1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Pushes predicates down through other operators.
//!
//! This action generally improves the quality of the query, in that selective per-record
//! filters reduce the volume of data before they arrive at more expensive operators.
//!
//!
//! The one time when this action might not improve the quality of a query is
//! if a filter gets pushed down on an arrangement because that blocks arrangement
//! reuse. It assumed that actions that need an arrangement are responsible for
//! lifting filters out of the way.
//!
//! Predicate pushdown will not push down literal errors, unless it is certain that
//! the literal errors will be unconditionally evaluated. For example, the pushdown
//! will not happen if not all predicates can be pushed down (e.g. reduce and map),
//! or if we are not certain that the input is non-empty (e.g. join).
//! Note that this is not addressing the problem in its full generality, because this problem can
//! occur with any function call that might error (although much more rarely than with literal
//! errors). See <https://github.com/MaterializeInc/database-issues/issues/4972#issuecomment-1547391011>
//!
//! ```rust
//! use mz_expr::{BinaryFunc, MirRelationExpr, MirScalarExpr};
//! use mz_ore::id_gen::IdGen;
//! use mz_repr::{ColumnType, Datum, RelationType, ScalarType};
//! use mz_repr::optimize::OptimizerFeatures;
//! use mz_transform::{typecheck, Transform, TransformCtx};
//! use mz_transform::dataflow::DataflowMetainfo;
//!
//! use mz_transform::predicate_pushdown::PredicatePushdown;
//!
//! let input1 = MirRelationExpr::constant(vec![], RelationType::new(vec![
//! ScalarType::Bool.nullable(false),
//! ]));
//! let input2 = MirRelationExpr::constant(vec![], RelationType::new(vec![
//! ScalarType::Bool.nullable(false),
//! ]));
//! let input3 = MirRelationExpr::constant(vec![], RelationType::new(vec![
//! ScalarType::Bool.nullable(false),
//! ]));
//! let join = MirRelationExpr::join(
//! vec![input1.clone(), input2.clone(), input3.clone()],
//! vec![vec![(0, 0), (2, 0)].into_iter().collect()],
//! );
//!
//! let predicate0 = MirScalarExpr::column(0);
//! let predicate1 = MirScalarExpr::column(1);
//! let predicate01 = MirScalarExpr::column(0).call_binary(MirScalarExpr::column(2), BinaryFunc::AddInt64);
//! let predicate012 = MirScalarExpr::literal_false();
//!
//! let mut expr = join.filter(
//! vec![
//! predicate0.clone(),
//! predicate1.clone(),
//! predicate01.clone(),
//! predicate012.clone(),
//! ]);
//!
//! let features = OptimizerFeatures::default();
//! let typecheck_ctx = typecheck::empty_context();
//! let mut df_meta = DataflowMetainfo::default();
//! let mut transform_ctx = TransformCtx::local(&features, &typecheck_ctx, &mut df_meta);
//!
//! PredicatePushdown::default().transform(&mut expr, &mut transform_ctx);
//!
//! let predicate00 = MirScalarExpr::column(0).call_binary(MirScalarExpr::column(0), BinaryFunc::AddInt64);
//! let expected_expr = MirRelationExpr::join(
//! vec![
//! input1.clone().filter(vec![predicate0.clone(), predicate00.clone()]),
//! input2.clone().filter(vec![predicate0.clone()]),
//! input3.clone().filter(vec![predicate0, predicate00])
//! ],
//! vec![vec![(0, 0), (2, 0)].into_iter().collect()],
//! ).filter(vec![predicate012]);
//! assert_eq!(expected_expr, expr)
//! ```
use std::collections::{BTreeMap, BTreeSet};
use itertools::Itertools;
use mz_expr::visit::{Visit, VisitChildren};
use mz_expr::{
func, AggregateFunc, Id, JoinInputMapper, LocalId, MirRelationExpr, MirScalarExpr,
VariadicFunc, RECURSION_LIMIT,
};
use mz_ore::soft_assert_eq_no_log;
use mz_ore::stack::{CheckedRecursion, RecursionGuard, RecursionLimitError};
use mz_repr::{ColumnType, Datum, ScalarType};
use crate::{TransformCtx, TransformError};
/// Pushes predicates down through other operators.
#[derive(Debug)]
pub struct PredicatePushdown {
recursion_guard: RecursionGuard,
}
impl Default for PredicatePushdown {
fn default() -> PredicatePushdown {
PredicatePushdown {
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
}
impl CheckedRecursion for PredicatePushdown {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl crate::Transform for PredicatePushdown {
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "predicate_pushdown")
)]
fn transform(
&self,
relation: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), TransformError> {
let mut empty = BTreeMap::new();
let result = self.action(relation, &mut empty);
mz_repr::explain::trace_plan(&*relation);
result
}
}
impl PredicatePushdown {
/// Predicate pushdown
///
/// This method looks for opportunities to push predicates toward
/// sources of data. Primarily, this is the `Filter` expression,
/// and moving its predicates through the operators it contains.
///
/// In addition, the method accumulates the intersection of predicates
/// applied to each `Get` expression, so that the predicate can
/// then be pushed through to a `Let` binding, or to the external
/// source of the data if the `Get` binds to another view.
pub fn action(
&self,
relation: &mut MirRelationExpr,
get_predicates: &mut BTreeMap<Id, BTreeSet<MirScalarExpr>>,
) -> Result<(), TransformError> {
self.checked_recur(|_| {
// In the case of Filter or Get we have specific work to do;
// otherwise we should recursively descend.
match relation {
MirRelationExpr::Filter { input, predicates } => {
// Reduce the predicates to determine as best as possible
// whether they are literal errors before working with them.
let input_type = input.typ();
for predicate in predicates.iter_mut() {
predicate.reduce(&input_type.column_types);
}
// It can be helpful to know if there are any non-literal errors,
// as this is justification for not pushing down literal errors.
let all_errors = predicates.iter().all(|p| p.is_literal_err());
// Depending on the type of `input` we have different
// logic to apply to consider pushing `predicates` down.
match &mut **input {
MirRelationExpr::Let { body, .. }
| MirRelationExpr::LetRec { body, .. } => {
// Push all predicates to the body.
**body = body
.take_dangerous()
.filter(std::mem::replace(predicates, Vec::new()));
self.action(input, get_predicates)?;
}
MirRelationExpr::Get { id, .. } => {
// We can report the predicates upward in `get_predicates`,
// but we are not yet able to delete them from the
// `Filter`.
get_predicates
.entry(*id)
.or_insert_with(|| predicates.iter().cloned().collect())
.retain(|p| predicates.contains(p));
}
MirRelationExpr::Join {
inputs,
equivalences,
..
} => {
// We want to scan `predicates` for any that can
// 1) become join variable constraints
// 2) apply to individual elements of `inputs`.
// Figuring out the set of predicates that belong to
// the latter group requires 1) knowing which predicates
// are in the former group and 2) that the variable
// constraints be in canonical form.
// Thus, there is a first scan across `predicates` to
// populate the join variable constraints
// and a second scan across the remaining predicates
// to see which ones can become individual elements of
// `inputs`.
let input_mapper = mz_expr::JoinInputMapper::new(inputs);
// Predicates not translated into join variable
// constraints. We will attempt to push them at all
// inputs, and failing to
let mut pred_not_translated = Vec::new();
for mut predicate in predicates.drain(..) {
use mz_expr::{BinaryFunc, UnaryFunc};
if let MirScalarExpr::CallBinary {
func: BinaryFunc::Eq,
expr1,
expr2,
} = &predicate
{
// Translate into join variable constraints:
// 1) `nonliteral1 == nonliteral2` constraints
// 2) `expr == literal` where `expr` refers to more
// than one input.
let input_count =
input_mapper.lookup_inputs(&predicate).count();
if (!expr1.is_literal() && !expr2.is_literal())
|| input_count >= 2
{
// `col1 == col2` as a `MirScalarExpr`
// implies `!isnull(col1)` as well.
// `col1 == col2` as a join constraint does
// not have this extra implication.
// Thus, when translating the
// `MirScalarExpr` to a join constraint, we
// need to retain the `!isnull(col1)`
// information.
if expr1.typ(&input_type.column_types).nullable {
pred_not_translated.push(
expr1
.clone()
.call_unary(UnaryFunc::IsNull(func::IsNull))
.call_unary(UnaryFunc::Not(func::Not)),
);
} else if expr2.typ(&input_type.column_types).nullable {
pred_not_translated.push(
expr2
.clone()
.call_unary(UnaryFunc::IsNull(func::IsNull))
.call_unary(UnaryFunc::Not(func::Not)),
);
}
equivalences
.push(vec![(**expr1).clone(), (**expr2).clone()]);
continue;
}
} else if let Some((expr1, expr2)) =
Self::extract_equal_or_both_null(
&mut predicate,
&input_type.column_types,
)
{
// Also translate into join variable constraints:
// 3) `((nonliteral1 = nonliteral2) || (nonliteral
// is null && nonliteral2 is null))`
equivalences.push(vec![expr1, expr2]);
continue;
}
pred_not_translated.push(predicate)
}
mz_expr::canonicalize::canonicalize_equivalences(
equivalences,
std::iter::once(&input_type.column_types),
);
let (retain, push_downs) = Self::push_filters_through_join(
&input_mapper,
equivalences,
pred_not_translated,
);
Self::update_join_inputs_with_push_downs(inputs, push_downs);
// Recursively descend on the join
self.action(input, get_predicates)?;
// remove all predicates that were pushed down from the current Filter node
*predicates = retain;
}
MirRelationExpr::Reduce {
input: inner,
group_key,
aggregates,
monotonic: _,
expected_group_size: _,
} => {
let mut retain = Vec::new();
let mut push_down = Vec::new();
for predicate in predicates.drain(..) {
// Do not push down literal errors unless it is only errors.
if !predicate.is_literal_err() || all_errors {
let mut supported = true;
let mut new_predicate = predicate.clone();
new_predicate.visit_pre(|e| {
if let MirScalarExpr::Column(c) = e {
if *c >= group_key.len() {
supported = false;
}
}
});
if supported {
new_predicate.visit_mut_post(&mut |e| {
if let MirScalarExpr::Column(i) = e {
*e = group_key[*i].clone();
}
})?;
push_down.push(new_predicate);
} else if let MirScalarExpr::Column(col) = &predicate {
if *col == group_key.len()
&& aggregates.len() == 1
&& aggregates[0].func == AggregateFunc::Any
{
push_down.push(aggregates[0].expr.clone());
aggregates[0].expr = MirScalarExpr::literal_ok(
Datum::True,
ScalarType::Bool,
);
} else {
retain.push(predicate);
}
} else {
retain.push(predicate);
}
} else {
retain.push(predicate);
}
}
if !push_down.is_empty() {
*inner = Box::new(inner.take_dangerous().filter(push_down));
}
self.action(inner, get_predicates)?;
// remove all predicates that were pushed down from the current Filter node
std::mem::swap(&mut retain, predicates);
}
MirRelationExpr::TopK {
input,
group_key,
order_key: _,
limit,
offset: _,
monotonic: _,
expected_group_size: _,
} => {
let mut retain = Vec::new();
let mut push_down = Vec::new();
let mut support = BTreeSet::new();
support.extend(group_key.iter().cloned());
if let Some(limit) = limit {
// Strictly speaking not needed because the
// `limit` support should be a subset of the
// `group_key` support, but we don't want to
// take this for granted here.
limit.support_into(&mut support);
}
for predicate in predicates.drain(..) {
// Do not push down literal errors unless it is only errors.
if (!predicate.is_literal_err() || all_errors)
&& predicate.support().is_subset(&support)
{
push_down.push(predicate);
} else {
retain.push(predicate);
}
}
// remove all predicates that were pushed down from the current Filter node
std::mem::swap(&mut retain, predicates);
if !push_down.is_empty() {
*input = Box::new(input.take_dangerous().filter(push_down));
}
self.action(input, get_predicates)?;
}
MirRelationExpr::Threshold { input } => {
let predicates = std::mem::take(predicates);
*relation = input.take_dangerous().filter(predicates).threshold();
self.action(relation, get_predicates)?;
}
MirRelationExpr::Project { input, outputs } => {
let predicates = predicates.drain(..).map(|mut predicate| {
predicate.permute(outputs);
predicate
});
*relation = input
.take_dangerous()
.filter(predicates)
.project(outputs.clone());
self.action(relation, get_predicates)?;
}
MirRelationExpr::Filter {
input,
predicates: predicates2,
} => {
*relation = input
.take_dangerous()
.filter(predicates.clone().into_iter().chain(predicates2.clone()));
self.action(relation, get_predicates)?;
}
MirRelationExpr::Map { input, scalars } => {
let (retained, pushdown) = Self::push_filters_through_map(
scalars,
predicates,
input.arity(),
all_errors,
)?;
let scalars = std::mem::take(scalars);
let mut result = input.take_dangerous();
if !pushdown.is_empty() {
result = result.filter(pushdown);
}
self.action(&mut result, get_predicates)?;
result = result.map(scalars);
if !retained.is_empty() {
result = result.filter(retained);
}
*relation = result;
}
MirRelationExpr::FlatMap { input, .. } => {
let (mut retained, pushdown) =
Self::push_filters_through_flat_map(predicates, input.arity());
// remove all predicates that were pushed down from the current Filter node
std::mem::swap(&mut retained, predicates);
if !pushdown.is_empty() {
// put the filter on top of the input
**input = input.take_dangerous().filter(pushdown);
}
// ... and keep pushing predicates down
self.action(input, get_predicates)?;
}
MirRelationExpr::Union { base, inputs } => {
let predicates = std::mem::take(predicates);
*base = Box::new(base.take_dangerous().filter(predicates.clone()));
self.action(base, get_predicates)?;
for input in inputs {
*input = input.take_dangerous().filter(predicates.clone());
self.action(input, get_predicates)?;
}
}
MirRelationExpr::Negate { input } => {
// Don't push literal errors past a Negate. The problem is that it's
// hard to appropriately reflect the negation in the error stream:
// - If we don't negate, then errors that should cancel out will not
// cancel out. For example, see
// https://github.com/MaterializeInc/database-issues/issues/5691
// - If we negate, then unrelated errors might cancel out. E.g., there
// might be a division-by-0 in both inputs to an EXCEPT ALL, but
// on different input data. These shouldn't cancel out.
let (retained, pushdown): (Vec<_>, Vec<_>) = std::mem::take(predicates)
.into_iter()
.partition(|p| p.is_literal_err());
let mut result = input.take_dangerous();
if !pushdown.is_empty() {
result = result.filter(pushdown);
}
self.action(&mut result, get_predicates)?;
result = result.negate();
if !retained.is_empty() {
result = result.filter(retained);
}
*relation = result;
}
x => {
x.try_visit_mut_children(|e| self.action(e, get_predicates))?;
}
}
// remove empty filters (junk by-product of the actual transform)
match relation {
MirRelationExpr::Filter { predicates, input } if predicates.is_empty() => {
*relation = input.take_dangerous();
}
_ => {}
}
Ok(())
}
MirRelationExpr::Get { id, .. } => {
// Purge all predicates associated with the id.
get_predicates
.entry(*id)
.or_insert_with(BTreeSet::new)
.clear();
Ok(())
}
MirRelationExpr::Let { id, body, value } => {
// Push predicates and collect intersection at `Get`s.
self.action(body, get_predicates)?;
// `get_predicates` should now contain the intersection
// of predicates at each *use* of the binding. If it is
// non-empty, we can move those predicates to the value.
Self::push_into_let_binding(get_predicates, id, value, &mut [body]);
// Continue recursively on the value.
self.action(value, get_predicates)
}
MirRelationExpr::LetRec {
ids,
values,
limits: _,
body,
} => {
// Note: This could be extended to be able to do a little more pushdowns, see
// https://github.com/MaterializeInc/database-issues/issues/5336#issuecomment-1477588262
// Pre-compute which Ids are used across iterations
let ids_used_across_iterations = MirRelationExpr::recursive_ids(ids, values);
// Predicate pushdown within the body
self.action(body, get_predicates)?;
// `users` will be the body plus the values of those bindings that we have seen
// so far, while going one-by-one through the list of bindings backwards.
// `users` contains those expressions from which we harvested `get_predicates`,
// and therefore we should attend to all of these expressions when pushing down
// a predicate into a Let binding.
let mut users = vec![&mut **body];
for (id, value) in ids.iter_mut().zip(values).rev() {
// Predicate pushdown from Gets in `users` into the value of a Let binding
//
// For now, we simply always avoid pushing into a Let binding that is
// referenced across iterations to avoid soundness problems and infinite
// pushdowns.
//
// Note that `push_into_let_binding` makes a further check based on
// `get_predicates`: We push a predicate into the value of a binding, only
// if all Gets of this Id have this same predicate on top of them.
if !ids_used_across_iterations.contains(id) {
Self::push_into_let_binding(get_predicates, id, value, &mut users);
}
// Predicate pushdown within a binding
self.action(value, get_predicates)?;
users.push(value);
}
Ok(())
}
MirRelationExpr::Join {
inputs,
equivalences,
..
} => {
// The goal is to push
// 1) equivalences of the form `expr = <runtime constant>`, where `expr`
// comes from a single input.
// 2) equivalences of the form `expr1 = expr2`, where both
// expressions come from the same single input.
let input_types = inputs.iter().map(|i| i.typ()).collect::<Vec<_>>();
mz_expr::canonicalize::canonicalize_equivalences(
equivalences,
input_types.iter().map(|t| &t.column_types),
);
let input_mapper = mz_expr::JoinInputMapper::new_from_input_types(&input_types);
// Predicates to push at each input, and to lift out the join.
let mut push_downs = vec![Vec::new(); inputs.len()];
for equivalence_pos in 0..equivalences.len() {
// Case 1: there are more than one literal in the
// equivalence class. Because of equivalences have been
// dedupped, this means that everything in the equivalence
// class must be equal to two different literals, so the
// entire relation zeroes out
if equivalences[equivalence_pos]
.iter()
.filter(|expr| expr.is_literal())
.count()
> 1
{
relation.take_safely();
return Ok(());
}
let runtime_constants = equivalences[equivalence_pos]
.iter()
.filter(|expr| expr.support().is_empty())
.cloned()
.collect::<Vec<_>>();
if !runtime_constants.is_empty() {
// Case 2: There is at least one runtime constant the equivalence class
let gen_literal_equality_preds = |expr: MirScalarExpr| {
let mut equality_preds = Vec::new();
for constant in runtime_constants.iter() {
let pred = if constant.is_literal_null() {
MirScalarExpr::CallUnary {
func: mz_expr::UnaryFunc::IsNull(func::IsNull),
expr: Box::new(expr.clone()),
}
} else {
MirScalarExpr::CallBinary {
func: mz_expr::BinaryFunc::Eq,
expr1: Box::new(expr.clone()),
expr2: Box::new(constant.clone()),
}
};
equality_preds.push(pred);
}
equality_preds
};
// Find all single input expressions in the equivalence
// class and collect (position within the equivalence class,
// input the expression belongs to, localized version of the
// expression).
let mut single_input_exprs = equivalences[equivalence_pos]
.iter()
.enumerate()
.filter_map(|(pos, e)| {
let mut inputs = input_mapper.lookup_inputs(e);
if let Some(input) = inputs.next() {
if inputs.next().is_none() {
return Some((
pos,
input,
input_mapper.map_expr_to_local(e.clone()),
));
}
}
None
})
.collect::<Vec<_>>();
// For every single-input expression `expr`, we can push
// down `expr = <runtime constant>` and remove `expr` from the
// equivalence class.
for (expr_pos, input, expr) in single_input_exprs.drain(..).rev() {
push_downs[input].extend(gen_literal_equality_preds(expr));
equivalences[equivalence_pos].remove(expr_pos);
}
// If none of the expressions in the equivalence depend on input
// columns and equality predicates with them are pushed down,
// we can safely remove them from the equivalence.
// TODO: we could probably push equality predicates among the
// remaining constants to all join inputs to prevent any computation
// from happening until the condition is satisfied.
if equivalences[equivalence_pos]
.iter()
.all(|e| e.support().is_empty())
&& push_downs.iter().any(|p| !p.is_empty())
{
equivalences[equivalence_pos].clear();
}
} else {
// Case 3: There are no constants in the equivalence
// class. Push a predicate for every pair of expressions
// in the equivalence that either belong to a single
// input or can be localized to a given input through
// the rest of equivalences.
let mut to_remove = Vec::new();
for input in 0..inputs.len() {
// Vector of pairs (position within the equivalence, localized
// expression). The position is None for expressions derived through
// other equivalences.
let localized = equivalences[equivalence_pos]
.iter()
.enumerate()
.filter_map(|(pos, expr)| {
if let MirScalarExpr::Column(col_pos) = &expr {
let local_col =
input_mapper.map_column_to_local(*col_pos);
if input == local_col.1 {
return Some((
Some(pos),
MirScalarExpr::Column(local_col.0),
));
} else {
return None;
}
}
let mut inputs = input_mapper.lookup_inputs(expr);
if let Some(single_input) = inputs.next() {
if input == single_input && inputs.next().is_none() {
return Some((
Some(pos),
input_mapper.map_expr_to_local(expr.clone()),
));
}
}
// Equivalences not including the current expression
let mut other_equivalences = equivalences.clone();
other_equivalences[equivalence_pos].remove(pos);
let mut localized = expr.clone();
if input_mapper.try_localize_to_input_with_bound_expr(
&mut localized,
input,
&other_equivalences[..],
) {
Some((None, localized))
} else {
None
}
})
.collect::<Vec<_>>();
// If there are at least 2 expression in the equivalence that
// can be localized to the same input, push all combinations
// of them to the input.
if localized.len() > 1 {
for mut pair in
localized.iter().map(|(_, expr)| expr).combinations(2)
{
let expr1 = pair.pop().unwrap();
let expr2 = pair.pop().unwrap();
push_downs[input].push(
MirScalarExpr::CallBinary {
func: mz_expr::BinaryFunc::Eq,
expr1: Box::new(expr2.clone()),
expr2: Box::new(expr1.clone()),
}
.or(expr2
.clone()
.call_is_null()
.and(expr1.clone().call_is_null())),
);
}
if localized.len() == equivalences[equivalence_pos].len() {
// The equivalence is either a single input one or fully localizable
// to a single input through other equivalences, so it can be removed
// completely without introducing any new cross join.
to_remove.extend(0..equivalences[equivalence_pos].len());
} else {
// Leave an expression from this input in the equivalence to avoid
// cross joins
to_remove.extend(
localized.iter().filter_map(|(pos, _)| *pos).skip(1),
);
}
}
}
// Remove expressions that were pushed down to at least one input
to_remove.sort();
to_remove.dedup();
for pos in to_remove.iter().rev() {
equivalences[equivalence_pos].remove(*pos);
}
};
}
mz_expr::canonicalize::canonicalize_equivalences(
equivalences,
input_types.iter().map(|t| &t.column_types),
);
Self::update_join_inputs_with_push_downs(inputs, push_downs);
// Recursively descend on each of the inputs.
for input in inputs.iter_mut() {
self.action(input, get_predicates)?;
}
Ok(())
}
x => {
// Recursively descend.
x.try_visit_mut_children(|e| self.action(e, get_predicates))
}
}
})
}
fn update_join_inputs_with_push_downs(
inputs: &mut Vec<MirRelationExpr>,
push_downs: Vec<Vec<MirScalarExpr>>,
) {
let new_inputs = inputs
.drain(..)
.zip(push_downs)
.map(|(input, push_down)| {
if !push_down.is_empty() {
input.filter(push_down)
} else {
input
}
})
.collect();
*inputs = new_inputs;
}
// Checks `get_predicates` to see whether we can push a predicate into the Let binding given
// by `id` and `value`.
// `users` is the list of those expressions from which we will need to remove a predicate that
// is being pushed.
fn push_into_let_binding(
get_predicates: &mut BTreeMap<Id, BTreeSet<MirScalarExpr>>,
id: &LocalId,
value: &mut MirRelationExpr,
users: &mut [&mut MirRelationExpr],
) {
if let Some(list) = get_predicates.remove(&Id::Local(*id)) {
if !list.is_empty() {
// Remove the predicates in `list` from the users.
for user in users {
user.visit_pre_mut(|e| {
if let MirRelationExpr::Filter { input, predicates } = e {
if let MirRelationExpr::Get { id: get_id, .. } = **input {
if get_id == Id::Local(*id) {
predicates.retain(|p| !list.contains(p));
}
}
}
});
}
// Apply the predicates in `list` to value. Canonicalize
// `list` so that plans are always deterministic.
let mut list = list.into_iter().collect::<Vec<_>>();
mz_expr::canonicalize::canonicalize_predicates(
&mut list,
&value.typ().column_types,
);
*value = value.take_dangerous().filter(list);
}
}
}
/// Returns `(<predicates to retain>, <predicates to push at each input>)`.
pub fn push_filters_through_join(
input_mapper: &JoinInputMapper,
equivalences: &Vec<Vec<MirScalarExpr>>,
mut predicates: Vec<MirScalarExpr>,
) -> (Vec<MirScalarExpr>, Vec<Vec<MirScalarExpr>>) {
let mut push_downs = vec![Vec::new(); input_mapper.total_inputs()];
let mut retain = Vec::new();
for predicate in predicates.drain(..) {
// Track if the predicate has been pushed to at least one input.
let mut pushed = false;
// For each input, try and see if the join
// equivalences allow the predicate to be rewritten
// in terms of only columns from that input.
for (index, push_down) in push_downs.iter_mut().enumerate() {
#[allow(deprecated)] // TODO: use `might_error` if possible.
if predicate.is_literal_err() || predicate.contains_error_if_null() {
// Do nothing. We don't push down literal errors,
// as we can't know the join will be non-empty.
//
// We also don't want to push anything that involves `error_if_null`. This is
// for the same reason why in theory we shouldn't really push anything that can
// error, assuming that we want to preserve error semantics. (Because we would
// create a spurious error if some other Join input ends up empty.) We can't fix
// this problem in general (as we can't just not push anything that might
// error), but we decided to fix the specific problem instance involving
// `error_if_null`, because it was very painful:
// <https://github.com/MaterializeInc/database-issues/issues/6258>
} else {
let mut localized = predicate.clone();
if input_mapper.try_localize_to_input_with_bound_expr(
&mut localized,
index,
equivalences,
) {
push_down.push(localized);
pushed = true;
} else if let Some(consequence) = input_mapper
// (`consequence_for_input` assumes that
// `try_localize_to_input_with_bound_expr` has already
// been called on `localized`.)
.consequence_for_input(&localized, index)
{
push_down.push(consequence);
// We don't set `pushed` here! We want to retain the
// predicate, because we only pushed a consequence of
// it, but not the full predicate.
}
}
}
if !pushed {
retain.push(predicate);
}
}
(retain, push_downs)
}
/// Computes "safe" predicates to push through a Map.
///
/// In the case of a Filter { Map {...} }, we can always push down the Filter
/// by inlining expressions from the Map. We don't want to do this in general,
/// however, since general inlining can result in exponential blowup in the size
/// of expressions, so we only do this in the case where the size after inlining
/// is below a certain limit.
///
/// Returns the predicates that can be pushed down, followed by ones that cannot.
pub fn push_filters_through_map(
map_exprs: &Vec<MirScalarExpr>,
predicates: &mut Vec<MirScalarExpr>,
input_arity: usize,
all_errors: bool,
) -> Result<(Vec<MirScalarExpr>, Vec<MirScalarExpr>), TransformError> {
let mut pushdown = Vec::new();
let mut retained = Vec::new();
for predicate in predicates.drain(..) {
// We don't push down literal errors, unless all predicates are.
if !predicate.is_literal_err() || all_errors {
// Consider inlining Map expressions.
if let Some(cleaned) =
Self::inline_if_not_too_big(&predicate, input_arity, map_exprs)?
{
pushdown.push(cleaned);
} else {
retained.push(predicate);
}
} else {
retained.push(predicate);
}
}
Ok((retained, pushdown))
}
/// This fn should be called with a Filter `expr` that is after a Map. `input_arity` is the
/// arity of the input of the Map. This fn eliminates such column refs in `expr` that refer not
/// to a column in the input of the Map, but to a column that is created by the Map. It does
/// this by transitively inlining Map expressions until no such expression remains that points
/// to a Map expression. The return value is the cleaned up expression. The fn bails out with a
/// None if the resulting expression would be made too big by the inlinings.
///
/// OOO: (Optimizer Optimization Opportunity) This function might do work proportional to the
/// total size of the Map expressions. We call this function for each predicate above the Map,
/// which will be kind of quadratic, i.e., if there are many predicates and a big Map, then this
/// will be slow. We could instead pass a vector of Map expressions and call this fn only once.
/// The only downside would be that then the inlining limit being hit in the middle part of this
/// function would prevent us from inlining any predicates, even ones that wouldn't hit the
/// inlining limit if considered on their own.
fn inline_if_not_too_big(
expr: &MirScalarExpr,
input_arity: usize,
map_exprs: &Vec<MirScalarExpr>,
) -> Result<Option<MirScalarExpr>, RecursionLimitError> {
let size_limit = 1000;
// Transitively determine the support of `expr` produced by `map_exprs`
// that needs to be inlined.
let cols_to_inline = {
let mut support = BTreeSet::new();
// Seed with `map_exprs` support in `expr`.
expr.visit_pre(|e| {
if let MirScalarExpr::Column(c) = e {
if *c >= input_arity {
support.insert(*c);
}
}
});
// Compute transitive closure of supports in `map_exprs`.
let mut workset = support.iter().cloned().collect::<Vec<_>>();
let mut buffer = vec![];
while !workset.is_empty() {
// Swap the (empty) `drained` buffer with the `workset`.
std::mem::swap(&mut workset, &mut buffer);
// Drain the `buffer` and update `support` and `workset`.
for c in buffer.drain(..) {
map_exprs[c - input_arity].visit_pre(|e| {
if let MirScalarExpr::Column(c) = e {
if *c >= input_arity {
if support.insert(*c) {
workset.push(*c);
}
}
}
});
}
}
support
};
let mut inlined = BTreeMap::<usize, (MirScalarExpr, usize)>::new();
// Populate the memo table in ascending column order (which respects the
// dependency order of `map_exprs` references). Break early if memoization
// fails for one of the columns in `cols_to_inline`.
for c in cols_to_inline.iter() {
let mut new_expr = map_exprs[*c - input_arity].clone();
let mut new_size = 0;
new_expr.visit_mut_post(&mut |expr| {
new_size += 1;
if let MirScalarExpr::Column(c) = expr {
if *c >= input_arity && new_size <= size_limit {
// (inlined[c] is safe, because we proceed in column order, and we break out
// of the loop when we stop inserting into memo.)
let (m_expr, m_size): &(MirScalarExpr, _) = &inlined[c];
*expr = m_expr.clone();
new_size += m_size - 1; // Adjust for the +1 above.
}
}
})?;
if new_size <= size_limit {
inlined.insert(*c, (new_expr, new_size));
} else {
break;
}
}
// Try to resolve expr against the memo table.
if inlined.len() < cols_to_inline.len() {
Ok(None) // We couldn't memoize all map expressions within the given limit.
} else {
let mut new_expr = expr.clone();
let mut new_size = 0;
new_expr.visit_mut_post(&mut |expr| {
new_size += 1;
if let MirScalarExpr::Column(c) = expr {
if *c >= input_arity && new_size <= size_limit {
// (inlined[c] is safe because of the outer if condition.)
let (m_expr, m_size): &(MirScalarExpr, _) = &inlined[c];
*expr = m_expr.clone();
new_size += m_size - 1; // Adjust for the +1 above.
}
}
})?;
soft_assert_eq_no_log!(new_size, new_expr.size());
if new_size <= size_limit {
Ok(Some(new_expr)) // We managed to stay within the limit.
} else {
Ok(None) // Limit exceeded.
}
}
}
// fn inline_if_not_too_big(
// expr: &MirScalarExpr,
// input_arity: usize,
// map_exprs: &Vec<MirScalarExpr>,
// ) -> Result<Option<MirScalarExpr>, RecursionLimitError> {
// let size_limit = 1000;
// // Memoize cleaned up versions of Map expressions. (Not necessarily all the Map expressions
// // will be involved.)
// let mut memo: BTreeMap<MirScalarExpr, MirScalarExpr> = BTreeMap::new();
// fn rec(
// expr: &MirScalarExpr,
// input_arity: usize,
// map_exprs: &Vec<MirScalarExpr>,
// memo: &mut BTreeMap<MirScalarExpr, MirScalarExpr>,
// size_limit: usize,
// ) -> Result<Option<MirScalarExpr>, RecursionLimitError> {
// // (We can't use Entry::or_insert_with, because the closure would need to be fallible.
// // We also can't manually match on the result of memo.entry, because that holds a
// // borrow of memo, but we need to pass memo to the recursive call in the middle.)
// match memo.get(expr) {
// Some(memoized_result) => Ok(Some(memoized_result.clone())),
// None => {
// let mut expr_size = expr.size()?;
// let mut cleaned_expr = expr.clone();
// let mut bail = false;
// cleaned_expr.try_visit_mut_post(&mut |expr| {
// Ok(if !bail {
// match expr {
// MirScalarExpr::Column(col) => {
// if *col >= input_arity {
// let to_inline = rec(
// &map_exprs[*col - input_arity],
// input_arity,
// map_exprs,
// memo,
// size_limit,
// )?;
// if let Some(to_inline) = to_inline {
// // The `-1` is because the expression that we are
// // replacing has a size of 1.
// expr_size += to_inline.size()? - 1;
// *expr = to_inline;
// if expr_size > size_limit {
// bail = true;
// }
// } else {
// bail = true;
// }
// }
// }
// _ => (),
// }
// })
// })?;
// soft_assert_eq!(cleaned_expr.size()?, expr_size);
// if !bail {
// memo.insert(expr.clone(), cleaned_expr.clone());
// Ok(Some(cleaned_expr))
// } else {
// Ok(None)
// }
// }
// }
// }
// rec(expr, input_arity, map_exprs, &mut memo, size_limit)
// }
/// Computes "safe" predicate to push through a FlatMap.
///
/// In the case of a Filter { FlatMap {...} }, we want to push through all predicates
/// that (1) are not literal errors and (2) have support exclusively in the columns
/// provided by the FlatMap input.
///
/// Returns the predicates that can be pushed down, followed by ones that cannot.
fn push_filters_through_flat_map(
predicates: &mut Vec<MirScalarExpr>,
input_arity: usize,
) -> (Vec<MirScalarExpr>, Vec<MirScalarExpr>) {
let mut pushdown = Vec::new();
let mut retained = Vec::new();
for predicate in predicates.drain(..) {
// First, check if we can push this predicate down. We can do so if and only if:
// (1) the predicate is not a literal error, and
// (2) each column it references is from the input.
if (!predicate.is_literal_err()) && predicate.support().iter().all(|c| *c < input_arity)
{
pushdown.push(predicate);
} else {
retained.push(predicate);
}
}
(retained, pushdown)
}
/// If `s` is of the form
/// `(isnull(expr1) && isnull(expr2)) || (expr1 = expr2)`, or
/// `(decompose_is_null(expr1) && decompose_is_null(expr2)) || (expr1 = expr2)`,
/// extract `expr1` and `expr2`.
fn extract_equal_or_both_null(
s: &mut MirScalarExpr,
column_types: &[ColumnType],
) -> Option<(MirScalarExpr, MirScalarExpr)> {
if let MirScalarExpr::CallVariadic {
func: VariadicFunc::Or,
exprs,
} = s
{
if let &[ref or_lhs, ref or_rhs] = &**exprs {
// Check both orders of operands of the OR
return Self::extract_equal_or_both_null_inner(or_lhs, or_rhs, column_types)
.or_else(|| {
Self::extract_equal_or_both_null_inner(or_rhs, or_lhs, column_types)
});
}
}
None
}
fn extract_equal_or_both_null_inner(
or_arg1: &MirScalarExpr,
or_arg2: &MirScalarExpr,
column_types: &[ColumnType],
) -> Option<(MirScalarExpr, MirScalarExpr)> {
use mz_expr::BinaryFunc;
if let MirScalarExpr::CallBinary {
func: BinaryFunc::Eq,
expr1: eq_lhs,
expr2: eq_rhs,
} = &or_arg2
{
let isnull1 = eq_lhs.clone().call_is_null();
let isnull2 = eq_rhs.clone().call_is_null();
let both_null = MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs: vec![isnull1, isnull2],
};
if Self::extract_reduced_conjunction_terms(both_null, column_types)
== Self::extract_reduced_conjunction_terms(or_arg1.clone(), column_types)
{
return Some(((**eq_lhs).clone(), (**eq_rhs).clone()));
}
}
None
}
/// Reduces the given expression and returns its AND-ed terms.
fn extract_reduced_conjunction_terms(
mut s: MirScalarExpr,
column_types: &[ColumnType],
) -> Vec<MirScalarExpr> {
s.reduce(column_types);
if let MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs,
} = s
{
exprs
} else {
vec![s]
}
}
}