emitting {:?}", name, subscribe.remap);
                }
            }
        }
    });
    (remap_stream, shutdown_button.press_on_drop())
}

/// TODO: I'd much prefer the communication protocol between the two operators
/// to be exactly remap as defined in the [reclocking design doc]. However, we
/// can't quite recover exactly the information necessary to construct that at
/// the moment. Seems worth doing, but in the meantime, intentionally make this
/// look fairly different (`Stream` of `DataRemapEntry` instead of
/// `Collection<FromTime>`) to hopefully minimize confusion. As a performance
/// optimization, we only re-emit this when the _physical_ upper has changed,
/// which means that the frontier of the `Stream<DataRemapEntry<T>>` indicates
/// updates to the logical_upper of the most recent `DataRemapEntry` (i.e. the
/// one with the largest physical_upper).
///
/// [reclocking design doc]:
///     https://github.com/MaterializeInc/materialize/blob/main/doc/developer/design/20210714_reclocking.md
fn txns_progress_source_global<K, V, T, D, P, C, G>(
    scope: G,
    name: &str,
    ctx: TxnsContext,
    client: impl Future<Output = PersistClient> + 'static,
    txns_id: ShardId,
    data_id: ShardId,
    as_of: T,
    data_key_schema: Arc<K::Schema>,
    data_val_schema: Arc<V::Schema>,
    unique_id: u64,
) -> (Stream<G, DataRemapEntry<T>>, PressOnDropButton)
where
    K: Debug + Codec + Send + Sync,
    V: Debug + Codec + Send + Sync,
    T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
    D: Debug + Data + Semigroup + Ord + Codec64 + Send + Sync,
    P: Debug + Data,
    C: TxnsCodec + 'static,
    G: Scope<Timestamp = T>,
{
    let worker_idx = scope.index();
    let chosen_worker = usize::cast_from(name.hashed()) % scope.peers();
    let name = format!("txns_progress_source({})", name);
    let mut builder = AsyncOperatorBuilder::new(name.clone(), scope);
    let name = format!("{} [{}] {:.9}", name, unique_id, data_id.to_string());
    let (remap_output, remap_stream) = builder.new_output();

    let shutdown_button = builder.build(move |capabilities| async move {
        if worker_idx != chosen_worker {
            return;
        }

        let [mut cap]: [_; 1] = capabilities.try_into().expect("one capability per output");
        let client = client.await;
        let txns_read = ctx.get_or_init::<T, C>(&client, txns_id).await;

        let _ = txns_read.update_gt(as_of.clone()).await;
        let data_write = client
            .open_writer::<K, V, T, D>(
                data_id,
                Arc::clone(&data_key_schema),
                Arc::clone(&data_val_schema),
                Diagnostics::from_purpose("data read physical upper"),
            )
            .await
            .expect("schema shouldn't change");
        let mut rx = txns_read
            .data_subscribe(data_id, as_of.clone(), Box::new(data_write))
            .await;
        debug!("{} starting as_of={:?}", name, as_of);

        let mut physical_upper = T::minimum();

        while let Some(remap) = rx.recv().await {
            assert!(physical_upper <= remap.physical_upper);
            assert!(physical_upper < remap.logical_upper);

            let logical_upper = remap.logical_upper.clone();
            // As mentioned in the docs on this function, we only
            // emit updates when the physical upper changes (which
            // happens to makes the protocol a tiny bit more
            // remap-like).
            if remap.physical_upper != physical_upper {
                physical_upper = remap.physical_upper.clone();
                debug!("{} emitting {:?}", name, remap);
                remap_output.give(&cap, remap);
            } else {
                debug!("{} not emitting {:?}", name, remap);
            }
            cap.downgrade(&logical_upper);
        }
    });
    (remap_stream, shutdown_button.press_on_drop())
}

fn txns_progress_frontiers<K, V, T, D, P, C, G>(
    remap: Stream<G, DataRemapEntry<T>>,
    passthrough: Stream<G, P>,
    name: &str,
    data_id: ShardId,
    until: Antichain<T>,
    unique_id: u64,
) -> (Stream<G, P>, PressOnDropButton)
where
    K: Debug + Codec,
    V: Debug + Codec,
    T: Timestamp + Lattice + TotalOrder + StepForward + Codec64,
    D: Data + Semigroup + Codec64 + Send + Sync,
    P: Debug + Data,
    C: TxnsCodec,
    G: Scope<Timestamp = T>,
{
    let name = format!("txns_progress_frontiers({})", name);
    let mut builder = AsyncOperatorBuilder::new(name.clone(), passthrough.scope());
    let name = format!(
        "{} [{}] {}/{} {:.9}",
        name,
        unique_id,
        passthrough.scope().index(),
        passthrough.scope().peers(),
        data_id.to_string(),
    );
    let (passthrough_output, passthrough_stream) =
        builder.new_output::<CapacityContainerBuilder<_>>();
    let mut remap_input = builder.new_disconnected_input(&remap, Pipeline);
    let mut passthrough_input = builder.new_disconnected_input(&passthrough, Pipeline);

    let shutdown_button = builder.build(move |capabilities| async move {
        let [mut cap]: [_; 1] = capabilities.try_into().expect("one capability per output");

        // None is used to indicate that both uppers are the empty antichain.
        let mut remap = Some(DataRemapEntry {
            physical_upper: T::minimum(),
            logical_upper: T::minimum(),
        });
        // NB: The following loop uses `cap.time()`` to track how far we've
        // progressed in copying along the passthrough input.
        loop {
            debug!("{} remap {:?}", name, remap);
            if let Some(r) = remap.as_ref() {
                assert!(r.physical_upper <= r.logical_upper);
                // If we've passed through data to at least `physical_upper`,
                // then it means we can artificially advance the upper of the
                // output to `logical_upper`. This also indicates that we need
                // to wait for the next DataRemapEntry. It can either (A) have
                // the same physical upper or (B) have a larger physical upper.
                //
                // - If (A), then we would again satisfy this `physical_upper`
                //   check, again advance the logical upper again, ...
                // - If (B), then we'd fall down to the code below, which copies
                //   the passthrough data until the frontier passes
                //   `physical_upper`, then loops back up here.
                if r.physical_upper.less_equal(cap.time()) {
                    if cap.time() < &r.logical_upper {
                        cap.downgrade(&r.logical_upper);
                    }
                    remap = txns_progress_frontiers_read_remap_input(
                        &name,
                        &mut remap_input,
                        r.clone(),
                    )
                    .await;
                    continue;
                }
            }

            // This only returns None when there are no more data left. Turn it
            // into an empty frontier progress so we can re-use the shutdown
            // code below.
            let event = passthrough_input
                .next()
                .await
                .unwrap_or_else(|| AsyncEvent::Progress(Antichain::new()));
            match event {
                // NB: Ignore the data_cap because this input is disconnected.
                AsyncEvent::Data(_data_cap, mut data) => {
                    // NB: Nothing to do here for `until` because both the
                    // `shard_source` (before this operator) and
                    // `mfp_and_decode` (after this operator) do the necessary
                    // filtering.
                    debug!("{} emitting data {:?}", name, data);
                    passthrough_output.give_container(&cap, &mut data);
                }
                AsyncEvent::Progress(new_progress) => {
                    // If `until.less_equal(new_progress)`, it means that all
                    // subsequent batches will contain only times greater or
                    // equal to `until`, which means they can be dropped in
                    // their entirety.
                    //
                    // Ideally this check would live in `txns_progress_source`,
                    // but that turns out to be much more invasive (requires
                    // replacing lots of `T`s with `Antichain<T>`s). Given that
                    // we've been thinking about reworking the operators, do the
                    // easy but more wasteful thing for now.
                    if PartialOrder::less_equal(&until, &new_progress) {
                        debug!(
                            "{} progress {:?} has passed until {:?}",
                            name,
                            new_progress.elements(),
                            until.elements()
                        );
                        return;
                    }
                    // We reached the empty frontier! Shut down.
                    let Some(new_progress) = new_progress.into_option() else {
                        return;
                    };

                    // Recall that any reads of the data shard are always
                    // correct, so given that we've passed through any data
                    // from the input, that means we're free to pass through
                    // frontier updates too.
                    if cap.time() < &new_progress {
                        debug!("{} downgrading cap to {:?}", name, new_progress);
                        cap.downgrade(&new_progress);
                    }
                }
            }
        }
    });
    (passthrough_stream, shutdown_button.press_on_drop())
}

async fn txns_progress_frontiers_read_remap_input<T, C>(
    name: &str,
    input: &mut AsyncInputHandle<T, Vec<DataRemapEntry<T>>, C>,
    mut remap: DataRemapEntry<T>,
) -> Option<DataRemapEntry<T>>
where
    T: Timestamp + TotalOrder,
    C: InputConnection<T>,
{
    while let Some(event) = input.next().await {
        let xs = match event {
            AsyncEvent::Progress(logical_upper) => {
                if let Some(logical_upper) = logical_upper.into_option() {
                    if remap.logical_upper < logical_upper {
                        remap.logical_upper = logical_upper;
                        return Some(remap);
                    }
                }
                continue;
            }
            AsyncEvent::Data(_cap, xs) => xs,
        };
        for x in xs {
            debug!("{} got remap {:?}", name, x);
            // Don't assume anything about the ordering.
            if remap.logical_upper < x.logical_upper {
                assert!(
                    remap.physical_upper <= x.physical_upper,
                    "previous remap physical upper {:?} is ahead of new remap physical upper {:?}",
                    remap.physical_upper,
                    x.physical_upper,
                );
                // TODO: If the physical upper has advanced, that's a very
                // strong hint that the data shard is about to be written to.
                // Because the data shard's upper advances sparsely (on write,
                // but not on passage of time) which invalidates the "every 1s"
                // assumption of the default tuning, we've had to de-tune the
                // listen sleeps on the paired persist_source. Maybe we use "one
                // state" to wake it up in case pubsub doesn't and remove the
                // listen polling entirely? (NB: This would have to happen in
                // each worker so that it's guaranteed to happen in each
                // process.)
                remap = x;
            }
        }
        return Some(remap);
    }
    // remap_input is closed, which indicates the data shard is finished.
    None
}

/// The process global [`TxnsRead`] that any operator can communicate with.
#[derive(Default, Debug, Clone)]
pub struct TxnsContext {
    read: Arc<tokio::sync::OnceCell<Box<dyn Any + Send + Sync>>>,
}

impl TxnsContext {
    async fn get_or_init<T, C>(&self, client: &PersistClient, txns_id: ShardId) -> TxnsRead<T>
    where
        T: Timestamp + Lattice + Codec64 + TotalOrder + StepForward + Sync,
        C: TxnsCodec + 'static,
    {
        let read = self
            .read
            .get_or_init(|| {
                let client = client.clone();
                async move {
                    let read: Box<dyn Any + Send + Sync> =
                        Box::new(TxnsRead::<T>::start::<C>(client, txns_id).await);
                    read
                }
            })
            .await
            .downcast_ref::<TxnsRead<T>>()
            .expect("timestamp types should match");
        // We initially only have one txns shard in the system.
        assert_eq!(&txns_id, read.txns_id());
        read.clone()
    }
}

// Existing configs use the prefix "persist_txns_" for historical reasons. New
// configs should use the prefix "txn_wal_".

pub(crate) const DATA_SHARD_RETRYER_INITIAL_BACKOFF: Config<Duration> = Config::new(
    "persist_txns_data_shard_retryer_initial_backoff",
    Duration::from_millis(1024),
    "The initial backoff when polling for new batches from a txns data shard persist_source.",
);

pub(crate) const DATA_SHARD_RETRYER_MULTIPLIER: Config<u32> = Config::new(
    "persist_txns_data_shard_retryer_multiplier",
    2,
    "The backoff multiplier when polling for new batches from a txns data shard persist_source.",
);

pub(crate) const DATA_SHARD_RETRYER_CLAMP: Config<Duration> = Config::new(
    "persist_txns_data_shard_retryer_clamp",
    Duration::from_secs(16),
    "The backoff clamp duration when polling for new batches from a txns data shard persist_source.",
);

/// Retry configuration for txn-wal data shard override of
/// `next_listen_batch`.
pub fn txns_data_shard_retry_params(cfg: &ConfigSet) -> RetryParameters {
    RetryParameters {
        fixed_sleep: Duration::ZERO,
        initial_backoff: DATA_SHARD_RETRYER_INITIAL_BACKOFF.get(cfg),
        multiplier: DATA_SHARD_RETRYER_MULTIPLIER.get(cfg),
        clamp: DATA_SHARD_RETRYER_CLAMP.get(cfg),
    }
}

/// A helper for subscribing to a data shard using the timely operators.
///
/// This could instead be a wrapper around a [Subscribe], but it's only used in
/// tests and maelstrom, so do it by wrapping the timely operators to get
/// additional coverage. For the same reason, hardcode the K, V, T, D types.
///
/// [Subscribe]: mz_persist_client::read::Subscribe
pub struct DataSubscribe {
    pub(crate) as_of: u64,
    pub(crate) worker: Worker<timely::communication::allocator::Thread>,
    data: ProbeHandle<u64>,
    txns: ProbeHandle<u64>,
    capture: mpsc::Receiver<Event<u64, Vec<(String, u64, i64)>>>,
    output: Vec<(String, u64, i64)>,

    _tokens: Vec<PressOnDropButton>,
}

impl std::fmt::Debug for DataSubscribe {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let DataSubscribe {
            as_of,
            worker: _,
            data,
            txns,
            capture: _,
            output,
            _tokens: _,
        } = self;
        f.debug_struct("DataSubscribe")
            .field("as_of", as_of)
            .field("data", data)
            .field("txns", txns)
            .field("output", output)
            .finish_non_exhaustive()
    }
}

impl DataSubscribe {
    /// Creates a new [DataSubscribe].
    pub fn new(
        name: &str,
        client: PersistClient,
        txns_id: ShardId,
        data_id: ShardId,
        as_of: u64,
        until: Antichain<u64>,
        use_global_txn_cache: bool,
    ) -> Self {
        let mut worker = Worker::new(
            WorkerConfig::default(),
            timely::communication::allocator::Thread::new(),
        );
        let (data, txns, capture, tokens) = worker.dataflow::<u64, _, _>(|scope| {
            let (data_stream, shard_source_token) = scope.scoped::<u64, _, _>("hybrid", |scope| {
                let client = client.clone();
                let (data_stream, token) = shard_source::<String, (), u64, i64, _, _, _, _>(
                    scope,
                    name,
                    move || std::future::ready(client.clone()),
                    data_id,
                    Some(Antichain::from_elem(as_of)),
                    SnapshotMode::Include,
                    until.clone(),
                    false.then_some(|_, _: &_, _| unreachable!()),
                    Arc::new(StringSchema),
                    Arc::new(UnitSchema),
                    |_, _| true,
                    false.then_some(|| unreachable!()),
                    async {},
                    |error| panic!("data_subscribe: {error}"),
                    ProjectionPushdown::FetchAll,
                );
                (data_stream.leave(), token)
            });
            let (data, txns) = (ProbeHandle::new(), ProbeHandle::new());
            let data_stream = data_stream.flat_map(|part| {
                let part = part.parse();
                part.part.map(|((k, v), t, d)| {
                    let (k, ()) = (k.unwrap(), v.unwrap());
                    (k, t, d)
                })
            });
            let data_stream = data_stream.probe_with(&data);
            // We purposely do not use the `ConfigSet` in `client` so that
            // different tests can set different values.
            let config_set = ConfigSet::default().add(&USE_GLOBAL_TXN_CACHE_SOURCE);
            let mut updates = ConfigUpdates::default();
            updates.add(&USE_GLOBAL_TXN_CACHE_SOURCE, use_global_txn_cache);
            updates.apply(&config_set);
            let (data_stream, mut txns_progress_token) =
                txns_progress::<String, (), u64, i64, _, TxnsCodecDefault, _, _>(
                    data_stream,
                    name,
                    &TxnsContext::default(),
                    &config_set,
                    || std::future::ready(client.clone()),
                    txns_id,
                    data_id,
                    as_of,
                    until,
                    Arc::new(StringSchema),
                    Arc::new(UnitSchema),
                );
            let data_stream = data_stream.probe_with(&txns);
            let mut tokens = shard_source_token;
            tokens.append(&mut txns_progress_token);
            (data, txns, data_stream.capture(), tokens)
        });
        Self {
            as_of,
            worker,
            data,
            txns,
            capture,
            output: Vec::new(),
            _tokens: tokens,
        }
    }

    /// Returns the exclusive progress of the dataflow.
    pub fn progress(&self) -> u64 {
        self.txns
            .with_frontier(|f| *f.as_option().unwrap_or(&u64::MAX))
    }

    /// Steps the dataflow, capturing output.
    pub fn step(&mut self) {
        self.worker.step();
        self.capture_output()
    }

    pub(crate) fn capture_output(&mut self) {
        loop {
            let event = match self.capture.try_recv() {
                Ok(x) => x,
                Err(TryRecvError::Empty) | Err(TryRecvError::Disconnected) => break,
            };
            match event {
                Event::Progress(_) => {}
                Event::Messages(_, mut msgs) => self.output.append(&mut msgs),
            }
        }
    }

    /// Steps the dataflow past the given time, capturing output.
    #[cfg(test)]
    pub async fn step_past(&mut self, ts: u64) {
        while self.txns.less_equal(&ts) {
            tracing::trace!(
                "progress at {:?}",
                self.txns.with_frontier(|x| x.to_owned()).elements()
            );
            self.step();
            tokio::task::yield_now().await;
        }
    }

    /// Returns captured output.
    pub fn output(&self) -> &Vec<(String, u64, i64)> {
        &self.output
    }
}

/// A handle to a [DataSubscribe] running in a task.
#[derive(Debug)]
pub struct DataSubscribeTask {
    /// Carries step requests. A `None` timestamp requests one step, a
    /// `Some(ts)` requests stepping until we progress beyond `ts`.
    tx: std::sync::mpsc::Sender<(
        Option<u64>,
        tokio::sync::oneshot::Sender<(Vec<(String, u64, i64)>, u64)>,
    )>,
    task: mz_ore::task::JoinHandle<Vec<(String, u64, i64)>>,
    output: Vec<(String, u64, i64)>,
    progress: u64,
}

impl DataSubscribeTask {
    /// Creates a new [DataSubscribeTask].
    pub async fn new(
        client: PersistClient,
        txns_id: ShardId,
        data_id: ShardId,
        as_of: u64,
    ) -> Self {
        let cache = TxnsCache::open(&client, txns_id, Some(data_id)).await;
        let (tx, rx) = std::sync::mpsc::channel();
        let task = mz_ore::task::spawn_blocking(
            || "data_subscribe task",
            move || Self::task(client, cache, data_id, as_of, rx),
        );
        DataSubscribeTask {
            tx,
            task,
            output: Vec::new(),
            progress: 0,
        }
    }

    #[cfg(test)]
    async fn step(&mut self) {
        self.send(None).await;
    }

    /// Steps the dataflow past the given time, capturing output.
    pub async fn step_past(&mut self, ts: u64) -> u64 {
        self.send(Some(ts)).await;
        self.progress
    }

    /// Returns captured output.
    pub fn output(&self) -> &Vec<(String, u64, i64)> {
        &self.output
    }

    async fn send(&mut self, ts: Option<u64>) {
        let (tx, rx) = tokio::sync::oneshot::channel();
        self.tx.send((ts, tx)).expect("task should be running");
        let (mut new_output, new_progress) = rx.await.expect("task should be running");
        self.output.append(&mut new_output);
        assert!(self.progress <= new_progress);
        self.progress = new_progress;
    }

    /// Signals for the task to exit, and then waits for this to happen.
    ///
    /// _All_ output from the lifetime of the task (not just what was previously
    /// captured) is returned.
    pub async fn finish(self) -> Vec<(String, u64, i64)> {
        // Closing the channel signals the task to exit.
        drop(self.tx);
        self.task.wait_and_assert_finished().await
    }

    fn task(
        client: PersistClient,
        cache: TxnsCache<u64>,
        data_id: ShardId,
        as_of: u64,
        rx: std::sync::mpsc::Receiver<(
            Option<u64>,
            tokio::sync::oneshot::Sender<(Vec<(String, u64, i64)>, u64)>,
        )>,
    ) -> Vec<(String, u64, i64)> {
        let mut subscribe = DataSubscribe::new(
            "DataSubscribeTask",
            client.clone(),
            cache.txns_id(),
            data_id,
            as_of,
            Antichain::new(),
            true,
        );
        let mut output = Vec::new();
        loop {
            let (ts, tx) = match rx.try_recv() {
                Ok(x) => x,
                Err(TryRecvError::Empty) => {
                    // No requests, continue stepping so nothing deadlocks.
                    subscribe.step();
                    continue;
                }
                Err(TryRecvError::Disconnected) => {
                    // All done! Return our output.
                    return output;
                }
            };
            // Always step at least once.
            subscribe.step();
            // If we got a ts, make sure to step past it.
            if let Some(ts) = ts {
                while subscribe.progress() <= ts {
                    subscribe.step();
                }
            }
            let new_output = std::mem::take(&mut subscribe.output);
            output.extend(new_output.iter().cloned());
            let _ = tx.send((new_output, subscribe.progress()));
        }
    }
}

#[cfg(test)]
mod tests {
    use itertools::{Either, Itertools};
    use mz_persist_types::Opaque;

    use crate::tests::writer;
    use crate::txns::TxnsHandle;

    use super::*;

    impl<K, V, T, D, O, C> TxnsHandle<K, V, T, D, O, C>
    where
        K: Debug + Codec,
        V: Debug + Codec,
        T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
        D: Debug + Semigroup + Ord + Codec64 + Send + Sync,
        O: Opaque + Debug + Codec64,
        C: TxnsCodec,
    {
        async fn subscribe_task(
            &self,
            client: &PersistClient,
            data_id: ShardId,
            as_of: u64,
        ) -> DataSubscribeTask {
            DataSubscribeTask::new(client.clone(), self.txns_id(), data_id, as_of).await
        }
    }

    #[mz_ore::test(tokio::test(flavor = "multi_thread"))]
    #[cfg_attr(miri, ignore)] // too slow
    async fn data_subscribe() {
        async fn step(subs: &mut Vec<DataSubscribeTask>) {
            for sub in subs.iter_mut() {
                sub.step().await;
            }
        }

        let client = PersistClient::new_for_tests().await;
        let mut txns = TxnsHandle::expect_open(client.clone()).await;
        let log = txns.new_log();
        let d0 = ShardId::new();

        // Start a subscription before the shard gets registered.
        let mut subs = Vec::new();
        subs.push(txns.subscribe_task(&client, d0, 5).await);
        step(&mut subs).await;

        // Now register the shard. Also start a new subscription and step the
        // previous one (plus repeat this for every later step).
        txns.register(1, [writer(&client, d0).await]).await.unwrap();
        subs.push(txns.subscribe_task(&client, d0, 5).await);
        step(&mut subs).await;

        // Now write something unrelated.
        let d1 = txns.expect_register(2).await;
        txns.expect_commit_at(3, d1, &["nope"], &log).await;
        subs.push(txns.subscribe_task(&client, d0, 5).await);
        step(&mut subs).await;

        // Now write to our shard before.
        txns.expect_commit_at(4, d0, &["4"], &log).await;
        subs.push(txns.subscribe_task(&client, d0, 5).await);
        step(&mut subs).await;

        // Now write to our shard at the as_of.
        txns.expect_commit_at(5, d0, &["5"], &log).await;
        subs.push(txns.subscribe_task(&client, d0, 5).await);
        step(&mut subs).await;

        // Now write to our shard past the as_of.
        txns.expect_commit_at(6, d0, &["6"], &log).await;
        subs.push(txns.subscribe_task(&client, d0, 5).await);
        step(&mut subs).await;

        // Now write something unrelated again.
        txns.expect_commit_at(7, d1, &["nope"], &log).await;
        subs.push(txns.subscribe_task(&client, d0, 5).await);
        step(&mut subs).await;

        // Verify that the dataflows can progress to the expected point and that
        // we read the right thing no matter when the dataflow started.
        for mut sub in subs {
            let progress = sub.step_past(7).await;
            assert_eq!(progress, 8);
            log.assert_eq(d0, 5, 8, sub.finish().await);
        }
    }

    #[mz_ore::test(tokio::test(flavor = "multi_thread"))]
    #[cfg_attr(miri, ignore)] // too slow
    async fn subscribe_shard_finalize() {
        let client = PersistClient::new_for_tests().await;
        let mut txns = TxnsHandle::expect_open(client.clone()).await;
        let log = txns.new_log();
        let d0 = txns.expect_register(1).await;

        // Start the operator as_of the register ts.
        let mut sub = txns.read_cache().expect_subscribe(&client, d0, 1);
        sub.step_past(1).await;

        // Write to it via txns.
        txns.expect_commit_at(2, d0, &["foo"], &log).await;
        sub.step_past(2).await;

        // Unregister it.
        txns.forget(3, [d0]).await.unwrap();
        sub.step_past(3).await;

        // TODO: Hard mode, see if we can get the rest of this test to work even
        // _without_ the txns shard advancing.
        txns.begin().commit_at(&mut txns, 7).await.unwrap();

        // The operator should continue to emit data written directly even
        // though it's no longer in the txns set.
        let mut d0_write = writer(&client, d0).await;
        let key = "bar".to_owned();
        crate::small_caa(|| "test", &mut d0_write, &[((&key, &()), &5, 1)], 4, 6)
            .await
            .unwrap();
        log.record((d0, key, 5, 1));
        sub.step_past(4).await;

        // Now finalize the shard to writes.
        let () = d0_write
            .compare_and_append_batch(&mut [], Antichain::from_elem(6), Antichain::new())
            .await
            .unwrap()
            .unwrap();
        while sub.txns.less_than(&u64::MAX) {
            sub.step();
            tokio::task::yield_now().await;
        }

        // Make sure we read the correct things.
        log.assert_eq(d0, 1, u64::MAX, sub.output().clone());

        // Also make sure that we can read the right things if we start up after
        // the forget but before the direct write and ditto after the direct
        // write.
        log.assert_subscribe(d0, 4, u64::MAX).await;
        log.assert_subscribe(d0, 6, u64::MAX).await;
    }

    #[mz_ore::test(tokio::test(flavor = "multi_thread"))]
    #[cfg_attr(miri, ignore)] // too slow
    async fn subscribe_shard_register_forget() {
        let client = PersistClient::new_for_tests().await;
        let mut txns = TxnsHandle::expect_open(client.clone()).await;
        let d0 = ShardId::new();

        // Start a subscription on the data shard.
        let mut sub = txns.read_cache().expect_subscribe(&client, d0, 0);
        assert_eq!(sub.progress(), 0);

        // Register the shard at 10.
        txns.register(10, [writer(&client, d0).await])
            .await
            .unwrap();
        sub.step_past(10).await;
        assert!(
            sub.progress() > 10,
            "operator should advance past 10 when shard is registered"
        );

        // Forget the shard at 20.
        txns.forget(20, [d0]).await.unwrap();
        sub.step_past(20).await;
        assert!(
            sub.progress() > 20,
            "operator should advance past 20 when shard is forgotten"
        );
    }

    #[mz_ore::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // too slow
    async fn as_of_until() {
        let client = PersistClient::new_for_tests().await;
        let mut txns = TxnsHandle::expect_open(client.clone()).await;
        let log = txns.new_log();

        let d0 = txns.expect_register(1).await;
        txns.expect_commit_at(2, d0, &["2"], &log).await;
        txns.expect_commit_at(3, d0, &["3"], &log).await;
        txns.expect_commit_at(4, d0, &["4"], &log).await;
        txns.expect_commit_at(5, d0, &["5"], &log).await;
        txns.expect_commit_at(6, d0, &["6"], &log).await;
        txns.expect_commit_at(7, d0, &["7"], &log).await;

        let until = 5;
        let mut sub = DataSubscribe::new(
            "as_of_until",
            client,
            txns.txns_id(),
            d0,
            3,
            Antichain::from_elem(until),
            true,
        );
        // Manually step the dataflow, instead of going through the
        // `DataSubscribe` helper because we're interested in all captured
        // events.
        while sub.txns.less_equal(&5) {
            sub.worker.step();
            tokio::task::yield_now().await;
            tokio::time::sleep(std::time::Duration::from_millis(100)).await;
        }
        let (actual_progresses, actual_events): (Vec<_>, Vec<_>) =
            sub.capture.into_iter().partition_map(|event| match event {
                Event::Progress(progress) => Either::Left(progress),
                Event::Messages(ts, data) => Either::Right((ts, data)),
            });
        let expected = vec![
            (3, vec![("2".to_owned(), 3, 1), ("3".to_owned(), 3, 1)]),
            (3, vec![("4".to_owned(), 4, 1)]),
        ];
        assert_eq!(actual_events, expected);

        // The number and contents of progress messages is not guaranteed and
        // depends on the downgrade behavior. The only thing we can assert is
        // the max progress timestamp, if there is one, is less than the until.
        if let Some(max_progress_ts) = actual_progresses
            .into_iter()
            .flatten()
            .map(|(ts, _diff)| ts)
            .max()
        {
            assert!(max_progress_ts < until, "{max_progress_ts} < {until}");
        }
    }
}