1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Code to render the sink dataflow of a [`KafkaSinkConnection`]. The dataflow consists
//! of two operators in order to take advantage of all the available workers.
//!
//! ```text
//! ┏━━━━━━━━━━━━━━┓
//! ┃ persist ┃
//! ┃ source ┃
//! ┗━━━━━━┯━━━━━━━┛
//! │ row data, the input to this module
//! │
//! ┏━━━━━━v━━━━━━┓
//! ┃ row ┃
//! ┃ encoder ┃
//! ┗━━━━━━┯━━━━━━┛
//! │ encoded data
//! │
//! ┏━━━━━━v━━━━━━┓
//! ┃ kafka ┃ (single worker)
//! ┃ sink ┃
//! ┗━━┯━━━━━━━━┯━┛
//! records │ │ uppers
//! ╭────v──╮ ╭───v──────╮
//! │ data │ │ progress │ <- records and uppers are produced
//! │ topic │ │ topic │ transactionally to both topics
//! ╰───────╯ ╰──────────╯
//! ```
//!
//! # Encoding
//!
//! One part of the dataflow deals with encoding the rows that we read from persist. There isn't
//! anything surprizing here, it is *almost* just a `Collection::map` with the exception of an
//! initialization step that makes sure the schemas are published to the Schema Registry. After
//! that step the operator just encodes each batch it receives record by record.
//!
//! # Sinking
//!
//! The other part of the dataflow, and what this module mostly deals with, is interacting with the
//! Kafka cluster in order to transactionally commit batches (sets of records associated with a
//! frontier). All the processing happens in a single worker and so all previously encoded records
//! go through an exchange in order to arrive at the chosen worker. We may be able to improve this
//! in the future by committing disjoint partitions of the key space for independent workers but
//! for now we do the simple thing.
//!
//! ## Retries
//!
//! All of the retry logic heavy lifting is offloaded to `librdkafka` since it already implements
//! the required behavior[1]. In particular we only ever enqueue records to its send queue and
//! eventually call `commit_transaction` which will ensure that all queued messages are
//! successfully delivered before the transaction is reported as committed.
//!
//! The only error that is possible during sending is that the queue is full. We are purposefully
//! NOT handling this error and simply configure `librdkafka` with a very large queue. The reason
//! for this choice is that the only choice for hanlding such an error ourselves would be to queue
//! it, and there isn't a good argument about two small queues being better than one big one. If we
//! reach the queue limit we simply error out the entire sink dataflow and start over.
//!
//! # Error handling
//!
//! Both the encoding operator and the sinking operator can produce a transient error that is wired
//! up with our health monitoring and will trigger a restart of the sink dataflow.
//!
//! [1]: https://github.com/confluentinc/librdkafka/blob/master/INTRODUCTION.md#message-reliability
use std::cell::RefCell;
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::rc::Rc;
use std::sync::atomic::AtomicU64;
use std::sync::Arc;
use std::time::Duration;
use anyhow::{anyhow, bail, Context};
use differential_dataflow::{AsCollection, Collection, Hashable};
use futures::StreamExt;
use maplit::btreemap;
use mz_expr::MirScalarExpr;
use mz_interchange::avro::{AvroEncoder, DiffPair};
use mz_interchange::encode::Encode;
use mz_interchange::envelopes::dbz_format;
use mz_interchange::json::JsonEncoder;
use mz_interchange::text_binary::{BinaryEncoder, TextEncoder};
use mz_kafka_util::client::{
GetPartitionsError, MzClientContext, TimeoutConfig, TunnelingClientContext,
DEFAULT_FETCH_METADATA_TIMEOUT,
};
use mz_ore::cast::CastFrom;
use mz_ore::collections::CollectionExt;
use mz_ore::error::ErrorExt;
use mz_ore::future::InTask;
use mz_ore::task::{self, AbortOnDropHandle};
use mz_ore::vec::VecExt;
use mz_repr::{Datum, DatumVec, Diff, GlobalId, Row, RowArena, Timestamp};
use mz_storage_client::sink::progress_key::ProgressKey;
use mz_storage_types::configuration::StorageConfiguration;
use mz_storage_types::dyncfgs::KAFKA_BUFFERED_EVENT_RESIZE_THRESHOLD_ELEMENTS;
use mz_storage_types::errors::{ContextCreationError, ContextCreationErrorExt, DataflowError};
use mz_storage_types::sinks::{
KafkaSinkConnection, KafkaSinkFormatType, MetadataFilled, SinkEnvelope, SinkPartitionStrategy,
StorageSinkDesc,
};
use mz_timely_util::antichain::AntichainExt;
use mz_timely_util::builder_async::{
Event, OperatorBuilder as AsyncOperatorBuilder, PressOnDropButton,
};
use rdkafka::consumer::{BaseConsumer, Consumer};
use rdkafka::error::KafkaError;
use rdkafka::message::{Header, OwnedHeaders, ToBytes};
use rdkafka::producer::{BaseRecord, Producer, ThreadedProducer};
use rdkafka::types::RDKafkaErrorCode;
use rdkafka::{Message, Offset, Statistics, TopicPartitionList};
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use timely::dataflow::channels::pact::{Exchange, Pipeline};
use timely::dataflow::operators::{CapabilitySet, Concatenate, Map, ToStream};
use timely::dataflow::{Scope, Stream};
use timely::progress::{Antichain, Timestamp as _};
use timely::PartialOrder;
use tokio::sync::watch;
use tokio::time::{self, MissedTickBehavior};
use tracing::{error, info, warn};
use crate::healthcheck::{HealthStatusMessage, HealthStatusUpdate, StatusNamespace};
use crate::metrics::sink::kafka::KafkaSinkMetrics;
use crate::render::sinks::SinkRender;
use crate::statistics::SinkStatistics;
use crate::storage_state::StorageState;
impl<G: Scope<Timestamp = Timestamp>> SinkRender<G> for KafkaSinkConnection {
fn get_key_indices(&self) -> Option<&[usize]> {
self.key_desc_and_indices
.as_ref()
.map(|(_desc, indices)| indices.as_slice())
}
fn get_relation_key_indices(&self) -> Option<&[usize]> {
self.relation_key_indices.as_deref()
}
fn render_sink(
&self,
storage_state: &mut StorageState,
sink: &StorageSinkDesc<MetadataFilled, Timestamp>,
sink_id: GlobalId,
input: Collection<G, (Option<Row>, DiffPair<Row>), Diff>,
// TODO(benesch): errors should stream out through the sink,
// if we figure out a protocol for that.
_err_collection: Collection<G, DataflowError, Diff>,
) -> (Stream<G, HealthStatusMessage>, Vec<PressOnDropButton>) {
let mut scope = input.scope();
let write_frontier = Rc::new(RefCell::new(Antichain::from_elem(Timestamp::minimum())));
storage_state
.sink_write_frontiers
.insert(sink_id, Rc::clone(&write_frontier));
let (encoded, encode_status, encode_token) = encode_collection(
format!("kafka-{sink_id}-{}-encode", self.format.get_format_name()),
&input,
sink.envelope,
self.clone(),
storage_state.storage_configuration.clone(),
);
let metrics = storage_state.metrics.get_kafka_sink_metrics(sink_id);
let statistics = storage_state
.aggregated_statistics
.get_sink(&sink_id)
.expect("statistics initialized")
.clone();
let (sink_status, sink_token) = sink_collection(
format!("kafka-{sink_id}-sink"),
&encoded,
sink_id,
self.clone(),
sink.partition_strategy.clone(),
storage_state.storage_configuration.clone(),
sink,
metrics,
statistics,
write_frontier,
);
let running_status = Some(HealthStatusMessage {
index: 0,
update: HealthStatusUpdate::Running,
namespace: StatusNamespace::Kafka,
})
.to_stream(&mut scope);
let status = scope.concatenate([running_status, encode_status, sink_status]);
(status, vec![encode_token, sink_token])
}
}
struct TransactionalProducer {
/// The task name used for any blocking calls spawned onto the tokio threadpool.
task_name: String,
/// The topic where all the updates go.
data_topic: String,
/// The topic where all the upper frontiers go.
progress_topic: String,
/// The key each progress record is associated with.
progress_key: ProgressKey,
/// The version of this sink, used to fence out previous versions from writing.
sink_version: u64,
/// The strategy to partition the data with.
partition_strategy: SinkPartitionStrategy,
/// The number of partitions in the target topic.
partition_count: Arc<AtomicU64>,
/// A task to periodically refresh the partition count.
_partition_count_task: AbortOnDropHandle<()>,
/// The underlying Kafka producer.
producer: ThreadedProducer<TunnelingClientContext<MzClientContext>>,
/// A handle to the metrics associated with this sink.
statistics: SinkStatistics,
/// The number of messages staged for the currently open transactions. It is reset to zero
/// every time a transaction commits.
staged_messages: u64,
/// The total number bytes staged for the currently open transactions. It is reset to zero
/// every time a transaction commits.
staged_bytes: u64,
/// The timeout to use for network operations.
socket_timeout: Duration,
/// The timeout to use for committing transactions.
transaction_timeout: Duration,
}
impl TransactionalProducer {
/// Initializes a transcational producer for the sink identified by `sink_id`. After this call
/// returns it is guranteed that all previous `TransactionalProducer` instances for the same
/// sink have been fenced out (i.e `init_transations()` has been called successfully).
async fn new(
sink_id: GlobalId,
connection: &KafkaSinkConnection,
partition_strategy: SinkPartitionStrategy,
storage_configuration: &StorageConfiguration,
metrics: Arc<KafkaSinkMetrics>,
statistics: SinkStatistics,
sink_version: u64,
) -> Result<(Self, Antichain<mz_repr::Timestamp>), ContextCreationError> {
let client_id = connection.client_id(
storage_configuration.config_set(),
&storage_configuration.connection_context,
sink_id,
);
let transactional_id =
connection.transactional_id(&storage_configuration.connection_context, sink_id);
let timeout_config = &storage_configuration.parameters.kafka_timeout_config;
let mut options = BTreeMap::new();
// Ensure that messages are sinked in order and without duplicates. Note that this only
// applies to a single instance of a producer - in the case of restarts, all bets are off
// and full exactly once support is required.
options.insert("enable.idempotence", "true".into());
// Use the compression type requested by the user.
options.insert(
"compression.type",
connection.compression_type.to_librdkafka_option().into(),
);
// Set the maximum buffer size limit. We don't want to impose anything lower than the max
// here as the operator has nothing better to do with the data than to buffer them.
options.insert("queue.buffering.max.kbytes", "2147483647".into());
// Disable the default buffer limit of 100k messages. We don't want to impose any limit
// here as the operator has nothing better to do with the data than to buffer them.
options.insert("queue.buffering.max.messages", "0".into());
// Make the Kafka producer wait at least 10 ms before sending out MessageSets
options.insert("queue.buffering.max.ms", format!("{}", 10));
// Time out transactions after 60 seconds
options.insert(
"transaction.timeout.ms",
format!("{}", timeout_config.transaction_timeout.as_millis()),
);
// Use the transactional ID requested by the user.
options.insert("transactional.id", transactional_id);
// Allow Kafka monitoring tools to identify this producer.
options.insert("client.id", client_id);
// We want to be notified regularly with statistics
options.insert("statistics.interval.ms", "1000".into());
let ctx = MzClientContext::default();
let stats_receiver = ctx.subscribe_statistics();
let task_name = format!("kafka_sink_metrics_collector:{sink_id}");
task::spawn(
|| &task_name,
collect_statistics(stats_receiver, Arc::clone(&metrics)),
);
let producer: ThreadedProducer<_> = connection
.connection
.create_with_context(storage_configuration, ctx, &options, InTask::Yes)
.await?;
// The partition count is fixed up after we ensure the topic exists.
let partition_count = Arc::new(AtomicU64::new(0));
let update_partition_count = {
let partition_count = Arc::clone(&partition_count);
let metrics = Arc::clone(&metrics);
Arc::new(move |pc| {
partition_count.store(pc, std::sync::atomic::Ordering::SeqCst);
metrics.partition_count.set(pc);
})
};
// Start a task that will keep the partition count up to date in the
// background.
let partition_count_task = task::spawn(
|| format!("kafka_sink_producer_fetch_metadata_loop:{sink_id}"),
fetch_partition_count_loop(
producer.clone(),
sink_id,
connection.topic.clone(),
connection.topic_metadata_refresh_interval,
Arc::clone(&update_partition_count),
),
);
let task_name = format!("kafka_sink_producer:{sink_id}");
let progress_key = ProgressKey::new(sink_id);
let producer = Self {
task_name,
data_topic: connection.topic.clone(),
partition_strategy,
partition_count,
_partition_count_task: partition_count_task.abort_on_drop(),
progress_topic: connection
.progress_topic(&storage_configuration.connection_context)
.into_owned(),
progress_key,
sink_version,
producer,
statistics,
staged_messages: 0,
staged_bytes: 0,
socket_timeout: timeout_config.socket_timeout,
transaction_timeout: timeout_config.transaction_timeout,
};
let timeout = timeout_config.socket_timeout;
producer
.spawn_blocking(move |p| p.init_transactions(timeout))
.await?;
// We have just called init_transactions, which means that we have fenced out all previous
// transactional producers, making it safe to determine the resume upper.
let progress = determine_sink_progress(
sink_id,
connection,
storage_configuration,
Arc::clone(&metrics),
)
.await?;
let resume_upper = match progress {
Some(progress) => {
if sink_version < progress.version {
return Err(ContextCreationError::Other(anyhow!(
"Fenced off by newer version of the sink. ours={} theirs={}",
sink_version,
progress.version
)));
}
progress.frontier
}
None => {
mz_storage_client::sink::ensure_kafka_topic(
connection,
storage_configuration,
&connection.topic,
&connection.topic_options,
)
.await?;
Antichain::from_elem(Timestamp::minimum())
}
};
// At this point the topic must exist and so we can query for its
// partition count. Even though we have a background task to fetch the
// partition count, we do this synchronously to ensure we don't attempt
// to produce any messages with our initial partition count of 0.
let partition_count =
fetch_partition_count(&producer.producer, sink_id, &connection.topic).await?;
update_partition_count(partition_count);
Ok((producer, resume_upper))
}
/// Runs the blocking operation `f` on the producer in the tokio threadpool and checks for SSH
/// status in case of failure.
async fn spawn_blocking<F, R>(&self, f: F) -> Result<R, ContextCreationError>
where
F: FnOnce(
ThreadedProducer<TunnelingClientContext<MzClientContext>>,
) -> Result<R, KafkaError>
+ Send
+ 'static,
R: Send + 'static,
{
let producer = self.producer.clone();
task::spawn_blocking(|| &self.task_name, move || f(producer))
.await
.unwrap()
.check_ssh_status(self.producer.context())
}
async fn begin_transaction(&self) -> Result<(), ContextCreationError> {
self.spawn_blocking(|p| p.begin_transaction()).await
}
/// Synchronously puts the provided message to librdkafka's send queue. This method only
/// returns an error if the queue is full. Handling this error by buffering the message and
/// retrying is equivalent to adjusting the maximum number of queued items in rdkafka so it is
/// adviced that callers only handle this error in order to apply backpressure to the rest of
/// the system.
fn send(
&mut self,
message: &KafkaMessage,
time: Timestamp,
diff: Diff,
) -> Result<(), KafkaError> {
assert_eq!(diff, 1, "invalid sink update");
let mut headers = OwnedHeaders::new().insert(Header {
key: "materialize-timestamp",
value: Some(time.to_string().as_bytes()),
});
for header in &message.headers {
// Headers that start with `materialize-` are reserved for our
// internal use, so we silently drop any such user-specified
// headers. While this behavior is documented, it'd be a nicer UX to
// send a warning or error somewhere. Unfortunately sinks don't have
// anywhere user-visible to send errors. See database-issues#5148.
if header.key.starts_with("materialize-") {
continue;
}
headers = headers.insert(Header {
key: header.key.as_str(),
value: header.value.as_ref(),
});
}
let partition = match self.partition_strategy {
SinkPartitionStrategy::V0 => None,
SinkPartitionStrategy::V1 => {
let pc = self
.partition_count
.load(std::sync::atomic::Ordering::SeqCst);
Some(i32::try_from(message.hash % pc).unwrap())
}
};
let record = BaseRecord {
topic: &self.data_topic,
key: message.key.as_ref(),
payload: message.value.as_ref(),
headers: Some(headers),
partition,
timestamp: None,
delivery_opaque: (),
};
let key_size = message.key.as_ref().map(|k| k.len()).unwrap_or(0);
let value_size = message.value.as_ref().map(|k| k.len()).unwrap_or(0);
let headers_size = message
.headers
.iter()
.map(|h| h.key.len() + h.value.as_ref().map(|v| v.len()).unwrap_or(0))
.sum::<usize>();
let record_size = u64::cast_from(key_size + value_size + headers_size);
self.statistics.inc_messages_staged_by(1);
self.staged_messages += 1;
self.statistics.inc_bytes_staged_by(record_size);
self.staged_bytes += record_size;
self.producer.send(record).map_err(|(e, _)| e)
}
/// Commits all the staged updates of the currently open transaction plus a progress record
/// describing `upper` to the progress topic.
async fn commit_transaction(
&mut self,
upper: Antichain<Timestamp>,
) -> Result<(), ContextCreationError> {
let progress = ProgressRecord {
frontier: upper,
version: self.sink_version,
};
let payload = serde_json::to_vec(&progress).expect("infallible");
let record = BaseRecord::to(&self.progress_topic)
.payload(&payload)
.key(&self.progress_key);
self.producer.send(record).map_err(|(e, _)| e)?;
fail::fail_point!("kafka_sink_commit_transaction");
let timeout = self.transaction_timeout;
match self
.spawn_blocking(move |p| p.commit_transaction(timeout))
.await
{
Ok(()) => {
self.statistics
.inc_messages_committed_by(self.staged_messages);
self.statistics.inc_bytes_committed_by(self.staged_bytes);
self.staged_messages = 0;
self.staged_bytes = 0;
Ok(())
}
Err(ContextCreationError::KafkaError(KafkaError::Transaction(err))) => {
// Make one attempt at aborting the transaction before letting the error percolate
// up and the process exit. Aborting allows the consumers of the topic to skip over
// any messages we've written in the transaction, so it's polite to do... but if it
// fails, the transaction will be aborted either when fenced out by a future
// version of this producer or by the broker-side timeout.
if err.txn_requires_abort() {
let timeout = self.socket_timeout;
self.spawn_blocking(move |p| p.abort_transaction(timeout))
.await?;
}
Err(ContextCreationError::KafkaError(KafkaError::Transaction(
err,
)))
}
Err(err) => Err(err),
}
}
}
/// Listens for statistics updates from librdkafka and updates our Prometheus metrics.
async fn collect_statistics(
mut receiver: watch::Receiver<Statistics>,
metrics: Arc<KafkaSinkMetrics>,
) {
let mut outbuf_cnt: i64 = 0;
let mut outbuf_msg_cnt: i64 = 0;
let mut waitresp_cnt: i64 = 0;
let mut waitresp_msg_cnt: i64 = 0;
let mut txerrs: u64 = 0;
let mut txretries: u64 = 0;
let mut req_timeouts: u64 = 0;
let mut connects: i64 = 0;
let mut disconnects: i64 = 0;
while receiver.changed().await.is_ok() {
let stats = receiver.borrow();
for broker in stats.brokers.values() {
outbuf_cnt += broker.outbuf_cnt;
outbuf_msg_cnt += broker.outbuf_msg_cnt;
waitresp_cnt += broker.waitresp_cnt;
waitresp_msg_cnt += broker.waitresp_msg_cnt;
txerrs += broker.txerrs;
txretries += broker.txretries;
req_timeouts += broker.req_timeouts;
connects += broker.connects.unwrap_or(0);
disconnects += broker.disconnects.unwrap_or(0);
}
metrics.rdkafka_msg_cnt.set(stats.msg_cnt);
metrics.rdkafka_msg_size.set(stats.msg_size);
metrics.rdkafka_txmsgs.set(stats.txmsgs);
metrics.rdkafka_txmsg_bytes.set(stats.txmsg_bytes);
metrics.rdkafka_tx.set(stats.tx);
metrics.rdkafka_tx_bytes.set(stats.tx_bytes);
metrics.rdkafka_outbuf_cnt.set(outbuf_cnt);
metrics.rdkafka_outbuf_msg_cnt.set(outbuf_msg_cnt);
metrics.rdkafka_waitresp_cnt.set(waitresp_cnt);
metrics.rdkafka_waitresp_msg_cnt.set(waitresp_msg_cnt);
metrics.rdkafka_txerrs.set(txerrs);
metrics.rdkafka_txretries.set(txretries);
metrics.rdkafka_req_timeouts.set(req_timeouts);
metrics.rdkafka_connects.set(connects);
metrics.rdkafka_disconnects.set(disconnects);
}
}
/// A message to produce to Kafka.
#[derive(Debug, Clone, Serialize, Deserialize)]
struct KafkaMessage {
/// A hash of the key that can be used for partitioning.
hash: u64,
/// The message key.
key: Option<Vec<u8>>,
/// The message value.
value: Option<Vec<u8>>,
/// Message headers.
headers: Vec<KafkaHeader>,
}
/// A header to attach to a Kafka message.
#[derive(Debug, Clone, Serialize, Deserialize)]
struct KafkaHeader {
/// The header key.
key: String,
/// The header value.
value: Option<Vec<u8>>,
}
/// Sinks a collection of encoded rows to Kafka.
///
/// This operator exchanges all updates to a single worker by hashing on the given sink `id`.
///
/// Updates are sent in ascending timestamp order.
fn sink_collection<G: Scope<Timestamp = Timestamp>>(
name: String,
input: &Collection<G, KafkaMessage, Diff>,
sink_id: GlobalId,
connection: KafkaSinkConnection,
partition_strategy: SinkPartitionStrategy,
storage_configuration: StorageConfiguration,
sink: &StorageSinkDesc<MetadataFilled, Timestamp>,
metrics: KafkaSinkMetrics,
statistics: SinkStatistics,
write_frontier: Rc<RefCell<Antichain<Timestamp>>>,
) -> (Stream<G, HealthStatusMessage>, PressOnDropButton) {
let scope = input.scope();
let mut builder = AsyncOperatorBuilder::new(name.clone(), input.inner.scope());
// We want exactly one worker to send all the data to the sink topic.
let hashed_id = sink_id.hashed();
let is_active_worker = usize::cast_from(hashed_id) % scope.peers() == scope.index();
let buffer_min_capacity =
KAFKA_BUFFERED_EVENT_RESIZE_THRESHOLD_ELEMENTS.handle(storage_configuration.config_set());
let mut input = builder.new_disconnected_input(&input.inner, Exchange::new(move |_| hashed_id));
let as_of = sink.as_of.clone();
let sink_version = sink.version;
let (button, errors) = builder.build_fallible(move |_caps| {
Box::pin(async move {
if !is_active_worker {
write_frontier.borrow_mut().clear();
return Ok(());
}
fail::fail_point!("kafka_sink_creation_error", |_| Err(
ContextCreationError::Other(anyhow::anyhow!("synthetic error"))
));
let metrics = Arc::new(metrics);
let (mut producer, resume_upper) = TransactionalProducer::new(
sink_id,
&connection,
partition_strategy,
&storage_configuration,
Arc::clone(&metrics),
statistics,
sink_version,
)
.await?;
// The input has overcompacted if
let overcompacted =
// ..we have made some progress in the past
*resume_upper != [Timestamp::minimum()] &&
// ..but the since frontier is now beyond that
!PartialOrder::less_equal(&as_of, &resume_upper);
if overcompacted {
let err = format!(
"{name}: input compacted past resume upper: as_of {}, resume_upper: {}",
as_of.pretty(),
resume_upper.pretty()
);
// This would normally be an assertion but because it can happen after a
// Materialize backup/restore we log an error so that it appears on Sentry but
// leaves the rest of the objects in the cluster unaffected.
error!("{err}");
return Err(anyhow!("{err}").into());
}
info!(
"{name}: as_of: {}, resume upper: {}",
as_of.pretty(),
resume_upper.pretty()
);
// The section below relies on TotalOrder for correctness so we'll work with timestamps
// directly to make sure this doesn't compile if someone attempts to make this operator
// generic over partial orders in the future.
let Some(mut upper) = resume_upper.clone().into_option() else {
write_frontier.borrow_mut().clear();
return Ok(());
};
let mut deferred_updates = vec![];
let mut extra_updates = vec![];
// We must wait until we have data to commit before starting a transaction because
// Kafka doesn't have a heartbeating mechanism to keep a transaction open indefinitely.
// This flag tracks whether we have started the transaction.
let mut transaction_begun = false;
while let Some(event) = input.next().await {
match event {
Event::Data(_cap, batch) => {
for (message, time, diff) in batch {
// We want to publish updates in time order and we know that we have
// already committed all times not beyond `upper`. Therefore, if this
// update happens *exactly* at upper then it is the minimum pending
// time and so emitting it now will not violate the timestamp publish
// order. This optimization is load bearing because it is the mechanism
// by which we incrementally stream the initial snapshot out to Kafka
// instead of buffering it all in memory first. This argument doesn't
// hold for partially ordered time because many different timestamps
// can be *exactly* at upper but we can't know ahead of time which one
// will be advanced in the next progress message.
match upper.cmp(&time) {
Ordering::Less => deferred_updates.push((message, time, diff)),
Ordering::Equal => {
if !transaction_begun {
producer.begin_transaction().await?;
transaction_begun = true;
}
producer.send(&message, time, diff)?;
}
Ordering::Greater => continue,
}
}
}
Event::Progress(progress) => {
// Ignore progress updates before our resumption frontier
if !PartialOrder::less_equal(&resume_upper, &progress) {
continue;
}
// Also ignore progress updates until we are past the as_of frontier. This
// is to avoid the following pathological scenario:
// 1. Sink gets instantiated with an as_of = {10}, resume_upper = {0}.
// `progress` initially jumps at {10}, then the snapshot appears at time
// 10.
// 2. `progress` would normally advance to say {11} and we would commit the
// snapshot but clusterd crashes instead.
// 3. A new cluster restarts the sink with an earlier as_of, say {5}. This
// is valid, the earlier as_of has strictly more information. The
// snapshot now appears at time 5.
//
// If we were to commit an empty transaction in step 1 and advanced the
// resume_upper to {10} then in step 3 we would ignore the snapshot that
// now appears at 5 completely. So it is important to only start committing
// transactions after we're strictly beyond the as_of.
// TODO(petrosagg): is this logic an indication of us holding something
// wrong elsewhere? Investigate.
// Note: !PartialOrder::less_than(as_of, progress) would not be equivalent
// nor correct for partially ordered times.
if !as_of.iter().all(|t| !progress.less_equal(t)) {
continue;
}
if !transaction_begun {
producer.begin_transaction().await?;
}
// N.B. Shrinking the Vec here is important because when starting the Sink
// we might buffer a ton of updates into these collections, e.g. if someone
// deleted the progress topic and the resume upper is 0, and we don't want
// to keep around a massively oversized VEc.
deferred_updates.shrink_to(buffer_min_capacity.get());
extra_updates.extend(
deferred_updates
.drain_filter_swapping(|(_, time, _)| !progress.less_equal(time)),
);
extra_updates.sort_unstable_by(|a, b| a.1.cmp(&b.1));
// N.B. See the comment above.
extra_updates.shrink_to(buffer_min_capacity.get());
for (message, time, diff) in extra_updates.drain(..) {
producer.send(&message, time, diff)?;
}
info!("{name}: committing transaction for {}", progress.pretty());
producer.commit_transaction(progress.clone()).await?;
transaction_begun = false;
write_frontier.borrow_mut().clone_from(&progress);
match progress.into_option() {
Some(new_upper) => upper = new_upper,
None => break,
}
}
}
}
Ok(())
})
});
let statuses = errors.map(|error: Rc<ContextCreationError>| {
let hint = match *error {
ContextCreationError::KafkaError(KafkaError::Transaction(ref e)) => {
if e.is_retriable() && e.code() == RDKafkaErrorCode::OperationTimedOut {
let hint = "If you're running a single Kafka broker, ensure that the configs \
transaction.state.log.replication.factor, transaction.state.log.min.isr, \
and offsets.topic.replication.factor are set to 1 on the broker";
Some(hint.to_owned())
} else {
None
}
}
_ => None,
};
HealthStatusMessage {
index: 0,
update: HealthStatusUpdate::halting(format!("{}", error.display_with_causes()), hint),
namespace: if matches!(*error, ContextCreationError::Ssh(_)) {
StatusNamespace::Ssh
} else {
StatusNamespace::Kafka
},
}
});
(statuses, button.press_on_drop())
}
/// Determines the latest progress record from the specified topic for the given
/// progress key.
///
/// IMPORTANT: to achieve exactly once guarantees, the producer that will resume
/// production at the returned timestamp *must* have called `init_transactions`
/// prior to calling this method.
async fn determine_sink_progress(
sink_id: GlobalId,
connection: &KafkaSinkConnection,
storage_configuration: &StorageConfiguration,
metrics: Arc<KafkaSinkMetrics>,
) -> Result<Option<ProgressRecord>, ContextCreationError> {
// ****************************** WARNING ******************************
// Be VERY careful when editing the code in this function. It is very easy
// to accidentally introduce a correctness or liveness bug when refactoring
// this code.
// ****************************** WARNING ******************************
let TimeoutConfig {
fetch_metadata_timeout,
progress_record_fetch_timeout,
..
} = storage_configuration.parameters.kafka_timeout_config;
let client_id = connection.client_id(
storage_configuration.config_set(),
&storage_configuration.connection_context,
sink_id,
);
let group_id = connection.progress_group_id(&storage_configuration.connection_context, sink_id);
let progress_topic = connection
.progress_topic(&storage_configuration.connection_context)
.into_owned();
let progress_topic_options = &connection.connection.progress_topic_options;
let progress_key = ProgressKey::new(sink_id);
let common_options = btreemap! {
// Consumer group ID, which may have been overridden by the user. librdkafka requires this,
// even though we'd prefer to disable the consumer group protocol entirely.
"group.id" => group_id,
// Allow Kafka monitoring tools to identify this consumer.
"client.id" => client_id,
"enable.auto.commit" => "false".into(),
"auto.offset.reset" => "earliest".into(),
// The fetch loop below needs EOF notifications to reliably detect that we have reached the
// high watermark.
"enable.partition.eof" => "true".into(),
};
// Construct two cliens in read committed and read uncommitted isolations respectively. See
// comment below for an explanation on why we need it.
let progress_client_read_committed: BaseConsumer<_> = {
let mut opts = common_options.clone();
opts.insert("isolation.level", "read_committed".into());
let ctx = MzClientContext::default();
connection
.connection
.create_with_context(storage_configuration, ctx, &opts, InTask::Yes)
.await?
};
let progress_client_read_uncommitted: BaseConsumer<_> = {
let mut opts = common_options;
opts.insert("isolation.level", "read_uncommitted".into());
let ctx = MzClientContext::default();
connection
.connection
.create_with_context(storage_configuration, ctx, &opts, InTask::Yes)
.await?
};
let ctx = Arc::clone(progress_client_read_committed.client().context());
// Ensure the progress topic exists.
mz_storage_client::sink::ensure_kafka_topic(
connection,
storage_configuration,
&progress_topic,
progress_topic_options,
)
.await
.add_context("error registering kafka progress topic for sink")?;
// We are about to spawn a blocking task that cannot be aborted by simply calling .abort() on
// its handle but we must be able to cancel it prompty so as to not leave long running
// operations around when interest to this task is lost. To accomplish this we create a shared
// token of which a weak reference is given to the task and a strong reference is held by the
// parent task. The task periodically checks if its weak reference is still valid before
// continuing its work.
let parent_token = Arc::new(());
let child_token = Arc::downgrade(&parent_token);
let task_name = format!("get_latest_ts:{sink_id}");
let result = task::spawn_blocking(|| task_name, move || {
let progress_topic = progress_topic.as_ref();
// Ensure the progress topic has exactly one partition. Kafka only
// guarantees ordering within a single partition, and we need a strict
// order on the progress messages we read and write.
let partitions = match mz_kafka_util::client::get_partitions(
progress_client_read_committed.client(),
progress_topic,
fetch_metadata_timeout,
) {
Ok(partitions) => partitions,
Err(GetPartitionsError::TopicDoesNotExist) => {
// The progress topic doesn't exist, which indicates there is
// no committed timestamp.
return Ok(None);
}
e => e.with_context(|| {
format!(
"Unable to fetch metadata about progress topic {}",
progress_topic
)
})?,
};
if partitions.len() != 1 {
bail!(
"Progress topic {} should contain a single partition, but instead contains {} partitions",
progress_topic, partitions.len(),
);
}
let partition = partitions.into_element();
// We scan from the beginning and see if we can find a progress record. We have
// to do it like this because Kafka Control Batches mess with offsets. We
// therefore cannot simply take the last offset from the back and expect a
// progress message there. With a transactional producer, the OffsetTail(1) will
// not point to an progress message but a control message. With aborted
// transactions, there might even be a lot of garbage at the end of the
// topic or in between.
metrics.consumed_progress_records.set(0);
// First, determine the current high water mark for the progress topic.
// This is the position our `progress_client` consumer *must* reach
// before we can conclude that we've seen the latest progress record for
// the specified `progress_key`. A safety argument:
//
// * Our caller has initialized transactions before calling this
// method, which prevents the prior incarnation of this sink from
// committing any further progress records.
//
// * We use `read_uncommitted` isolation to ensure that we fetch the
// true high water mark for the topic, even if there are pending
// transactions in the topic. If we used the `read_committed`
// isolation level, we'd instead get the "last stable offset" (LSO),
// which is the offset of the first message in an open transaction,
// which might not include the last progress message committed for
// this sink! (While the caller of this function has fenced out
// older producers for this sink, *other* sinks writing using the
// same progress topic might have long-running transactions that
// hold back the LSO.)
//
// * If another sink spins up and fences out the producer for this
// incarnation of the sink, we may not see the latest progress
// record... but since the producer has been fenced out, it will be
// unable to act on our stale information.
//
let (lo, hi) = progress_client_read_uncommitted
.fetch_watermarks(progress_topic, partition, fetch_metadata_timeout)
.map_err(|e| {
anyhow!(
"Failed to fetch metadata while reading from progress topic: {}",
e
)
})?;
// Seek to the beginning of the progress topic.
let mut tps = TopicPartitionList::new();
tps.add_partition(progress_topic, partition);
tps.set_partition_offset(progress_topic, partition, Offset::Beginning)?;
progress_client_read_committed
.assign(&tps)
.with_context(|| {
format!(
"Error seeking in progress topic {}:{}",
progress_topic, partition
)
})?;
// Helper to get the progress consumer's current position.
let get_position = || {
if child_token.strong_count() == 0 {
bail!("operation cancelled");
}
let position = progress_client_read_committed
.position()?
.find_partition(progress_topic, partition)
.ok_or_else(|| {
anyhow!(
"No position info found for progress topic {}",
progress_topic
)
})?
.offset();
let position = match position {
Offset::Offset(position) => position,
// An invalid offset indicates the consumer has not yet read a
// message. Since we assigned the consumer to the beginning of
// the topic, it's safe to return the low water mark here, which
// indicates the position before the first possible message.
//
// Note that it's important to return the low water mark and not
// the minimum possible offset (i.e., zero) in order to break
// out of the loop if the topic is empty but the low water mark
// is greater than zero.
Offset::Invalid => lo,
_ => bail!(
"Consumer::position returned offset of wrong type: {:?}",
position
),
};
// Record the outstanding number of progress records that remain to be processed
let outstanding = u64::try_from(std::cmp::max(0, hi - position)).unwrap();
metrics.outstanding_progress_records.set(outstanding);
Ok(position)
};
info!("fetching latest progress record for {progress_key}, lo/hi: {lo}/{hi}");
// Read messages until the consumer is positioned at or beyond the high
// water mark.
//
// We use `read_committed` isolation to ensure we don't see progress
// records for transactions that did not commit. This means we have to
// wait for the LSO to progress to the high water mark `hi`, which means
// waiting for any open transactions for other sinks using the same
// progress topic to complete. We set a short transaction timeout (10s)
// to ensure we never need to wait more than 10s.
//
// Note that the stall time on the progress topic is not a function of
// transaction size. We've designed our transactions so that the
// progress record is always written last, after all the data has been
// written, and so the window of time in which the progress topic has an
// open transaction is quite small. The only vulnerability is if another
// sink using the same progress topic crashes in that small window
// between writing the progress record and committing the transaction,
// in which case we have to wait out the transaction timeout.
//
// Important invariant: we only exit this loop successfully (i.e., not
// returning an error) if we have positive proof of a position at or
// beyond the high water mark. To make this invariant easy to check, do
// not use `break` in the body of the loop.
let mut last_progress: Option<ProgressRecord> = None;
loop {
let current_position = get_position()?;
if current_position >= hi {
// consumer is at or beyond the high water mark and has read enough messages
break;
}
let message = match progress_client_read_committed.poll(progress_record_fetch_timeout) {
Some(Ok(message)) => message,
Some(Err(KafkaError::PartitionEOF(_))) => {
// No message, but the consumer's position may have advanced
// past a transaction control message that positions us at
// or beyond the high water mark. Go around the loop again
// to check.
continue;
}
Some(Err(e)) => bail!("failed to fetch progress message {e}"),
None => {
bail!(
"timed out while waiting to reach high water mark of non-empty \
topic {progress_topic}:{partition}, lo/hi: {lo}/{hi}, current position: {current_position}"
);
}
};
if message.key() != Some(progress_key.to_bytes()) {
// This is a progress message for a different sink.
continue;
}
metrics.consumed_progress_records.inc();
let Some(payload) = message.payload() else {
continue
};
let progress = parse_progress_record(payload)?;
match last_progress {
Some(last_progress) if !PartialOrder::less_equal(&last_progress.frontier, &progress.frontier) => {
bail!(
"upper regressed in topic {progress_topic}:{partition} from {:?} to {:?}",
&last_progress.frontier,
&progress.frontier,
);
}
_ => last_progress = Some(progress),
}
}
// If we get here, we are assured that we've read all messages up to
// the high water mark, and therefore `last_timestamp` contains the
// most recent timestamp for the sink under consideration.
Ok(last_progress)
}).await.unwrap().check_ssh_status(&ctx);
// Express interest to the computation until after we've received its result
drop(parent_token);
result
}
/// This is the legacy struct that used to be emitted as part of a transactional produce and
/// contains the largest timestamp within the batch committed. Since it is just a timestamp it
/// cannot encode the fact that a sink has finished and deviates from upper frontier semantics.
/// Materialize no longer produces this record but it's possible that we encounter this in topics
/// written by older versions. In those cases we convert it into upper semantics by stepping the
/// timestamp forward.
#[derive(Debug, PartialEq, Serialize, Deserialize)]
pub struct LegacyProgressRecord {
// Double Option to tell apart an omitted field from one set to null explicitly
// https://github.com/serde-rs/serde/issues/984
#[serde(default, deserialize_with = "deserialize_some")]
pub timestamp: Option<Option<Timestamp>>,
}
// Any value that is present is considered Some value, including null.
fn deserialize_some<'de, T, D>(deserializer: D) -> Result<Option<T>, D::Error>
where
T: Deserialize<'de>,
D: Deserializer<'de>,
{
Deserialize::deserialize(deserializer).map(Some)
}
/// This struct is emitted as part of a transactional produce, and contains the upper frontier of
/// the batch committed. It is used to recover the frontier a sink needs to resume at.
#[derive(Debug, PartialEq, Serialize, Deserialize)]
pub struct ProgressRecord {
#[serde(
deserialize_with = "deserialize_frontier",
serialize_with = "serialize_frontier"
)]
pub frontier: Antichain<Timestamp>,
#[serde(default)]
pub version: u64,
}
fn serialize_frontier<S>(frontier: &Antichain<Timestamp>, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
Serialize::serialize(frontier.elements(), serializer)
}
fn deserialize_frontier<'de, D>(deserializer: D) -> Result<Antichain<Timestamp>, D::Error>
where
D: Deserializer<'de>,
{
let times: Vec<Timestamp> = Deserialize::deserialize(deserializer)?;
Ok(Antichain::from(times))
}
fn parse_progress_record(payload: &[u8]) -> Result<ProgressRecord, anyhow::Error> {
Ok(match serde_json::from_slice::<ProgressRecord>(payload) {
Ok(progress) => progress,
// If we fail to deserialize we might be reading a legacy progress record
Err(_) => match serde_json::from_slice::<LegacyProgressRecord>(payload) {
Ok(LegacyProgressRecord {
timestamp: Some(Some(time)),
}) => ProgressRecord {
frontier: Antichain::from_elem(time.step_forward()),
version: 0,
},
Ok(LegacyProgressRecord {
timestamp: Some(None),
}) => ProgressRecord {
frontier: Antichain::new(),
version: 0,
},
_ => match std::str::from_utf8(payload) {
Ok(payload) => bail!("invalid progress record: {payload}"),
Err(_) => bail!("invalid progress record bytes: {payload:?}"),
},
},
})
}
/// Fetches the partition count for the identified topic.
async fn fetch_partition_count(
producer: &ThreadedProducer<TunnelingClientContext<MzClientContext>>,
sink_id: GlobalId,
topic_name: &str,
) -> Result<u64, anyhow::Error> {
let meta = task::spawn_blocking(|| format!("kafka_sink_fetch_partition_count:{sink_id}"), {
let producer = producer.clone();
move || {
producer
.client()
.fetch_metadata(None, DEFAULT_FETCH_METADATA_TIMEOUT)
}
})
.await
.expect("spawning blocking task cannot fail")
.check_ssh_status(producer.context())?;
match meta.topics().iter().find(|t| t.name() == topic_name) {
Some(topic) => {
let partition_count = u64::cast_from(topic.partitions().len());
if partition_count == 0 {
bail!("topic {topic_name} has an impossible partition count of zero");
}
Ok(partition_count)
}
None => bail!("topic {topic_name} does not exist"),
}
}
/// Fetches the partition count for the identified topic at the specified
/// interval.
///
/// When an updated partition count is discovered, invokes
/// `update_partition_count` with the new partition count.
async fn fetch_partition_count_loop<F>(
producer: ThreadedProducer<TunnelingClientContext<MzClientContext>>,
sink_id: GlobalId,
topic_name: String,
interval: Duration,
update_partition_count: Arc<F>,
) where
F: Fn(u64),
{
let mut interval = time::interval(interval);
interval.set_missed_tick_behavior(MissedTickBehavior::Delay);
loop {
interval.tick().await;
match fetch_partition_count(&producer, sink_id, &topic_name).await {
Ok(pc) => update_partition_count(pc),
Err(e) => {
warn!(%sink_id, "failed updating partition count: {e}");
continue;
}
};
}
}
/// Encodes a stream of `(Option<Row>, Option<Row>)` updates using the specified encoder.
///
/// Input [`Row`] updates must me compatible with the given implementor of [`Encode`].
fn encode_collection<G: Scope>(
name: String,
input: &Collection<G, (Option<Row>, DiffPair<Row>), Diff>,
envelope: SinkEnvelope,
connection: KafkaSinkConnection,
storage_configuration: StorageConfiguration,
) -> (
Collection<G, KafkaMessage, Diff>,
Stream<G, HealthStatusMessage>,
PressOnDropButton,
) {
let mut builder = AsyncOperatorBuilder::new(name, input.inner.scope());
let (output, stream) = builder.new_output();
let mut input = builder.new_input_for(&input.inner, Pipeline, &output);
let (button, errors) = builder.build_fallible(move |caps| {
Box::pin(async move {
let [capset]: &mut [_; 1] = caps.try_into().unwrap();
let key_desc = connection
.key_desc_and_indices
.as_ref()
.map(|(desc, _indices)| desc.clone());
let value_desc = connection.value_desc;
let key_encoder: Option<Box<dyn Encode>> =
match (key_desc, connection.format.key_format) {
(Some(desc), Some(KafkaSinkFormatType::Bytes)) => {
Some(Box::new(BinaryEncoder::new(desc, false)))
}
(Some(desc), Some(KafkaSinkFormatType::Text)) => {
Some(Box::new(TextEncoder::new(desc, false)))
}
(Some(desc), Some(KafkaSinkFormatType::Json)) => {
Some(Box::new(JsonEncoder::new(desc, false)))
}
(Some(desc), Some(KafkaSinkFormatType::Avro {
schema,
compatibility_level,
csr_connection,
})) => {
// Ensure that schemas are registered with the schema registry.
//
// Note that where this lies in the rendering cycle means that we will publish the
// schemas each time the sink is rendered.
let ccsr = csr_connection
.connect(&storage_configuration, InTask::Yes)
.await?;
let schema_id = mz_storage_client::sink::publish_kafka_schema(
ccsr,
format!("{}-key", connection.topic),
schema.clone(),
mz_ccsr::SchemaType::Avro,
compatibility_level,
)
.await
.context("error publishing kafka schemas for sink")?;
Some(Box::new(AvroEncoder::new(desc, false, &schema, schema_id)))
}
(None, None) => None,
(desc, format) => {
return Err(anyhow!(
"key_desc and key_format must be both set or both unset, but key_desc: {:?}, key_format: {:?}",
desc,
format
))
}
};
// whether to apply the debezium envelope to the value encoding
let debezium = matches!(envelope, SinkEnvelope::Debezium);
let value_encoder: Box<dyn Encode> = match connection.format.value_format {
KafkaSinkFormatType::Bytes => Box::new(BinaryEncoder::new(value_desc, debezium)),
KafkaSinkFormatType::Text => Box::new(TextEncoder::new(value_desc, debezium)),
KafkaSinkFormatType::Json => Box::new(JsonEncoder::new(value_desc, debezium)),
KafkaSinkFormatType::Avro {
schema,
compatibility_level,
csr_connection,
} => {
// Ensure that schemas are registered with the schema registry.
//
// Note that where this lies in the rendering cycle means that we will publish the
// schemas each time the sink is rendered.
let ccsr = csr_connection
.connect(&storage_configuration, InTask::Yes)
.await?;
let schema_id = mz_storage_client::sink::publish_kafka_schema(
ccsr,
format!("{}-value", connection.topic),
schema.clone(),
mz_ccsr::SchemaType::Avro,
compatibility_level,
)
.await
.context("error publishing kafka schemas for sink")?;
Box::new(AvroEncoder::new(value_desc, debezium, &schema, schema_id))
}
};
// !IMPORTANT!
// Correctness of this operator relies on no fallible operations happening after this
// point. This is a temporary workaround of build_fallible's bad interaction of owned
// capabilities and errors.
// TODO(petrosagg): Make the fallible async operator safe
*capset = CapabilitySet::new();
let mut row_buf = Row::default();
let mut datums = DatumVec::new();
while let Some(event) = input.next().await {
if let Event::Data(cap, rows) = event {
for ((key, value), time, diff) in rows {
let mut hash = None;
let mut headers = vec![];
if connection.headers_index.is_some() || connection.partition_by.is_some() {
// Header values and partition by values are derived from the row that
// produces an event. But it is ambiguous whether to use the `before` or
// `after` from the event. The rule applied here is simple: use `after`
// if it exists (insertions and updates), otherwise fall back to `before`
// (deletions).
//
// It is up to the SQL planner to ensure this produces sensible results.
// (When using the upsert envelope and both `before` and `after` are
// present, it's always unambiguous to use `after` because that's all
// that will be present in the Kafka message; when using the Debezium
// envelope, it's okay to refer to columns in the key because those
// are guaranteed to be the same in both `before` and `after`.)
let row = value
.after
.as_ref()
.or(value.before.as_ref())
.expect("one of before or after must be set");
let row = datums.borrow_with(row);
if let Some(i) = connection.headers_index {
headers = encode_headers(row[i]);
}
if let Some(partition_by) = &connection.partition_by {
hash = Some(evaluate_partition_by(partition_by, &row));
}
}
let (key, hash) = match key {
Some(key) => {
let key_encoder = key_encoder.as_ref().expect("key present");
let key = key_encoder.encode_unchecked(key);
let hash = hash.unwrap_or_else(|| key_encoder.hash(&key));
(Some(key), hash)
}
None => (None, hash.unwrap_or(0))
};
let value = match envelope {
SinkEnvelope::Upsert => value.after,
SinkEnvelope::Debezium => {
dbz_format(&mut row_buf.packer(), value);
Some(row_buf.clone())
}
};
let value = value.map(|value| value_encoder.encode_unchecked(value));
let message = KafkaMessage {
hash,
key,
value,
headers,
};
output.give(&cap, (message, time, diff));
}
}
}
Ok::<(), anyhow::Error>(())
})
});
let statuses = errors.map(|error| HealthStatusMessage {
index: 0,
update: HealthStatusUpdate::halting(format!("{}", error.display_with_causes()), None),
namespace: StatusNamespace::Kafka,
});
(stream.as_collection(), statuses, button.press_on_drop())
}
fn encode_headers(datum: Datum) -> Vec<KafkaHeader> {
let mut out = vec![];
if datum.is_null() {
return out;
}
for (key, value) in datum.unwrap_map().iter() {
out.push(KafkaHeader {
key: key.into(),
value: match value {
Datum::Null => None,
Datum::String(s) => Some(s.as_bytes().to_vec()),
Datum::Bytes(b) => Some(b.to_vec()),
_ => panic!("encode_headers called with unexpected header value {value:?}"),
},
})
}
out
}
/// Evaluates a partition by expression on the given row, returning the hash
/// value to use for partition assignment.
///
/// The provided expression must have type `Int32`, `Int64`, `UInt32`, or
/// `UInt64`. If the expression produces an error when evaluated, or if the
/// expression is of a signed integer type and produces a negative value, this
/// function returns 0.
fn evaluate_partition_by(partition_by: &MirScalarExpr, row: &[Datum]) -> u64 {
// NOTE(benesch): The way this function converts errors and invalid values
// to 0 is somewhat surpising. Ideally, we would put the sink in a
// permanently errored state if the partition by expression produces an
// error or invalid value. But we don't presently have a way for sinks to
// report errors (see materialize#17688), so the current behavior was determined to be
// the best available option. The behavior is clearly documented in the
// user-facing `CREATE SINK` docs.
let temp_storage = RowArena::new();
match partition_by.eval(row, &temp_storage) {
Ok(hash) => match hash {
Datum::Int32(i) => i.try_into().unwrap_or(0),
Datum::Int64(i) => i.try_into().unwrap_or(0),
Datum::UInt32(u) => u64::from(u),
Datum::UInt64(u) => u,
_ => unreachable!(),
},
Err(_) => 0,
}
}
#[cfg(test)]
mod test {
use mz_ore::assert_err;
use super::*;
#[mz_ore::test]
fn progress_record_migration() {
assert_err!(parse_progress_record(b"{}"));
assert_eq!(
parse_progress_record(b"{\"timestamp\":1}").unwrap(),
ProgressRecord {
frontier: Antichain::from_elem(2.into()),
version: 0,
}
);
assert_eq!(
parse_progress_record(b"{\"timestamp\":null}").unwrap(),
ProgressRecord {
frontier: Antichain::new(),
version: 0,
}
);
assert_eq!(
parse_progress_record(b"{\"frontier\":[1]}").unwrap(),
ProgressRecord {
frontier: Antichain::from_elem(1.into()),
version: 0,
}
);
assert_eq!(
parse_progress_record(b"{\"frontier\":[]}").unwrap(),
ProgressRecord {
frontier: Antichain::new(),
version: 0,
}
);
assert_eq!(
parse_progress_record(b"{\"frontier\":[], \"version\": 42}").unwrap(),
ProgressRecord {
frontier: Antichain::new(),
version: 42,
}
);
assert_err!(parse_progress_record(b"{\"frontier\":null}"));
}
}