1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! See if there are predicates of the form `<expr> = literal` that can be sped up using an index.
//! More specifically, look for an MFP on top of a Get, where the MFP has an appropriate filter, and
//! the Get has a matching index. Convert these to `IndexedFilter` joins, which is a semi-join with
//! a constant collection.
//!
//! E.g.: Logically, we go from something like
//! `SELECT f1, f2, f3 FROM t WHERE t.f1 = lit1 AND t.f2 = lit2`
//! to
//! `SELECT f1, f2, f3 FROM t, (SELECT * FROM (VALUES (lit1, lit2))) as filter_list
//! WHERE t.f1 = filter_list.column1 AND t.f2 = filter_list.column2`
use std::collections::{BTreeMap, BTreeSet};
use itertools::Itertools;
use mz_expr::canonicalize::canonicalize_predicates;
use mz_expr::visit::{Visit, VisitChildren};
use mz_expr::JoinImplementation::IndexedFilter;
use mz_expr::{BinaryFunc, Id, MapFilterProject, MirRelationExpr, MirScalarExpr, VariadicFunc};
use mz_ore::collections::CollectionExt;
use mz_ore::iter::IteratorExt;
use mz_ore::stack::RecursionLimitError;
use mz_ore::vec::swap_remove_multiple;
use mz_repr::{GlobalId, Row};
use crate::canonicalize_mfp::CanonicalizeMfp;
use crate::notice::IndexTooWideForLiteralConstraints;
use crate::TransformCtx;
/// Convert literal constraints into `IndexedFilter` joins.
#[derive(Debug)]
pub struct LiteralConstraints;
impl crate::Transform for LiteralConstraints {
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "literal_constraints")
)]
fn transform(
&self,
relation: &mut MirRelationExpr,
ctx: &mut TransformCtx,
) -> Result<(), crate::TransformError> {
let result = self.action(relation, ctx);
mz_repr::explain::trace_plan(&*relation);
result
}
}
impl LiteralConstraints {
fn action(
&self,
relation: &mut MirRelationExpr,
transform_ctx: &mut TransformCtx,
) -> Result<(), crate::TransformError> {
let mut mfp = MapFilterProject::extract_non_errors_from_expr_mut(relation);
relation.try_visit_mut_children(|e| self.action(e, transform_ctx))?;
if let MirRelationExpr::Get {
id: Id::Global(id), ..
} = *relation
{
let orig_mfp = mfp.clone();
// Preparation for the literal constraints detection.
Self::inline_literal_constraints(&mut mfp);
Self::list_of_predicates_to_and_of_predicates(&mut mfp);
Self::distribute_and_over_or(&mut mfp)?;
Self::unary_and(&mut mfp);
/// The above preparation might make the MFP more complicated, so we'll later want to
/// either undo the preparation transformations or get back to `orig_mfp`.
fn undo_preparation(
mfp: &mut MapFilterProject,
orig_mfp: &MapFilterProject,
relation: &MirRelationExpr,
) {
// undo list_of_predicates_to_and_of_predicates, distribute_and_over_or, unary_and
// (It undoes the latter 2 through `MirScalarExp::reduce`.)
LiteralConstraints::canonicalize_predicates(mfp, relation);
// undo inline_literal_constraints
mfp.optimize();
// We can usually undo, but sometimes not (see comment on `distribute_and_over_or`),
// so in those cases we might have a more complicated MFP than the original MFP
// (despite the removal of the literal constraints and/or contradicting OR args).
// So let's use the simpler one.
if LiteralConstraints::predicates_size(orig_mfp)
< LiteralConstraints::predicates_size(mfp)
{
*mfp = orig_mfp.clone();
}
}
let removed_contradicting_or_args = Self::remove_impossible_or_args(&mut mfp)?;
// todo: We might want to also call `canonicalize_equivalences`,
// see near the end of literal_constraints.slt.
let key_val = Self::detect_literal_constraints(&mfp, id, transform_ctx);
match key_val {
None => {
// We didn't find a usable index, so no chance to remove literal constraints.
// But, we might have removed contradicting OR args.
if removed_contradicting_or_args {
undo_preparation(&mut mfp, &orig_mfp, relation);
} else {
// We didn't remove anything, so let's go with the original MFP.
mfp = orig_mfp;
}
}
Some((idx_id, key, possible_vals)) => {
// We found a usable index. We'll try to remove the corresponding literal
// constraints.
if Self::remove_literal_constraints(&mut mfp, &key)
|| removed_contradicting_or_args
{
// We were able to remove the literal constraints or contradicting OR args,
// so we would like to use this new MFP, so we try undoing the preparation.
undo_preparation(&mut mfp, &orig_mfp, relation);
} else {
// We were not able to remove the literal constraint, so `mfp` is
// equivalent to `orig_mfp`, but `orig_mfp` is often simpler (or the same).
mfp = orig_mfp;
}
// We transform the Get into a semi-join with a constant collection.
let inp_id = id.clone();
let inp_typ = relation.typ();
let filter_list = MirRelationExpr::Constant {
rows: Ok(possible_vals.iter().map(|val| (val.clone(), 1)).collect()),
typ: mz_repr::RelationType {
column_types: key
.iter()
.map(|e| {
e.typ(&inp_typ.column_types)
// We make sure to not include a null in `expr_eq_literal`.
.nullable(false)
})
.collect(),
// (Note that the key inference for `MirRelationExpr::Constant` inspects
// the constant values to detect keys not listed within the node, but it
// can only detect a single-column key this way. A multi-column key is
// common here, so we explicitly add it.)
keys: vec![(0..key.len()).collect()],
},
}
.arrange_by(&[(0..key.len()).map(MirScalarExpr::Column).collect_vec()]);
if possible_vals.is_empty() {
// Even better than what we were hoping for: Found contradicting
// literal constraints, so the whole relation is empty.
*relation = MirRelationExpr::Constant {
rows: Ok(Vec::new()),
typ: relation.typ(),
};
} else {
// The common case: We need to build the join which is the main point of
// this transform.
*relation = MirRelationExpr::Join {
// It's important to keep the `filter_list` in the second position.
// Both the lowering and EXPLAIN depends on this.
inputs: vec![relation.clone().arrange_by(&[key.clone()]), filter_list],
equivalences: key
.iter()
.enumerate()
.map(|(i, e)| {
vec![(*e).clone(), MirScalarExpr::column(i + inp_typ.arity())]
})
.collect(),
implementation: IndexedFilter(
inp_id,
idx_id,
key.clone(),
possible_vals,
),
};
// Rebuild the MFP to add the projection that removes the columns coming from
// the filter_list side of the join.
let (map, filter, project) = mfp.as_map_filter_project();
mfp = MapFilterProject::new(inp_typ.arity() + key.len())
.project(0..inp_typ.arity()) // make the join semi
.map(map)
.filter(filter)
.project(project);
mfp.optimize()
}
}
}
}
CanonicalizeMfp::rebuild_mfp(mfp, relation);
Ok(())
}
/// Detects literal constraints in an MFP on top of a Get of `id`, and a matching index that can
/// be used to speed up the Filter of the MFP.
///
/// For example, if there is an index on `(f1, f2)`, and the Filter is
/// `(f1 = 3 AND f2 = 5) OR (f1 = 7 AND f2 = 9)`, it returns `Some([f1, f2], [[3,5], [7,9]])`.
///
/// We can use an index if each argument of the OR includes a literal constraint on each of the
/// key fields of the index. Extra predicates inside the OR arguments are ok.
///
/// Returns (idx_id, idx_key, values to lookup in the index).
fn detect_literal_constraints(
mfp: &MapFilterProject,
get_id: GlobalId,
transform_ctx: &mut TransformCtx,
) -> Option<(GlobalId, Vec<MirScalarExpr>, Vec<Row>)> {
// Checks whether an index with the specified key can be used to speed up the given filter.
// See comment of `IndexMatch`.
fn match_index(key: &[MirScalarExpr], or_args: &Vec<MirScalarExpr>) -> IndexMatch {
if key.is_empty() {
// Nothing to do with an index that has an empty key.
return IndexMatch::UnusableNoSubset;
}
if !key.iter().all_unique() {
// This is a weird index. Why does it have duplicate key expressions?
return IndexMatch::UnusableNoSubset;
}
let mut literal_values = Vec::new();
let mut inv_cast_any = false;
// This starts with all key fields of the index.
// At the end, it will contain a subset S of index key fields such that if the index had
// only S as its key, then the index would be usable.
let mut usable_key_fields = key.iter().collect::<BTreeSet<_>>();
let mut usable = true;
for or_arg in or_args {
let mut row = Row::default();
let mut packer = row.packer();
for key_field in key {
let and_args = or_arg.and_or_args(VariadicFunc::And);
// Let's find a constraint for this key field
if let Some((literal, inv_cast)) = and_args
.iter()
.find_map(|and_arg| and_arg.expr_eq_literal(key_field))
{
// (Note that the above find_map can find only 0 or 1 result, because
// of `remove_impossible_or_args`.)
packer.push(literal.unpack_first());
inv_cast_any |= inv_cast;
} else {
// There is an `or_arg` where we didn't find a constraint for a key field,
// so the index is unusable. Throw out the field from the usable fields.
usable = false;
usable_key_fields.remove(key_field);
if usable_key_fields.is_empty() {
return IndexMatch::UnusableNoSubset;
}
}
}
literal_values.push(row);
}
if usable {
// We should deduplicate, because a constraint can be duplicated by
// `distribute_and_over_or`. For example: `IN ('l1', 'l2') AND (a > 0 OR a < 5)`:
// the 2 args of the OR will cause the IN constraints to be duplicated. This doesn't
// alter the meaning of the expression when evaluated as a filter, but if we extract
// those literals 2 times into `literal_values` then the Peek code will look up
// those keys from the index 2 times, leading to duplicate results.
literal_values.sort();
literal_values.dedup();
IndexMatch::Usable(literal_values, inv_cast_any)
} else {
if usable_key_fields.is_empty() {
IndexMatch::UnusableNoSubset
} else {
IndexMatch::UnusableTooWide(
usable_key_fields.into_iter().cloned().collect_vec(),
)
}
}
}
let or_args = Self::get_or_args(mfp);
let index_matches = transform_ctx
.indexes
.indexes_on(get_id)
.map(|(index_id, key)| (index_id, key.to_owned(), match_index(key, &or_args)))
.collect_vec();
let result = index_matches
.iter()
.cloned()
.filter_map(|(idx_id, key, index_match)| match index_match {
IndexMatch::Usable(vals, inv_cast) => Some((idx_id, key, vals, inv_cast)),
_ => None,
})
// Maximize:
// 1. number of predicates that are sped using a single index.
// 2. whether we are using a simpler index by having removed a cast from the key expr.
.max_by_key(|(_idx_id, key, _vals, inv_cast)| (key.len(), *inv_cast))
.map(|(idx_id, key, vals, _inv_cast)| (idx_id, key, vals));
if result.is_none() && !or_args.is_empty() {
// Let's see if we can give a hint to the user.
index_matches
.into_iter()
.for_each(|(index_id, index_key, index_match)| {
match index_match {
IndexMatch::UnusableTooWide(usable_subset) => {
// see comment of `UnusableTooWide`
assert!(!usable_subset.is_empty());
// Determine literal values that we would get if the index was on
// `usable_subset`.
let literal_values = match match_index(&usable_subset, &or_args) {
IndexMatch::Usable(literal_vals, _) => literal_vals,
_ => unreachable!(), // `usable_subset` would make the index usable.
};
// Let's come up with a recommendation for what columns to index:
// Intersect literal constraints across all OR args. (Which might
// include columns that are NOT in this index, and therefore not in
// `usable_subset`.)
let recommended_key = or_args
.iter()
.map(|or_arg| {
let and_args = or_arg.and_or_args(VariadicFunc::And);
and_args
.iter()
.filter_map(|and_arg| and_arg.any_expr_eq_literal())
.collect::<BTreeSet<_>>()
})
.reduce(|fields1, fields2| {
fields1.intersection(&fields2).cloned().collect()
})
// The unwrap is safe because above we checked `!or_args.is_empty()`
.unwrap()
.into_iter()
.collect_vec();
transform_ctx.df_meta.push_optimizer_notice_dedup(
IndexTooWideForLiteralConstraints {
index_id,
index_key,
usable_subset,
literal_values,
index_on_id: get_id,
recommended_key,
},
)
}
_ => (),
}
});
}
result
}
/// Removes the expressions that [LiteralConstraints::detect_literal_constraints] found, if
/// possible. Returns whether it removed anything.
/// For example, if the key of the detected literal constraint is just `f1`, and we have the
/// expression
/// `(f1 = 3 AND f2 = 5) OR (f1 = 7 AND f2 = 5)`, then this modifies it to `f2 = 5`.
/// However, if OR branches differ in their non-key parts, then we cannot remove the literal
/// constraint. For example,
/// `(f1 = 3 AND f2 = 5) OR (f1 = 7 AND f2 = 555)`, then we cannot remove the `f1` parts,
/// because then the filter wouldn't know whether to check `f2 = 5` or `f2 = 555`.
fn remove_literal_constraints(mfp: &mut MapFilterProject, key: &Vec<MirScalarExpr>) -> bool {
let or_args = Self::get_or_args(mfp);
if or_args.len() == 0 {
return false;
}
// In simple situations it would be enough to check here that if we remove the detected
// literal constraints from each OR arg, then the residual OR args are all equal.
// However, this wouldn't be able to perform the removal when the expression that should
// remain in the end has an OR. This is because conversion to DNF makes duplicates of
// every literal constraint, with different residuals. To also handle this case, we collect
// the possible residuals for every literal constraint row, and check that all sets are
// equal. Example: The user wrote
// `WHERE ((a=1 AND b=1) OR (a=2 AND b=2)) AND (c OR (d AND e))`.
// The DNF of this is
// `(a=1 AND b=1 AND c) OR (a=1 AND b=1 AND d AND e) OR (a=2 AND b=2 AND c) OR (a=2 AND b=2 AND d AND e)`.
// Then `constraints_to_residual_sets` will be:
// [
// [`a=1`, `b=1`] -> {[`c`], [`d`, `e`]},
// [`a=2`, `b=2`] -> {[`c`], [`d`, `e`]}
// ]
// After removing the literal constraints we have
// `c OR (d AND e)`
let mut constraints_to_residual_sets = BTreeMap::new();
or_args.iter().for_each(|or_arg| {
let and_args = or_arg.and_or_args(VariadicFunc::And);
let (mut constraints, mut residual): (Vec<_>, Vec<_>) =
and_args.iter().cloned().partition(|and_arg| {
key.iter()
.any(|key_field| matches!(and_arg.expr_eq_literal(key_field), Some(..)))
});
// In every or_arg there has to be some literal constraints, otherwise
// `detect_literal_constraints` would have returned None.
assert!(constraints.len() >= 1);
// `remove_impossible_or_args` made sure that inside each or_arg, each
// expression can be literal constrained only once. So if we find one of the
// key fields being literal constrained, then it's definitely that literal
// constraint that detect_literal_constraints based one of its return values on.
//
// This is important, because without `remove_impossible_or_args`, we might
// have the situation here that or_arg would be something like
// `a = 5 AND a = 8`, of which `detect_literal_constraints` found only the `a = 5`,
// but here we would remove both the `a = 5` and the `a = 8`.
constraints.sort();
residual.sort();
let entry = constraints_to_residual_sets
.entry(constraints)
.or_insert_with(BTreeSet::new);
entry.insert(residual);
});
let residual_sets = constraints_to_residual_sets
.into_iter()
.map(|(_constraints, residual_set)| residual_set)
.collect::<Vec<_>>();
if residual_sets.iter().all_equal() {
// We can remove the literal constraint
assert!(residual_sets.len() >= 1); // We already checked `or_args.len() == 0` above
let residual_set = residual_sets.into_iter().into_first();
let new_pred = MirScalarExpr::CallVariadic {
func: VariadicFunc::Or,
exprs: residual_set
.into_iter()
.map(|residual| MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs: residual,
})
.collect::<Vec<_>>(),
};
let (map, _predicates, project) = mfp.as_map_filter_project();
*mfp = MapFilterProject::new(mfp.input_arity)
.map(map)
.filter(std::iter::once(new_pred))
.project(project);
true
} else {
false
}
}
/// 1. Removes such OR args in which there are contradicting literal constraints.
/// 2. Also, if an OR arg doesn't have any contradiction, this fn just deduplicates
/// the AND arg list of that OR arg. (Might additionally sort all AND arg lists.)
///
/// Returns whether it performed any removal or deduplication.
///
/// Example for 1:
/// `<arg1> OR (a = 5 AND a = 5 AND a = 8) OR <arg3>`
/// -->
/// `<arg1> OR <arg3> `
///
/// Example for 2:
/// `<arg1> OR (a = 5 AND a = 5 AND b = 8) OR <arg3>`
/// -->
/// `<arg1> OR (a = 5 AND b = 8) OR <arg3>`
fn remove_impossible_or_args(mfp: &mut MapFilterProject) -> Result<bool, RecursionLimitError> {
let mut or_args = Self::get_or_args(mfp);
if or_args.len() == 0 {
return Ok(false);
}
let mut to_remove = Vec::new();
let mut changed = false;
or_args.iter_mut().enumerate().for_each(|(i, or_arg)| {
if let MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs: and_args,
} = or_arg
{
if and_args
.iter()
.any(|e| e.impossible_literal_equality_because_types())
{
changed = true;
to_remove.push(i);
} else {
and_args.sort_by_key(|e: &MirScalarExpr| e.invert_casts_on_expr_eq_literal());
let and_args_before_dedup = and_args.clone();
and_args
.dedup_by_key(|e: &mut MirScalarExpr| e.invert_casts_on_expr_eq_literal());
if *and_args != and_args_before_dedup {
changed = true;
}
// Deduplicated, so we cannot have something like `a = 5 AND a = 5`.
// This means that if we now have `<expr1> = <literal1> AND <expr1> = <literal2>`,
// then `literal1` is definitely not the same as `literal2`. This means that this
// whole or_arg is a contradiction, because it's something like `a = 5 AND a = 8`.
let mut literal_constrained_exprs = and_args
.iter()
.filter_map(|and_arg| and_arg.any_expr_eq_literal());
if !literal_constrained_exprs.all_unique() {
changed = true;
to_remove.push(i);
}
}
} else {
// `unary_and` made sure that each OR arg is an AND
unreachable!("OR arg was not an AND in remove_impossible_or_args");
}
});
// We remove the marked OR args.
// (If the OR has 0 or 1 args remaining, then `reduce_and_canonicalize_and_or` will later
// further simplify.)
swap_remove_multiple(&mut or_args, to_remove);
// Rebuild the MFP if needed
if changed {
let new_predicates = vec![MirScalarExpr::CallVariadic {
func: VariadicFunc::Or,
exprs: or_args,
}];
let (map, _predicates, project) = mfp.as_map_filter_project();
*mfp = MapFilterProject::new(mfp.input_arity)
.map(map)
.filter(new_predicates)
.project(project);
Ok(true)
} else {
Ok(false)
}
}
/// Returns the arguments of the predicate's top-level OR as a Vec.
/// If there is no top-level OR, then interpret the predicate as a 1-arg OR, i.e., return a
/// 1-element Vec.
///
/// Assumes that [LiteralConstraints::list_of_predicates_to_and_of_predicates] has already run.
fn get_or_args(mfp: &MapFilterProject) -> Vec<MirScalarExpr> {
assert_eq!(mfp.predicates.len(), 1); // list_of_predicates_to_and_of_predicates ensured this
let (_, pred) = mfp.predicates.get(0).unwrap();
pred.and_or_args(VariadicFunc::Or)
}
/// Makes the job of [LiteralConstraints::detect_literal_constraints] easier by undoing some CSE to
/// reconstruct literal constraints.
fn inline_literal_constraints(mfp: &mut MapFilterProject) {
let mut should_inline = vec![false; mfp.input_arity + mfp.expressions.len()];
// Mark those expressions for inlining that contain a subexpression of the form
// `<xxx> = <lit>` or `<lit> = <xxx>`.
for (i, e) in mfp.expressions.iter().enumerate() {
e.visit_pre(|s| {
if s.any_expr_eq_literal().is_some() {
should_inline[i + mfp.input_arity] = true;
}
});
}
// Whenever
// `<Column(i)> = <lit>` or `<lit> = <Column(i)>`
// appears in a predicate, mark the ith expression to be inlined.
for (_before, p) in mfp.predicates.iter() {
p.visit_pre(|e| {
if let MirScalarExpr::CallBinary {
func: BinaryFunc::Eq,
expr1,
expr2,
} = e
{
if matches!(**expr1, MirScalarExpr::Literal(..)) {
if let MirScalarExpr::Column(col) = **expr2 {
if col >= mfp.input_arity {
should_inline[col] = true;
}
}
}
if matches!(**expr2, MirScalarExpr::Literal(..)) {
if let MirScalarExpr::Column(col) = **expr1 {
if col >= mfp.input_arity {
should_inline[col] = true;
}
}
}
}
});
}
// Perform the marked inlinings.
mfp.perform_inlining(should_inline);
}
/// MFPs have a Vec of predicates `[p1, p2, ...]`, which logically represents `p1 AND p2 AND ...`.
/// This function performs this conversion. Note that it might create a variadic AND with
/// 0 or 1 args, so the resulting predicate Vec always has exactly 1 element.
fn list_of_predicates_to_and_of_predicates(mfp: &mut MapFilterProject) {
// Rebuild the MFP. (Unfortunately, we cannot modify the predicates in place, because MFP
// predicates also have a "before" field, which we need to update. (`filter` will recompute
// these.)
let (map, _predicates, project) = mfp.as_map_filter_project();
let new_predicates = vec![MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs: mfp.predicates.iter().map(|(_, p)| p.clone()).collect(),
}];
*mfp = MapFilterProject::new(mfp.input_arity)
.map(map)
.filter(new_predicates)
.project(project);
}
/// Call [mz_expr::canonicalize::canonicalize_predicates] on each of the predicates in the MFP.
fn canonicalize_predicates(mfp: &mut MapFilterProject, relation: &MirRelationExpr) {
let (map, mut predicates, project) = mfp.as_map_filter_project();
let typ_after_map = relation.clone().map(map.clone()).typ();
canonicalize_predicates(&mut predicates, &typ_after_map.column_types);
// Rebuild the MFP with the new predicates.
*mfp = MapFilterProject::new(mfp.input_arity)
.map(map)
.filter(predicates)
.project(project);
}
/// Distribute AND over OR + do flatten_and_or until fixed point.
/// This effectively converts to disjunctive normal form (DNF) (i.e., an OR of ANDs), because
/// [MirScalarExpr::reduce] did Demorgans and double-negation-elimination. So after
/// [MirScalarExpr::reduce], we get here a tree of AND/OR nodes. A distribution step lifts an OR
/// up the tree by 1 level, and a [MirScalarExpr::flatten_associative] merges two ORs that are at
/// adjacent levels, so eventually we'll end up with just one OR that is at the top of the tree,
/// with ANDs below it.
/// For example:
/// (a || b) && (c || d)
/// ->
/// ((a || b) && c) || ((a || b) && d)
/// ->
/// (a && c) || (b && c) || (a && d) || (b && d)
/// (This is a variadic OR with 4 arguments.)
///
/// Example:
/// User wrote `WHERE (a,b) IN ((1,2), (1,4), (8,5))`,
/// from which [MirScalarExpr::undistribute_and_or] made this before us:
/// (#0 = 1 AND (#1 = 2 OR #1 = 4)) OR (#0 = 8 AND #1 = 5)
/// And now we distribute the first AND over the first OR in 2 steps: First to
/// ((#0 = 1 AND #1 = 2) OR (#0 = 1 AND #1 = 4)) OR (#0 = 8 AND #1 = 5)
/// then [MirScalarExpr::flatten_associative]:
/// (#0 = 1 AND #1 = 2) OR (#0 = 1 AND #1 = 4) OR (#0 = 8 AND #1 = 5)
///
/// Note that [MirScalarExpr::undistribute_and_or] is not exactly an inverse to this because
/// 1) it can undistribute both AND over OR and OR over AND.
/// 2) it cannot always undo the distribution, because an expression might have multiple
/// overlapping undistribution opportunities, see comment there.
fn distribute_and_over_or(mfp: &mut MapFilterProject) -> Result<(), RecursionLimitError> {
mfp.predicates.iter_mut().try_for_each(|(_, p)| {
let mut old_p = MirScalarExpr::column(0);
while old_p != *p {
let size = p.size();
// We might make the expression exponentially larger, so we should have some limit.
// Below 1000 (e.g., a single IN list of ~300 elements, or 3 IN lists of 4-5
// elements each), we are <10 ms for a single IN list, and even less for multiple IN
// lists.
if size > 1000 {
break;
}
old_p = p.clone();
p.visit_mut_post(&mut |e: &mut MirScalarExpr| {
if let MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs: and_args,
} = e
{
if let Some((i, _)) = and_args.iter().enumerate().find(|(_i, a)| {
matches!(
a,
MirScalarExpr::CallVariadic {
func: VariadicFunc::Or,
..
}
)
}) {
// We found an AND whose ith argument is an OR. We'll distribute the other
// args of the AND over this OR.
let mut or = and_args.swap_remove(i);
let to_distribute = MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs: (*and_args).clone(),
};
if let MirScalarExpr::CallVariadic {
func: VariadicFunc::Or,
exprs: ref mut or_args,
} = or
{
or_args.iter_mut().for_each(|a| {
*a = a.clone().and(to_distribute.clone());
});
} else {
unreachable!(); // because the `find` found a match already
}
*e = or; // The modified OR will be the new top-level expr.
}
}
})?;
p.visit_mut_post(&mut |e: &mut MirScalarExpr| {
e.flatten_associative();
})?;
}
Ok(())
})
}
/// For each of the arguments of the top-level OR (if no top-level OR, then interpret the whole
/// expression as a 1-arg OR, see [LiteralConstraints::get_or_args]), check if it's an AND, and
/// if not, then wrap it in a 1-arg AND.
fn unary_and(mfp: &mut MapFilterProject) {
let mut or_args = Self::get_or_args(mfp);
let mut changed = false;
or_args.iter_mut().for_each(|or_arg| {
if !matches!(
or_arg,
MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
..
}
) {
*or_arg = MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs: vec![or_arg.clone()],
};
changed = true;
}
});
if changed {
let new_predicates = vec![MirScalarExpr::CallVariadic {
func: VariadicFunc::Or,
exprs: or_args,
}];
let (map, _predicates, project) = mfp.as_map_filter_project();
*mfp = MapFilterProject::new(mfp.input_arity)
.map(map)
.filter(new_predicates)
.project(project);
}
}
fn predicates_size(mfp: &MapFilterProject) -> usize {
let mut sum = 0;
for (_, p) in mfp.predicates.iter() {
sum = sum + p.size();
}
sum
}
}
/// Whether an index is usable to speed up a Filter with literal constraints.
#[derive(Clone)]
enum IndexMatch {
/// The index is usable, that is, each OR argument constrains each key field.
///
/// The `Vec<Row>` has the constraining literal values, where each Row corresponds to one OR
/// argument, and each value in the Row corresponds to one key field.
///
/// The `bool` indicates whether we needed to inverse cast equalities to match them up with key
/// fields. The inverse cast enables index usage when an implicit cast is wrapping a key field.
/// E.g., if `a` is smallint, and the user writes `a = 5`, then HIR inserts an implicit cast:
/// `smallint_to_integer(a) = 5`, which we invert to `a = 5`, where the `5` is a smallint
/// literal. For more details on the inversion, see `invert_casts_on_expr_eq_literal_inner`.
Usable(Vec<Row>, bool),
/// The index is unusable. However, there is a subset of key fields such that if the index would
/// be only on this subset, then it would be usable.
/// Note: this Vec is never empty. (If it were empty, then we'd get `UnusableNoSubset` instead.)
UnusableTooWide(Vec<MirScalarExpr>),
/// The index is unusable. Moreover, none of its key fields could be used as an alternate index
/// to speed up this filter.
UnusableNoSubset,
}