mz_mysql_util/
schemas.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

use std::collections::{BTreeMap, BTreeSet};
use std::sync::LazyLock;

use itertools::Itertools;
use maplit::btreeset;
use regex::Regex;

use mysql_async::prelude::{FromRow, Queryable};
use mysql_async::{FromRowError, Row};

use mz_repr::adt::char::CharLength;
use mz_repr::adt::numeric::{NumericMaxScale, NUMERIC_DATUM_MAX_PRECISION};
use mz_repr::adt::timestamp::TimestampPrecision;
use mz_repr::adt::varchar::VarCharMaxLength;
use mz_repr::{ColumnType, ScalarType};

use crate::desc::{
    MySqlColumnDesc, MySqlColumnMeta, MySqlColumnMetaEnum, MySqlKeyDesc, MySqlTableDesc,
};
use crate::{MySqlError, UnsupportedDataType};

/// Built-in system schemas that should be ignored when querying for user-defined tables
/// since they contain dozens of built-in system tables that are likely not needed.
pub static SYSTEM_SCHEMAS: LazyLock<BTreeSet<&str>> = LazyLock::new(|| {
    btreeset! {
        "information_schema",
        "performance_schema",
        "mysql",
        "sys",
    }
});

/// Helper for querying information_schema.columns
// NOTE: The order of these names *must* match the order of fields of the [`InfoSchema`] struct.
const INFO_SCHEMA_COLS: &[&str] = &[
    "column_name",
    "data_type",
    "column_type",
    "is_nullable",
    "numeric_precision",
    "numeric_scale",
    "datetime_precision",
    "character_maximum_length",
];

// NOTE: The order of these fields *must* match the order of names of the [`INFO_SCHEMA_COLS`] list.
#[derive(Debug, Clone)]
pub struct InfoSchema {
    column_name: String,
    data_type: String,
    column_type: String,
    is_nullable: String,
    numeric_precision: Option<i64>,
    numeric_scale: Option<i64>,
    datetime_precision: Option<i64>,
    character_maximum_length: Option<i64>,
}

impl FromRow for InfoSchema {
    fn from_row_opt(row: Row) -> Result<Self, FromRowError> {
        let actual = row.columns_ref().iter().map(|c| c.name_ref());
        let expected = INFO_SCHEMA_COLS.iter().map(|c| c.as_bytes());
        itertools::assert_equal(actual, expected);
        let (a, b, c, d, e, f, g, h) = FromRow::from_row_opt(row)?;
        Ok(Self {
            column_name: a,
            data_type: b,
            column_type: c,
            is_nullable: d,
            numeric_precision: e,
            numeric_scale: f,
            datetime_precision: g,
            character_maximum_length: h,
        })
    }
}

impl InfoSchema {
    pub fn name(self) -> String {
        self.column_name
    }
}

/// A representation of the raw schema info for a table from MySQL
#[derive(Debug, Clone)]
pub struct MySqlTableSchema {
    pub schema_name: String,
    pub name: String,
    pub columns: Vec<InfoSchema>,
    pub keys: BTreeSet<MySqlKeyDesc>,
}

impl MySqlTableSchema {
    pub fn table_ref<'a>(&'a self) -> QualifiedTableRef<'a> {
        QualifiedTableRef {
            schema_name: &self.schema_name,
            table_name: &self.name,
        }
    }

    /// Convert the raw table schema to our MySqlTableDesc representation
    /// using any provided text_columns and exclude_columns
    pub fn to_desc(
        self,
        text_columns: Option<&BTreeSet<&str>>,
        exclude_columns: Option<&BTreeSet<&str>>,
    ) -> Result<MySqlTableDesc, MySqlError> {
        // Verify there are no duplicates in text_columns and exclude_columns
        match (&text_columns, &exclude_columns) {
            (Some(text_cols), Some(ignore_cols)) => {
                let intersection: Vec<_> = text_cols.intersection(ignore_cols).collect();
                if !intersection.is_empty() {
                    Err(MySqlError::DuplicatedColumnNames {
                        qualified_table_name: format!("{:?}.{:?}", self.schema_name, self.name),
                        columns: intersection.iter().map(|s| (*s).to_string()).collect(),
                    })?;
                }
            }
            _ => (),
        };

        let mut columns = Vec::with_capacity(self.columns.len());
        let mut error_cols = vec![];
        for info in self.columns {
            // If this column is designated as a text column and of a supported text-column type
            // treat it as a string and skip type parsing.
            if let Some(text_columns) = &text_columns {
                if text_columns.contains(&info.column_name.as_str()) {
                    match parse_as_text_column(&info, &self.schema_name, &self.name) {
                        Err(err) => error_cols.push(err),
                        Ok((scalar_type, meta)) => columns.push(MySqlColumnDesc {
                            name: info.column_name,
                            column_type: Some(ColumnType {
                                scalar_type,
                                nullable: &info.is_nullable == "YES",
                            }),
                            meta,
                        }),
                    }
                    continue;
                }
            }

            // If this column is ignored, use None for the column type to signal that it should be.
            if let Some(ignore_cols) = &exclude_columns {
                if ignore_cols.contains(&info.column_name.as_str()) {
                    columns.push(MySqlColumnDesc {
                        name: info.column_name,
                        column_type: None,
                        meta: None,
                    });
                    continue;
                }
            }

            // Collect the parsed data types or errors for later reporting.
            match parse_data_type(&info, &self.schema_name, &self.name) {
                Err(err) => error_cols.push(err),
                Ok(scalar_type) => columns.push(MySqlColumnDesc {
                    name: info.column_name,
                    column_type: Some(ColumnType {
                        scalar_type,
                        nullable: &info.is_nullable == "YES",
                    }),
                    meta: None,
                }),
            }
        }
        if error_cols.len() > 0 {
            Err(MySqlError::UnsupportedDataTypes {
                columns: error_cols,
            })?;
        }

        Ok(MySqlTableDesc {
            schema_name: self.schema_name,
            name: self.name,
            columns,
            keys: self.keys,
        })
    }
}

/// Request for table schemas from MySQL
pub enum SchemaRequest<'a> {
    /// Request schemas for all tables in the database, excluding tables in
    /// the built-in system schemas.
    All,
    /// Request schemas for all tables in the database, including tables from
    /// the built-in system schemas.
    AllWithSystemSchemas,
    /// Request schemas for all tables in the specified schemas/databases
    Schemas(Vec<&'a str>),
    /// Request schemas for all specified tables, specified as (schema_name, table_name)
    Tables(Vec<(&'a str, &'a str)>),
}

/// A reference to a table in a schema/database
#[derive(Debug, Hash, PartialEq, Eq, Clone, Ord, PartialOrd)]
pub struct QualifiedTableRef<'a> {
    pub schema_name: &'a str,
    pub table_name: &'a str,
}

/// Retrieve the tables and column descriptions for tables in the given schemas.
pub async fn schema_info<'a, Q>(
    conn: &mut Q,
    schema_request: &SchemaRequest<'a>,
) -> Result<Vec<MySqlTableSchema>, MySqlError>
where
    Q: Queryable,
{
    let table_rows: Vec<(String, String)> = match schema_request {
        SchemaRequest::All => {
            let table_q = format!(
                "SELECT table_name, table_schema
                FROM information_schema.tables
                WHERE table_type = 'BASE TABLE'
                AND table_schema NOT IN ({})",
                SYSTEM_SCHEMAS.iter().map(|s| format!("'{}'", s)).join(", ")
            );
            conn.exec(table_q, ()).await?
        }
        SchemaRequest::AllWithSystemSchemas => {
            let table_q = "SELECT table_name, table_schema
                FROM information_schema.tables
                WHERE table_type = 'BASE TABLE'";
            conn.exec(table_q, ()).await?
        }
        SchemaRequest::Schemas(schemas) => {
            // Get all tables of type 'Base Table' in specified schemas
            if schemas.is_empty() {
                return Ok(vec![]);
            }
            let table_q = format!(
                "SELECT table_name, table_schema
                FROM information_schema.tables
                WHERE table_type = 'BASE TABLE'
                AND table_schema IN ({})",
                schemas.iter().map(|_| "?").join(", ")
            );
            conn.exec(table_q, schemas).await?
        }
        SchemaRequest::Tables(tables) => {
            // Get all specified tables
            if tables.is_empty() {
                return Ok(vec![]);
            }
            let table_q = format!(
                "SELECT table_name, table_schema
                FROM information_schema.tables
                WHERE table_type = 'BASE TABLE'
                AND (table_schema, table_name) IN ({})",
                tables.iter().map(|_| "(?, ?)").join(", ")
            );
            conn.exec(
                table_q,
                tables
                    .iter()
                    .flat_map(|(s, t)| [*s, *t])
                    .collect::<Vec<_>>(),
            )
            .await?
        }
    };

    let mut tables = vec![];
    for (table_name, schema_name) in table_rows {
        // NOTE: It's important that we order by ordinal_position ASC since we rely on this as
        // the ordering in which columns are returned in a row.
        let column_q = format!(
            "SELECT {}
             FROM information_schema.columns
             WHERE table_name = ? AND table_schema = ?
             ORDER BY ordinal_position ASC",
            INFO_SCHEMA_COLS
                .iter()
                .map(|c| format!("{c} AS {c}"))
                .join(", ")
        );
        let column_rows = conn
            .exec::<InfoSchema, _, _>(column_q, (&table_name, &schema_name))
            .await?;

        // Query for primary key and unique constraints that do not contain expressions / functional key parts.
        // When a constraint contains expressions, the column_name field is NULL.
        let index_rows = conn
            .exec::<(String, String), _, _>(
                "SELECT
                    index_name,
                    column_name
                FROM information_schema.statistics AS outt
                WHERE
                    table_schema NOT IN ('information_schema', 'performance_schema', 'mysql', 'sys')
                    AND NOT EXISTS (
                        SELECT 1
                        FROM information_schema.statistics AS inn
                        WHERE outt.index_name = inn.index_name AND inn.column_name IS NULL
                    )
                    AND non_unique = 0
                    AND table_name = ?
                    AND table_schema = ?
                ORDER BY index_name, seq_in_index
            ",
                (&table_name, &schema_name),
            )
            .await?;

        let mut indices = BTreeMap::new();
        for (index_name, column) in index_rows {
            indices
                .entry(index_name)
                .or_insert_with(Vec::new)
                .push(column);
        }
        let mut keys = BTreeSet::new();
        while let Some((index_name, columns)) = indices.pop_first() {
            keys.insert(MySqlKeyDesc {
                is_primary: &index_name == "PRIMARY",
                name: index_name,
                columns,
            });
        }

        tables.push(MySqlTableSchema {
            schema_name,
            name: table_name,
            columns: column_rows,
            keys,
        });
    }

    Ok(tables)
}

fn parse_data_type(
    info: &InfoSchema,
    schema_name: &str,
    table_name: &str,
) -> Result<ScalarType, UnsupportedDataType> {
    let unsigned = info.column_type.contains("unsigned");

    match info.data_type.as_str() {
        "tinyint" | "smallint" => {
            if unsigned {
                Ok(ScalarType::UInt16)
            } else {
                Ok(ScalarType::Int16)
            }
        }
        "mediumint" | "int" => {
            if unsigned {
                Ok(ScalarType::UInt32)
            } else {
                Ok(ScalarType::Int32)
            }
        }
        "bigint" => {
            if unsigned {
                Ok(ScalarType::UInt64)
            } else {
                Ok(ScalarType::Int64)
            }
        }
        "float" => Ok(ScalarType::Float32),
        "double" => Ok(ScalarType::Float64),
        "date" => Ok(ScalarType::Date),
        "datetime" | "timestamp" => Ok(ScalarType::Timestamp {
            // both mysql and our scalar type use a max six-digit fractional-second precision
            // this is bounds-checked in the TryFrom impl
            precision: info
                .datetime_precision
                .map(TimestampPrecision::try_from)
                .transpose()
                .map_err(|_| UnsupportedDataType {
                    column_type: info.column_type.clone(),
                    qualified_table_name: format!("{:?}.{:?}", schema_name, table_name),
                    column_name: info.column_name.clone(),
                    intended_type: None,
                })?,
        }),
        "time" => Ok(ScalarType::Time),
        "decimal" | "numeric" => {
            // validate the precision is within the bounds of our numeric type
            // here since we don't use this precision on the ScalarType itself
            // whereas the scale will be bounds-checked in the TryFrom impl
            if info.numeric_precision.unwrap_or_default() > NUMERIC_DATUM_MAX_PRECISION.into() {
                Err(UnsupportedDataType {
                    column_type: info.column_type.clone(),
                    qualified_table_name: format!("{:?}.{:?}", schema_name, table_name),
                    column_name: info.column_name.clone(),
                    intended_type: None,
                })?
            }
            Ok(ScalarType::Numeric {
                max_scale: info
                    .numeric_scale
                    .map(NumericMaxScale::try_from)
                    .transpose()
                    .map_err(|_| UnsupportedDataType {
                        column_type: info.column_type.clone(),
                        qualified_table_name: format!("{:?}.{:?}", schema_name, table_name),
                        column_name: info.column_name.clone(),
                        intended_type: None,
                    })?,
            })
        }
        "char" => Ok(ScalarType::Char {
            length: info
                .character_maximum_length
                .and_then(|f| Some(CharLength::try_from(f)))
                .transpose()
                .map_err(|_| UnsupportedDataType {
                    column_type: info.column_type.clone(),
                    qualified_table_name: format!("{:?}.{:?}", schema_name, table_name),
                    column_name: info.column_name.clone(),
                    intended_type: None,
                })?,
        }),
        "varchar" => Ok(ScalarType::VarChar {
            max_length: info
                .character_maximum_length
                .and_then(|f| Some(VarCharMaxLength::try_from(f)))
                .transpose()
                .map_err(|_| UnsupportedDataType {
                    column_type: info.column_type.clone(),
                    qualified_table_name: format!("{:?}.{:?}", schema_name, table_name),
                    column_name: info.column_name.clone(),
                    intended_type: None,
                })?,
        }),
        "text" | "tinytext" | "mediumtext" | "longtext" => Ok(ScalarType::String),
        "binary" | "varbinary" | "tinyblob" | "blob" | "mediumblob" | "longblob" => {
            Ok(ScalarType::Bytes)
        }
        "json" => Ok(ScalarType::Jsonb),
        _ => Err(UnsupportedDataType {
            column_type: info.column_type.clone(),
            qualified_table_name: format!("{:?}.{:?}", schema_name, table_name),
            column_name: info.column_name.clone(),
            intended_type: None,
        }),
    }
}

/// Parse the specified column as a TEXT COLUMN. We only support the set of types that are
/// represented as an encoded-string in both the mysql-common binary query response and binlog
/// event representation, OR types that we've added explicit casting support for.
fn parse_as_text_column(
    info: &InfoSchema,
    schema_name: &str,
    table_name: &str,
) -> Result<(ScalarType, Option<MySqlColumnMeta>), UnsupportedDataType> {
    match info.data_type.as_str() {
        "year" => Ok((ScalarType::String, Some(MySqlColumnMeta::Year))),
        "json" => Ok((ScalarType::String, Some(MySqlColumnMeta::Json))),
        "enum" => Ok((
            ScalarType::String,
            Some(MySqlColumnMeta::Enum(MySqlColumnMetaEnum {
                values: enum_vals_from_column_type(info.column_type.as_str()).map_err(|_| {
                    UnsupportedDataType {
                        column_type: info.column_type.clone(),
                        qualified_table_name: format!("{:?}.{:?}", schema_name, table_name),
                        column_name: info.column_name.clone(),
                        intended_type: Some("text".to_string()),
                    }
                })?,
            })),
        )),
        "date" => Ok((ScalarType::String, Some(MySqlColumnMeta::Date))),
        "datetime" | "timestamp" => Ok((
            ScalarType::String,
            Some(MySqlColumnMeta::Timestamp(
                info.datetime_precision
                    // Default precision is 0 in MySQL if not specified
                    .unwrap_or_default()
                    .try_into()
                    .map_err(|_| UnsupportedDataType {
                        column_type: info.column_type.clone(),
                        qualified_table_name: format!("{:?}.{:?}", schema_name, table_name),
                        column_name: info.column_name.clone(),
                        intended_type: Some("text".to_string()),
                    })?,
            )),
        )),
        _ => Err(UnsupportedDataType {
            column_type: info.column_type.clone(),
            qualified_table_name: format!("{:?}.{:?}", schema_name, table_name),
            column_name: info.column_name.clone(),
            intended_type: Some("text".to_string()),
        }),
    }
}

static ENUM_VAL_REGEX: LazyLock<Regex> =
    LazyLock::new(|| Regex::new(r"'((?:[^']|'')*)'").expect("valid regex"));

/// Parse the enum values from a column_type value on an enum column, which is a string like
/// "enum('apple','banana','cher,ry','ora''nge')"
/// We need to handle the case where the enum value itself contains a comma or a
/// single quote (escaped with another quote), so we use a regex to do so
fn enum_vals_from_column_type(s: &str) -> Result<Vec<String>, anyhow::Error> {
    let vals_str = s
        .strip_prefix("enum(")
        .and_then(|s| s.strip_suffix(')'))
        .ok_or(anyhow::format_err!(
            "Unable to parse enum column type string"
        ))?;

    Ok(ENUM_VAL_REGEX
        .captures_iter(vals_str)
        .map(|s| s[1].replace("''", "'"))
        .collect())
}

#[cfg(test)]
mod tests {
    use super::*;

    #[mz_ore::test]
    fn test_enum_value_parsing() {
        let vals =
            enum_vals_from_column_type("enum('apple','banana','cher,ry','ora''nge')").unwrap();
        assert_eq!(vals, vec!["apple", "banana", "cher,ry", "ora'nge"]);
    }
}