1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! A fork of DD's `JoinCore::join_core`.
//!
//! Currently, compute rendering knows two implementations for linear joins:
//!
//!  * Differential's `JoinCore::join_core`
//!  * A Materialize fork thereof, called `mz_join_core`
//!
//! `mz_join_core` exists to solve a responsiveness problem with the DD implementation.
//! DD's join is only able to yield between keys. When computing a large cross-join or a highly
//! skewed join, this can result in loss of interactivity when the join operator refuses to yield
//! control for multiple seconds or longer, which in turn causes degraded user experience.
//!
//! `mz_join_core` currently fixes the yielding issue by omitting the merge-join matching strategy
//! implemented in DD's join implementation. This leaves only the nested loop strategy for which it
//! is easy to implement yielding within keys.
//!
//! While `mz_join_core` retains responsiveness in the face of cross-joins it is also, due to its
//! sole reliance on nested-loop matching, significantly slower than DD's join for workloads that
//! have a large amount of edits at different times. We consider these niche workloads for
//! Materialize today, due to the way source ingestion works, but that might change in the future.
//!
//! For the moment, we keep both implementations around, selectable through a feature flag.
//! We expect `mz_join_core` to be more useful in Materialize today, but being able to fall back to
//! DD's implementation provides a safety net in case that assumption is wrong.
//!
//! In the mid-term, we want to arrive at a single join implementation that is as efficient as DD's
//! join and as responsive as `mz_join_core`. Whether that means adding merge-join matching to
//! `mz_join_core` or adding better fueling to DD's join implementation is still TBD.

use std::cmp::Ordering;
use std::collections::VecDeque;
use std::time::Instant;

use differential_dataflow::consolidation::{consolidate, consolidate_updates};
use differential_dataflow::difference::Multiply;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::operators::arrange::arrangement::Arranged;
use differential_dataflow::trace::cursor::IntoOwned;
use differential_dataflow::trace::{BatchReader, Cursor, TraceReader};
use differential_dataflow::Data;
use mz_repr::Diff;
use timely::container::{CapacityContainerBuilder, PushInto, SizableContainer};
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::channels::pushers::buffer::Session;
use timely::dataflow::channels::pushers::Tee;
use timely::dataflow::operators::generic::OutputHandleCore;
use timely::dataflow::operators::{Capability, Operator};
use timely::dataflow::{Scope, StreamCore};
use timely::progress::timestamp::Timestamp;
use timely::PartialOrder;
use tracing::trace;

use crate::render::context::ShutdownToken;

/// Joins two arranged collections with the same key type.
///
/// Each matching pair of records `(key, val1)` and `(key, val2)` are subjected to the `result` function,
/// which produces something implementing `IntoIterator`, where the output collection will have an entry for
/// every value returned by the iterator.
pub(super) fn mz_join_core<G, Tr1, Tr2, L, I, YFn, C>(
    arranged1: &Arranged<G, Tr1>,
    arranged2: &Arranged<G, Tr2>,
    shutdown_token: ShutdownToken,
    mut result: L,
    yield_fn: YFn,
) -> StreamCore<G, C>
where
    G: Scope,
    G::Timestamp: Lattice,
    Tr1: TraceReader<Time = G::Timestamp, Diff = Diff> + Clone + 'static,
    Tr2: for<'a> TraceReader<Key<'a> = Tr1::Key<'a>, Time = G::Timestamp, Diff = Diff>
        + Clone
        + 'static,
    L: FnMut(Tr1::Key<'_>, Tr1::Val<'_>, Tr2::Val<'_>) -> I + 'static,
    I: IntoIterator,
    I::Item: Data,
    YFn: Fn(Instant, usize) -> bool + 'static,
    C: SizableContainer + PushInto<(I::Item, G::Timestamp, Diff)> + Data,
{
    let mut trace1 = arranged1.trace.clone();
    let mut trace2 = arranged2.trace.clone();

    arranged1.stream.binary_frontier(
        &arranged2.stream,
        Pipeline,
        Pipeline,
        "Join",
        move |capability, info| {
            let operator_id = info.global_id;

            // Acquire an activator to reschedule the operator when it has unfinished work.
            let activator = arranged1.stream.scope().activator_for(info.address);

            // Our initial invariants are that for each trace, physical compaction is less or equal the trace's upper bound.
            // These invariants ensure that we can reference observed batch frontiers from `_start_upper` onward, as long as
            // we maintain our physical compaction capabilities appropriately. These assertions are tested as we load up the
            // initial work for the two traces, and before the operator is constructed.

            // Acknowledged frontier for each input.
            // These two are used exclusively to track batch boundaries on which we may want/need to call `cursor_through`.
            // They will drive our physical compaction of each trace, and we want to maintain at all times that each is beyond
            // the physical compaction frontier of their corresponding trace.
            // Should we ever *drop* a trace, these are 1. much harder to maintain correctly, but 2. no longer used.
            use timely::progress::frontier::Antichain;
            let mut acknowledged1 = Antichain::from_elem(<G::Timestamp>::minimum());
            let mut acknowledged2 = Antichain::from_elem(<G::Timestamp>::minimum());

            // deferred work of batches from each input.
            let mut todo1 = VecDeque::new();
            let mut todo2 = VecDeque::new();

            // We'll unload the initial batches here, to put ourselves in a less non-deterministic state to start.
            trace1.map_batches(|batch1| {
                trace!(
                    operator_id,
                    input = 1,
                    lower = ?batch1.lower().elements(),
                    upper = ?batch1.upper().elements(),
                    size = batch1.len(),
                    "pre-loading batch",
                );

                acknowledged1.clone_from(batch1.upper());
                // No `todo1` work here, because we haven't accepted anything into `batches2` yet.
                // It is effectively "empty", because we choose to drain `trace1` before `trace2`.
                // Once we start streaming batches in, we will need to respond to new batches from
                // `input1` with logic that would have otherwise been here. Check out the next loop
                // for the structure.
            });
            // At this point, `ack1` should exactly equal `trace1.read_upper()`, as they are both determined by
            // iterating through batches and capturing the upper bound. This is a great moment to assert that
            // `trace1`'s physical compaction frontier is before the frontier of completed times in `trace1`.
            // TODO: in the case that this does not hold, instead "upgrade" the physical compaction frontier.
            assert!(PartialOrder::less_equal(
                &trace1.get_physical_compaction(),
                &acknowledged1.borrow()
            ));

            trace!(
                operator_id,
                input = 1,
                acknowledged1 = ?acknowledged1.elements(),
                "pre-loading finished",
            );

            // We capture batch2 cursors first and establish work second to avoid taking a `RefCell` lock
            // on both traces at the same time, as they could be the same trace and this would panic.
            let mut batch2_cursors = Vec::new();
            trace2.map_batches(|batch2| {
                trace!(
                    operator_id,
                    input = 2,
                    lower = ?batch2.lower().elements(),
                    upper = ?batch2.upper().elements(),
                    size = batch2.len(),
                    "pre-loading batch",
                );

                acknowledged2.clone_from(batch2.upper());
                batch2_cursors.push((batch2.cursor(), batch2.clone()));
            });
            // At this point, `ack2` should exactly equal `trace2.read_upper()`, as they are both determined by
            // iterating through batches and capturing the upper bound. This is a great moment to assert that
            // `trace2`'s physical compaction frontier is before the frontier of completed times in `trace2`.
            // TODO: in the case that this does not hold, instead "upgrade" the physical compaction frontier.
            assert!(PartialOrder::less_equal(
                &trace2.get_physical_compaction(),
                &acknowledged2.borrow()
            ));

            // Load up deferred work using trace2 cursors and batches captured just above.
            for (batch2_cursor, batch2) in batch2_cursors.into_iter() {
                trace!(
                    operator_id,
                    input = 2,
                    acknowledged1 = ?acknowledged1.elements(),
                    "deferring work for batch",
                );

                // It is safe to ask for `ack1` because we have confirmed it to be in advance of `distinguish_since`.
                let (trace1_cursor, trace1_storage) =
                    trace1.cursor_through(acknowledged1.borrow()).unwrap();
                // We could downgrade the capability here, but doing so is a bit complicated mathematically.
                // TODO: downgrade the capability by searching out the one time in `batch2.lower()` and not
                // in `batch2.upper()`. Only necessary for non-empty batches, as empty batches may not have
                // that property.
                todo2.push_back(Deferred::new(
                    trace1_cursor,
                    trace1_storage,
                    batch2_cursor,
                    batch2.clone(),
                    capability.clone(),
                ));
            }

            trace!(
                operator_id,
                input = 2,
                acknowledged2 = ?acknowledged2.elements(),
                "pre-loading finished",
            );

            // Droppable handles to shared trace data structures.
            let mut trace1_option = Some(trace1);
            let mut trace2_option = Some(trace2);

            move |input1, input2, output| {
                // If the dataflow is shutting down, discard all existing and future work.
                if shutdown_token.in_shutdown() {
                    trace!(operator_id, "shutting down");

                    // Discard data at the inputs.
                    input1.for_each(|_cap, _data| ());
                    input2.for_each(|_cap, _data| ());

                    // Discard queued work.
                    todo1 = Default::default();
                    todo2 = Default::default();

                    // Stop holding on to input traces.
                    trace1_option = None;
                    trace2_option = None;

                    return;
                }

                // 1. Consuming input.
                //
                // The join computation repeatedly accepts batches of updates from each of its inputs.
                //
                // For each accepted batch, it prepares a work-item to join the batch against previously "accepted"
                // updates from its other input. It is important to track which updates have been accepted, because
                // we use a shared trace and there may be updates present that are in advance of this accepted bound.
                //
                // Batches are accepted: 1. in bulk at start-up (above), 2. as we observe them in the input stream,
                // and 3. if the trace can confirm a region of empty space directly following our accepted bound.
                // This last case is a consequence of our inability to transmit empty batches, as they may be formed
                // in the absence of timely dataflow capabilities.

                // Drain input 1, prepare work.
                input1.for_each(|capability, data| {
                    let trace2 = trace2_option
                        .as_mut()
                        .expect("we only drop a trace in response to the other input emptying");
                    let capability = capability.retain();
                    for batch1 in data.drain(..) {
                        // Ignore any pre-loaded data.
                        if PartialOrder::less_equal(&acknowledged1, batch1.lower()) {
                            trace!(
                                operator_id,
                                input = 1,
                                lower = ?batch1.lower().elements(),
                                upper = ?batch1.upper().elements(),
                                size = batch1.len(),
                                "loading batch",
                            );

                            if !batch1.is_empty() {
                                trace!(
                                    operator_id,
                                    input = 1,
                                    acknowledged2 = ?acknowledged2.elements(),
                                    "deferring work for batch",
                                );

                                // It is safe to ask for `ack2` as we validated that it was at least `get_physical_compaction()`
                                // at start-up, and have held back physical compaction ever since.
                                let (trace2_cursor, trace2_storage) =
                                    trace2.cursor_through(acknowledged2.borrow()).unwrap();
                                let batch1_cursor = batch1.cursor();
                                todo1.push_back(Deferred::new(
                                    batch1_cursor,
                                    batch1.clone(),
                                    trace2_cursor,
                                    trace2_storage,
                                    capability.clone(),
                                ));
                            }

                            // To update `acknowledged1` we might presume that `batch1.lower` should equal it, but we
                            // may have skipped over empty batches. Still, the batches are in-order, and we should be
                            // able to just assume the most recent `batch1.upper`
                            debug_assert!(PartialOrder::less_equal(&acknowledged1, batch1.upper()));
                            acknowledged1.clone_from(batch1.upper());

                            trace!(
                                operator_id,
                                input = 1,
                                acknowledged1 = ?acknowledged1.elements(),
                                "batch acknowledged",
                            );
                        }
                    }
                });

                // Drain input 2, prepare work.
                input2.for_each(|capability, data| {
                    let trace1 = trace1_option
                        .as_mut()
                        .expect("we only drop a trace in response to the other input emptying");
                    let capability = capability.retain();
                    for batch2 in data.drain(..) {
                        // Ignore any pre-loaded data.
                        if PartialOrder::less_equal(&acknowledged2, batch2.lower()) {
                            trace!(
                                operator_id,
                                input = 2,
                                lower = ?batch2.lower().elements(),
                                upper = ?batch2.upper().elements(),
                                size = batch2.len(),
                                "loading batch",
                            );

                            if !batch2.is_empty() {
                                trace!(
                                    operator_id,
                                    input = 2,
                                    acknowledged1 = ?acknowledged1.elements(),
                                    "deferring work for batch",
                                );

                                // It is safe to ask for `ack1` as we validated that it was at least `get_physical_compaction()`
                                // at start-up, and have held back physical compaction ever since.
                                let (trace1_cursor, trace1_storage) =
                                    trace1.cursor_through(acknowledged1.borrow()).unwrap();
                                let batch2_cursor = batch2.cursor();
                                todo2.push_back(Deferred::new(
                                    trace1_cursor,
                                    trace1_storage,
                                    batch2_cursor,
                                    batch2.clone(),
                                    capability.clone(),
                                ));
                            }

                            // To update `acknowledged2` we might presume that `batch2.lower` should equal it, but we
                            // may have skipped over empty batches. Still, the batches are in-order, and we should be
                            // able to just assume the most recent `batch2.upper`
                            debug_assert!(PartialOrder::less_equal(&acknowledged2, batch2.upper()));
                            acknowledged2.clone_from(batch2.upper());

                            trace!(
                                operator_id,
                                input = 2,
                                acknowledged2 = ?acknowledged2.elements(),
                                "batch acknowledged",
                            );
                        }
                    }
                });

                // Advance acknowledged frontiers through any empty regions that we may not receive as batches.
                if let Some(trace1) = trace1_option.as_mut() {
                    trace!(
                        operator_id,
                        input = 1,
                        acknowledged1 = ?acknowledged1.elements(),
                        "advancing trace upper",
                    );
                    trace1.advance_upper(&mut acknowledged1);
                }
                if let Some(trace2) = trace2_option.as_mut() {
                    trace!(
                        operator_id,
                        input = 2,
                        acknowledged2 = ?acknowledged2.elements(),
                        "advancing trace upper",
                    );
                    trace2.advance_upper(&mut acknowledged2);
                }

                // 2. Join computation.
                //
                // For each of the inputs, we do some amount of work (measured in terms of number
                // of output records produced). This is meant to yield control to allow downstream
                // operators to consume and reduce the output, but it it also means to provide some
                // degree of responsiveness. There is a potential risk here that if we fall behind
                // then the increasing queues hold back physical compaction of the underlying traces
                // which results in unintentionally quadratic processing time (each batch of either
                // input must scan all batches from the other input).

                // Perform some amount of outstanding work.
                trace!(
                    operator_id,
                    input = 1,
                    work_left = todo1.len(),
                    "starting work",
                );

                let start_time = Instant::now();
                let mut work = 0;
                while !todo1.is_empty() && !yield_fn(start_time, work) {
                    todo1.front_mut().unwrap().work(
                        output,
                        &mut result,
                        |w| yield_fn(start_time, w),
                        &mut work,
                    );
                    if !todo1.front().unwrap().work_remains() {
                        todo1.pop_front();
                    }
                }

                trace!(
                    operator_id,
                    input = 1,
                    work_left = todo1.len(),
                    work_done = work,
                    elapsed = ?start_time.elapsed(),
                    "ceasing work",
                );

                // Perform some amount of outstanding work.
                trace!(
                    operator_id,
                    input = 2,
                    work_left = todo2.len(),
                    "starting work",
                );

                let start_time = Instant::now();
                let mut work = 0;
                while !todo2.is_empty() && !yield_fn(start_time, work) {
                    todo2.front_mut().unwrap().work(
                        output,
                        &mut result,
                        |w| yield_fn(start_time, w),
                        &mut work,
                    );
                    if !todo2.front().unwrap().work_remains() {
                        todo2.pop_front();
                    }
                }

                trace!(
                    operator_id,
                    input = 2,
                    work_left = todo2.len(),
                    work_done = work,
                    elapsed = ?start_time.elapsed(),
                    "ceasing work",
                );

                // Re-activate operator if work remains.
                if !todo1.is_empty() || !todo2.is_empty() {
                    activator.activate();
                }

                // 3. Trace maintenance.
                //
                // Importantly, we use `input.frontier()` here rather than `acknowledged` to track
                // the progress of an input, because should we ever drop one of the traces we will
                // lose the ability to extract information from anything other than the input.
                // For example, if we dropped `trace2` we would not be able to use `advance_upper`
                // to keep `acknowledged2` up to date wrt empty batches, and would hold back logical
                // compaction of `trace1`.

                // Maintain `trace1`. Drop if `input2` is empty, or advance based on future needs.
                if let Some(trace1) = trace1_option.as_mut() {
                    if input2.frontier().is_empty() {
                        trace!(operator_id, input = 1, "dropping trace handle");
                        trace1_option = None;
                    } else {
                        trace!(
                            operator_id,
                            input = 1,
                            logical = ?*input2.frontier().frontier(),
                            physical = ?acknowledged1.elements(),
                            "advancing trace compaction",
                        );

                        // Allow `trace1` to compact logically up to the frontier we may yet receive,
                        // in the opposing input (`input2`). All `input2` times will be beyond this
                        // frontier, and joined times only need to be accurate when advanced to it.
                        trace1.set_logical_compaction(input2.frontier().frontier());
                        // Allow `trace1` to compact physically up to the upper bound of batches we
                        // have received in its input (`input1`). We will not require a cursor that
                        // is not beyond this bound.
                        trace1.set_physical_compaction(acknowledged1.borrow());
                    }
                }

                // Maintain `trace2`. Drop if `input1` is empty, or advance based on future needs.
                if let Some(trace2) = trace2_option.as_mut() {
                    if input1.frontier().is_empty() {
                        trace!(operator_id, input = 2, "dropping trace handle");
                        trace2_option = None;
                    } else {
                        trace!(
                            operator_id,
                            input = 2,
                            logical = ?*input1.frontier().frontier(),
                            physical = ?acknowledged2.elements(),
                            "advancing trace compaction",
                        );

                        // Allow `trace2` to compact logically up to the frontier we may yet receive,
                        // in the opposing input (`input1`). All `input1` times will be beyond this
                        // frontier, and joined times only need to be accurate when advanced to it.
                        trace2.set_logical_compaction(input1.frontier().frontier());
                        // Allow `trace2` to compact physically up to the upper bound of batches we
                        // have received in its input (`input2`). We will not require a cursor that
                        // is not beyond this bound.
                        trace2.set_physical_compaction(acknowledged2.borrow());
                    }
                }
            }
        },
    )
}

/// Deferred join computation.
///
/// The structure wraps cursors which allow us to play out join computation at whatever rate we like.
/// This allows us to avoid producing and buffering massive amounts of data, without giving the timely
/// dataflow system a chance to run operators that can consume and aggregate the data.
struct Deferred<T, C1, C2, D>
where
    T: Timestamp,
    C1: Cursor<Time = T, Diff = Diff>,
    C2: for<'a> Cursor<Key<'a> = C1::Key<'a>, Time = T, Diff = Diff>,
{
    cursor1: C1,
    storage1: C1::Storage,
    cursor2: C2,
    storage2: C2::Storage,
    capability: Capability<T>,
    done: bool,
    temp: Vec<(D, T, Diff)>,
}

impl<T, C1, C2, D> Deferred<T, C1, C2, D>
where
    T: Timestamp + Lattice,
    C1: Cursor<Time = T, Diff = Diff>,
    C2: for<'a> Cursor<Key<'a> = C1::Key<'a>, Time = T, Diff = Diff>,
    D: Data,
{
    fn new(
        cursor1: C1,
        storage1: C1::Storage,
        cursor2: C2,
        storage2: C2::Storage,
        capability: Capability<T>,
    ) -> Self {
        Deferred {
            cursor1,
            storage1,
            cursor2,
            storage2,
            capability,
            done: false,
            temp: Vec::new(),
        }
    }

    fn work_remains(&self) -> bool {
        !self.done
    }

    /// Process keys until at least `fuel` output tuples produced, or the work is exhausted.
    fn work<L, I, YFn, C>(
        &mut self,
        output: &mut OutputHandleCore<T, CapacityContainerBuilder<C>, Tee<T, C>>,
        mut logic: L,
        yield_fn: YFn,
        work: &mut usize,
    ) where
        I: IntoIterator<Item = D>,
        L: FnMut(C1::Key<'_>, C1::Val<'_>, C2::Val<'_>) -> I,
        YFn: Fn(usize) -> bool,
        C: SizableContainer + PushInto<(D, T, Diff)> + Data,
    {
        let meet = self.capability.time();

        let mut session = output.session(&self.capability);

        let storage1 = &self.storage1;
        let storage2 = &self.storage2;

        let cursor1 = &mut self.cursor1;
        let cursor2 = &mut self.cursor2;

        let temp = &mut self.temp;

        let flush = |data: &mut Vec<_>, session: &mut Session<_, _, _>| {
            let old_len = data.len();
            // Consolidating here is important when the join closure produces data that
            // consolidates well, for example when projecting columns.
            consolidate_updates(data);
            let recovered = old_len - data.len();
            session.give_iterator(data.drain(..));
            recovered
        };

        assert_eq!(temp.len(), 0);

        let mut buffer = Vec::default();

        while cursor1.key_valid(storage1) && cursor2.key_valid(storage2) {
            match cursor1.key(storage1).cmp(&cursor2.key(storage2)) {
                Ordering::Less => cursor1.seek_key(storage1, cursor2.key(storage2)),
                Ordering::Greater => cursor2.seek_key(storage2, cursor1.key(storage1)),
                Ordering::Equal => {
                    // Populate `temp` with the results, until we should yield.
                    let key = cursor2.key(storage2);
                    while let Some(val1) = cursor1.get_val(storage1) {
                        while let Some(val2) = cursor2.get_val(storage2) {
                            // Evaluate logic on `key, val1, val2`. Note the absence of time and diff.
                            let mut result = logic(key, val1, val2).into_iter().peekable();

                            // We can only produce output if the result return something.
                            if let Some(first) = result.next() {
                                // Join times.
                                cursor1.map_times(storage1, |time1, diff1| {
                                    let mut time1 = time1.into_owned();
                                    time1.join_assign(meet);
                                    let diff1 = diff1.into_owned();
                                    cursor2.map_times(storage2, |time2, diff2| {
                                        let mut time2 = time2.into_owned();
                                        time2.join_assign(&time1);
                                        let diff = diff1.multiply(&diff2.into_owned());
                                        buffer.push((time2, diff));
                                    });
                                });
                                consolidate(&mut buffer);

                                // Special case no results, one result, and potentially many results
                                match (result.peek().is_some(), buffer.len()) {
                                    // Certainly no output
                                    (_, 0) => {}
                                    // Single element, single time
                                    (false, 1) => {
                                        let (time, diff) = buffer.pop().unwrap();
                                        temp.push((first, time, diff));
                                    }
                                    // Multiple elements or multiple times
                                    (_, _) => {
                                        for d in std::iter::once(first).chain(result) {
                                            temp.extend(buffer.iter().map(|(time, diff)| {
                                                (d.clone(), time.clone(), diff.clone())
                                            }))
                                        }
                                    }
                                }
                                buffer.clear();
                            }
                            cursor2.step_val(storage2);
                        }
                        cursor1.step_val(storage1);
                        cursor2.rewind_vals(storage2);

                        *work = work.saturating_add(temp.len());

                        if yield_fn(*work) {
                            // Returning here is only allowed because we leave the cursors in a
                            // state that will let us pick up the work correctly on the next
                            // invocation.
                            *work -= flush(temp, &mut session);
                            if yield_fn(*work) {
                                return;
                            }
                        }
                    }

                    cursor1.step_key(storage1);
                    cursor2.step_key(storage2);
                }
            }
        }

        if !temp.is_empty() {
            *work -= flush(temp, &mut session);
        }

        // We only get here after having iterated through all keys.
        self.done = true;
    }
}