timely/progress/
reachability.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
//! Manages pointstamp reachability within a timely dataflow graph.
//!
//! Timely dataflow is concerned with understanding and communicating the potential
//! for capabilities to reach nodes in a directed graph, by following paths through
//! the graph (along edges and through nodes). This module contains one abstraction
//! for managing this information.
//!
//! # Examples
//!
//! ```rust
//! use timely::progress::{Location, Port};
//! use timely::progress::frontier::Antichain;
//! use timely::progress::{Source, Target};
//! use timely::progress::reachability::{Builder, Tracker};
//!
//! // allocate a new empty topology builder.
//! let mut builder = Builder::<usize>::new();
//!
//! // Each node with one input connected to one output.
//! builder.add_node(0, 1, 1, vec![vec![Antichain::from_elem(0)]]);
//! builder.add_node(1, 1, 1, vec![vec![Antichain::from_elem(0)]]);
//! builder.add_node(2, 1, 1, vec![vec![Antichain::from_elem(1)]]);
//!
//! // Connect nodes in sequence, looping around to the first from the last.
//! builder.add_edge(Source::new(0, 0), Target::new(1, 0));
//! builder.add_edge(Source::new(1, 0), Target::new(2, 0));
//! builder.add_edge(Source::new(2, 0), Target::new(0, 0));
//!
//! // Construct a reachability tracker.
//! let (mut tracker, _) = builder.build(None);
//!
//! // Introduce a pointstamp at the output of the first node.
//! tracker.update_source(Source::new(0, 0), 17, 1);
//!
//! // Propagate changes; until this call updates are simply buffered.
//! tracker.propagate_all();
//!
//! let mut results =
//! tracker
//!     .pushed()
//!     .drain()
//!     .filter(|((location, time), delta)| location.is_target())
//!     .collect::<Vec<_>>();
//!
//! results.sort();
//!
//! println!("{:?}", results);
//!
//! assert_eq!(results.len(), 3);
//! assert_eq!(results[0], ((Location::new_target(0, 0), 18), 1));
//! assert_eq!(results[1], ((Location::new_target(1, 0), 17), 1));
//! assert_eq!(results[2], ((Location::new_target(2, 0), 17), 1));
//!
//! // Introduce a pointstamp at the output of the first node.
//! tracker.update_source(Source::new(0, 0), 17, -1);
//!
//! // Propagate changes; until this call updates are simply buffered.
//! tracker.propagate_all();
//!
//! let mut results =
//! tracker
//!     .pushed()
//!     .drain()
//!     .filter(|((location, time), delta)| location.is_target())
//!     .collect::<Vec<_>>();
//!
//! results.sort();
//!
//! assert_eq!(results.len(), 3);
//! assert_eq!(results[0], ((Location::new_target(0, 0), 18), -1));
//! assert_eq!(results[1], ((Location::new_target(1, 0), 17), -1));
//! assert_eq!(results[2], ((Location::new_target(2, 0), 17), -1));
//! ```

use std::collections::{BinaryHeap, HashMap, VecDeque};
use std::cmp::Reverse;

use crate::progress::Timestamp;
use crate::progress::{Source, Target};
use crate::progress::ChangeBatch;
use crate::progress::{Location, Port};

use crate::progress::frontier::{Antichain, MutableAntichain};
use crate::progress::timestamp::PathSummary;


/// A topology builder, which can summarize reachability along paths.
///
/// A `Builder` takes descriptions of the nodes and edges in a graph, and compiles
/// a static summary of the minimal actions a timestamp must endure going from any
/// input or output port to a destination input port.
///
/// A graph is provides as (i) several indexed nodes, each with some number of input
/// and output ports, and each with a summary of the internal paths connecting each
/// input to each output, and (ii) a set of edges connecting output ports to input
/// ports. Edges do not adjust timestamps; only nodes do this.
///
/// The resulting summary describes, for each origin port in the graph and destination
/// input port, a set of incomparable path summaries, each describing what happens to
/// a timestamp as it moves along the path. There may be multiple summaries for each
/// part of origin and destination due to the fact that the actions on timestamps may
/// not be totally ordered (e.g., "increment the timestamp" and "take the maximum of
/// the timestamp and seven").
///
/// # Examples
///
/// ```rust
/// use timely::progress::frontier::Antichain;
/// use timely::progress::{Source, Target};
/// use timely::progress::reachability::Builder;
///
/// // allocate a new empty topology builder.
/// let mut builder = Builder::<usize>::new();
///
/// // Each node with one input connected to one output.
/// builder.add_node(0, 1, 1, vec![vec![Antichain::from_elem(0)]]);
/// builder.add_node(1, 1, 1, vec![vec![Antichain::from_elem(0)]]);
/// builder.add_node(2, 1, 1, vec![vec![Antichain::from_elem(1)]]);
///
/// // Connect nodes in sequence, looping around to the first from the last.
/// builder.add_edge(Source::new(0, 0), Target::new(1, 0));
/// builder.add_edge(Source::new(1, 0), Target::new(2, 0));
/// builder.add_edge(Source::new(2, 0), Target::new(0, 0));
///
/// // Summarize reachability information.
/// let (tracker, _) = builder.build(None);
/// ```
#[derive(Clone, Debug)]
pub struct Builder<T: Timestamp> {
    /// Internal connections within hosted operators.
    ///
    /// Indexed by operator index, then input port, then output port. This is the
    /// same format returned by `get_internal_summary`, as if we simply appended
    /// all of the summaries for the hosted nodes.
    pub nodes: Vec<Vec<Vec<Antichain<T::Summary>>>>,
    /// Direct connections from sources to targets.
    ///
    /// Edges do not affect timestamps, so we only need to know the connectivity.
    /// Indexed by operator index then output port.
    pub edges: Vec<Vec<Vec<Target>>>,
    /// Numbers of inputs and outputs for each node.
    pub shape: Vec<(usize, usize)>,
}

impl<T: Timestamp> Builder<T> {

    /// Create a new empty topology builder.
    pub fn new() -> Self {
        Builder {
            nodes: Vec::new(),
            edges: Vec::new(),
            shape: Vec::new(),
        }
    }

    /// Add links internal to operators.
    ///
    /// This method overwrites any existing summary, instead of anything more sophisticated.
    pub fn add_node(&mut self, index: usize, inputs: usize, outputs: usize, summary: Vec<Vec<Antichain<T::Summary>>>) {

        // Assert that all summaries exist.
        debug_assert_eq!(inputs, summary.len());
        for x in summary.iter() { debug_assert_eq!(outputs, x.len()); }

        while self.nodes.len() <= index {
            self.nodes.push(Vec::new());
            self.edges.push(Vec::new());
            self.shape.push((0, 0));
        }

        self.nodes[index] = summary;
        if self.edges[index].len() != outputs {
            self.edges[index] = vec![Vec::new(); outputs];
        }
        self.shape[index] = (inputs, outputs);
    }

    /// Add links between operators.
    ///
    /// This method does not check that the associated nodes and ports exist. References to
    /// missing nodes or ports are discovered in `build`.
    pub fn add_edge(&mut self, source: Source, target: Target) {

        // Assert that the edge is between existing ports.
        debug_assert!(source.port < self.shape[source.node].1);
        debug_assert!(target.port < self.shape[target.node].0);

        self.edges[source.node][source.port].push(target);
    }

    /// Compiles the current nodes and edges into immutable path summaries.
    ///
    /// This method has the opportunity to perform some error checking that the path summaries
    /// are valid, including references to undefined nodes and ports, as well as self-loops with
    /// default summaries (a serious liveness issue).
    ///
    /// The optional logger information is baked into the resulting tracker.
    pub fn build(self, logger: Option<logging::TrackerLogger>) -> (Tracker<T>, Vec<Vec<Antichain<T::Summary>>>) {

        if !self.is_acyclic() {
            println!("Cycle detected without timestamp increment");
            println!("{:?}", self);
        }

        Tracker::allocate_from(self, logger)
    }

    /// Tests whether the graph a cycle of default path summaries.
    ///
    /// Graphs containing cycles of default path summaries will most likely
    /// not work well with progress tracking, as a timestamp can result in
    /// itself. Such computations can still *run*, but one should not block
    /// on frontier information before yielding results, as you many never
    /// unblock.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use timely::progress::frontier::Antichain;
    /// use timely::progress::{Source, Target};
    /// use timely::progress::reachability::Builder;
    ///
    /// // allocate a new empty topology builder.
    /// let mut builder = Builder::<usize>::new();
    ///
    /// // Each node with one input connected to one output.
    /// builder.add_node(0, 1, 1, vec![vec![Antichain::from_elem(0)]]);
    /// builder.add_node(1, 1, 1, vec![vec![Antichain::from_elem(0)]]);
    /// builder.add_node(2, 1, 1, vec![vec![Antichain::from_elem(0)]]);
    ///
    /// // Connect nodes in sequence, looping around to the first from the last.
    /// builder.add_edge(Source::new(0, 0), Target::new(1, 0));
    /// builder.add_edge(Source::new(1, 0), Target::new(2, 0));
    ///
    /// assert!(builder.is_acyclic());
    ///
    /// builder.add_edge(Source::new(2, 0), Target::new(0, 0));
    ///
    /// assert!(!builder.is_acyclic());
    /// ```
    ///
    /// This test exists because it is possible to describe dataflow graphs that
    /// do not contain non-incrementing cycles, but without feedback nodes that
    /// strictly increment timestamps. For example,
    ///
    /// ```rust
    /// use timely::progress::frontier::Antichain;
    /// use timely::progress::{Source, Target};
    /// use timely::progress::reachability::Builder;
    ///
    /// // allocate a new empty topology builder.
    /// let mut builder = Builder::<usize>::new();
    ///
    /// // Two inputs and outputs, only one of which advances.
    /// builder.add_node(0, 2, 2, vec![
    ///     vec![Antichain::from_elem(0),Antichain::new(),],
    ///     vec![Antichain::new(),Antichain::from_elem(1),],
    /// ]);
    ///
    /// // Connect each output to the opposite input.
    /// builder.add_edge(Source::new(0, 0), Target::new(0, 1));
    /// builder.add_edge(Source::new(0, 1), Target::new(0, 0));
    ///
    /// assert!(builder.is_acyclic());
    /// ```
    pub fn is_acyclic(&self) -> bool {

        let locations = self.shape.iter().map(|(targets, sources)| targets + sources).sum();
        let mut in_degree = HashMap::with_capacity(locations);

        // Load edges as default summaries.
        for (index, ports) in self.edges.iter().enumerate() {
            for (output, targets) in ports.iter().enumerate() {
                let source = Location::new_source(index, output);
                in_degree.entry(source).or_insert(0);
                for &target in targets.iter() {
                    let target = Location::from(target);
                    *in_degree.entry(target).or_insert(0) += 1;
                }
            }
        }

        // Load default intra-node summaries.
        for (index, summary) in self.nodes.iter().enumerate() {
            for (input, outputs) in summary.iter().enumerate() {
                let target = Location::new_target(index, input);
                in_degree.entry(target).or_insert(0);
                for (output, summaries) in outputs.iter().enumerate() {
                    let source = Location::new_source(index, output);
                    for summary in summaries.elements().iter() {
                        if summary == &Default::default() {
                            *in_degree.entry(source).or_insert(0) += 1;
                        }
                    }
                }
            }
        }

        // A worklist of nodes that cannot be reached from the whole graph.
        // Initially this list contains observed locations with no incoming
        // edges, but as the algorithm develops we add to it any locations
        // that can only be reached by nodes that have been on this list.
        let mut worklist = Vec::with_capacity(in_degree.len());
        for (key, val) in in_degree.iter() {
            if *val == 0 {
                worklist.push(*key);
            }
        }
        in_degree.retain(|_key, val| val != &0);

        // Repeatedly remove nodes and update adjacent in-edges.
        while let Some(Location { node, port }) = worklist.pop() {
            match port {
                Port::Source(port) => {
                    for target in self.edges[node][port].iter() {
                        let target = Location::from(*target);
                        *in_degree.get_mut(&target).unwrap() -= 1;
                        if in_degree[&target] == 0 {
                            in_degree.remove(&target);
                            worklist.push(target);
                        }
                    }
                },
                Port::Target(port) => {
                    for (output, summaries) in self.nodes[node][port].iter().enumerate() {
                        let source = Location::new_source(node, output);
                        for summary in summaries.elements().iter() {
                            if summary == &Default::default() {
                                *in_degree.get_mut(&source).unwrap() -= 1;
                                if in_degree[&source] == 0 {
                                    in_degree.remove(&source);
                                    worklist.push(source);
                                }
                            }
                        }
                    }
                },
            }
        }

        // Acyclic graphs should reduce to empty collections.
        in_degree.is_empty()
    }
}

impl<T: Timestamp> Default for Builder<T> {
    fn default() -> Self {
        Self::new()
    }
}

/// An interactive tracker of propagated reachability information.
///
/// A `Tracker` tracks, for a fixed graph topology, the implications of
/// pointstamp changes at various node input and output ports. These changes may
/// alter the potential pointstamps that could arrive at downstream input ports.
pub struct Tracker<T:Timestamp> {

    /// Internal connections within hosted operators.
    ///
    /// Indexed by operator index, then input port, then output port. This is the
    /// same format returned by `get_internal_summary`, as if we simply appended
    /// all of the summaries for the hosted nodes.
    nodes: Vec<Vec<Vec<Antichain<T::Summary>>>>,
    /// Direct connections from sources to targets.
    ///
    /// Edges do not affect timestamps, so we only need to know the connectivity.
    /// Indexed by operator index then output port.
    edges: Vec<Vec<Vec<Target>>>,

    // TODO: All of the sizes of these allocations are static (except internal to `ChangeBatch`).
    //       It seems we should be able to flatten most of these so that there are a few allocations
    //       independent of the numbers of nodes and ports and such.
    //
    // TODO: We could also change the internal representation to be a graph of targets, using usize
    //       identifiers for each, so that internally we needn't use multiple levels of indirection.
    //       This may make more sense once we commit to topologically ordering the targets.

    /// Each source and target has a mutable antichain to ensure that we track their discrete frontiers,
    /// rather than their multiplicities. We separately track the frontiers resulting from propagated
    /// frontiers, to protect them from transient negativity in inbound target updates.
    per_operator: Vec<PerOperator<T>>,

    /// Source and target changes are buffered, which allows us to delay processing until propagation,
    /// and so consolidate updates, but to leap directly to those frontiers that may have changed.
    target_changes: ChangeBatch<(Target, T)>,
    source_changes: ChangeBatch<(Source, T)>,

    /// Worklist of updates to perform, ordered by increasing timestamp and target.
    worklist: BinaryHeap<Reverse<(T, Location, i64)>>,

    /// Buffer of consequent changes.
    pushed_changes: ChangeBatch<(Location, T)>,

    /// Compiled summaries from each internal location (not scope inputs) to each scope output.
    output_changes: Vec<ChangeBatch<T>>,

    /// A non-negative sum of post-filtration input changes.
    ///
    /// This sum should be zero exactly when the accumulated input changes are zero,
    /// indicating that the progress tracker is currently tracking nothing. It should
    /// always be exactly equal to the sum across all operators of the frontier sizes
    /// of the target and source `pointstamps` member.
    total_counts: i64,

    /// Optionally, a unique logging identifier and logging for tracking events.
    logger: Option<logging::TrackerLogger>,
}

/// Target and source information for each operator.
pub struct PerOperator<T: Timestamp> {
    /// Port information for each target.
    pub targets: Vec<PortInformation<T>>,
    /// Port information for each source.
    pub sources: Vec<PortInformation<T>>,
}

impl<T: Timestamp> PerOperator<T> {
    /// A new PerOperator bundle from numbers of input and output ports.
    pub fn new(inputs: usize, outputs: usize) -> Self {
        PerOperator {
            targets: vec![PortInformation::new(); inputs],
            sources: vec![PortInformation::new(); outputs],
        }
    }
}

/// Per-port progress-tracking information.
#[derive(Clone)]
pub struct PortInformation<T: Timestamp> {
    /// Current counts of active pointstamps.
    pub pointstamps: MutableAntichain<T>,
    /// Current implications of active pointstamps across the dataflow.
    pub implications: MutableAntichain<T>,
    /// Path summaries to each of the scope outputs.
    pub output_summaries: Vec<Antichain<T::Summary>>,
}

impl<T: Timestamp> PortInformation<T> {
    /// Creates empty port information.
    pub fn new() -> Self {
        PortInformation {
            pointstamps: MutableAntichain::new(),
            implications: MutableAntichain::new(),
            output_summaries: Vec::new(),
        }
    }

    /// Returns `true` if updates at this pointstamp uniquely block progress.
    ///
    /// This method returns `true` if the currently maintained pointstamp
    /// counts are such that zeroing out outstanding updates at *this*
    /// pointstamp would change the frontiers at this operator. When the
    /// method returns `false` it means that, temporarily at least, there
    /// are outstanding pointstamp updates that are strictly less than
    /// this pointstamp.
    #[inline]
    pub fn is_global(&self, time: &T) -> bool {
        let dominated = self.implications.frontier().iter().any(|t| t.less_than(time));
        let redundant = self.implications.count_for(time) > 1;
        !dominated && !redundant
    }
}

impl<T: Timestamp> Default for PortInformation<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T:Timestamp> Tracker<T> {

    /// Updates the count for a time at a location.
    #[inline]
    pub fn update(&mut self, location: Location, time: T, value: i64) {
        match location.port {
            Port::Target(port) => self.update_target(Target::new(location.node, port), time, value),
            Port::Source(port) => self.update_source(Source::new(location.node, port), time, value),
        };
    }

    /// Updates the count for a time at a target (operator input, scope output).
    #[inline]
    pub fn update_target(&mut self, target: Target, time: T, value: i64) {
        self.target_changes.update((target, time), value);
    }
    /// Updates the count for a time at a source (operator output, scope input).
    #[inline]
    pub fn update_source(&mut self, source: Source, time: T, value: i64) {
        self.source_changes.update((source, time), value);
    }

    /// Indicates if any pointstamps have positive count.
    pub fn tracking_anything(&mut self) -> bool {
        !self.source_changes.is_empty() ||
        !self.target_changes.is_empty() ||
        self.total_counts > 0
    }

    /// Allocate a new `Tracker` using the shape from `summaries`.
    ///
    /// The result is a pair of tracker, and the summaries from each input port to each
    /// output port.
    ///
    /// If the optional logger is provided, it will be used to log various tracker events.
    pub fn allocate_from(builder: Builder<T>, logger: Option<logging::TrackerLogger>) -> (Self, Vec<Vec<Antichain<T::Summary>>>) {

        // Allocate buffer space for each input and input port.
        let mut per_operator =
        builder
            .shape
            .iter()
            .map(|&(inputs, outputs)| PerOperator::new(inputs, outputs))
            .collect::<Vec<_>>();

        // Summary of scope inputs to scope outputs.
        let mut builder_summary = vec![vec![]; builder.shape[0].1];

        // Compile summaries from each location to each scope output.
        let output_summaries = summarize_outputs::<T>(&builder.nodes, &builder.edges);
        for (location, summaries) in output_summaries.into_iter() {
            // Summaries from scope inputs are useful in summarizing the scope.
            if location.node == 0 {
                if let Port::Source(port) = location.port {
                    builder_summary[port] = summaries;
                }
                else {
                    // Ignore (ideally trivial) output to output summaries.
                }
            }
            // Summaries from internal nodes are important for projecting capabilities.
            else {
                match location.port {
                    Port::Target(port) => {
                        per_operator[location.node].targets[port].output_summaries = summaries;
                    },
                    Port::Source(port) => {
                        per_operator[location.node].sources[port].output_summaries = summaries;
                    },
                }
            }
        }

        let scope_outputs = builder.shape[0].0;
        let output_changes = vec![ChangeBatch::new(); scope_outputs];

        let tracker =
        Tracker {
            nodes: builder.nodes,
            edges: builder.edges,
            per_operator,
            target_changes: ChangeBatch::new(),
            source_changes: ChangeBatch::new(),
            worklist: BinaryHeap::new(),
            pushed_changes: ChangeBatch::new(),
            output_changes,
            total_counts: 0,
            logger,
        };

        (tracker, builder_summary)
    }

    /// Propagates all pending updates.
    ///
    /// The method drains `self.input_changes` and circulates their implications
    /// until we cease deriving new implications.
    pub fn propagate_all(&mut self) {

        // Step 0: If logging is enabled, construct and log inbound changes.
        if let Some(logger) = &mut self.logger {

            let target_changes =
            self.target_changes
                .iter()
                .map(|((target, time), diff)| (target.node, target.port, time.clone(), *diff))
                .collect::<Vec<_>>();

            if !target_changes.is_empty() {
                logger.log_target_updates(Box::new(target_changes));
            }

            let source_changes =
            self.source_changes
                .iter()
                .map(|((source, time), diff)| (source.node, source.port, time.clone(), *diff))
                .collect::<Vec<_>>();

            if !source_changes.is_empty() {
                logger.log_source_updates(Box::new(source_changes));
            }
        }

        // Step 1: Drain `self.input_changes` and determine actual frontier changes.
        //
        // Not all changes in `self.input_changes` may alter the frontier at a location.
        // By filtering the changes through `self.pointstamps` we react only to discrete
        // changes in the frontier, rather than changes in the pointstamp counts that
        // witness that frontier.
        for ((target, time), diff) in self.target_changes.drain() {

            let operator = &mut self.per_operator[target.node].targets[target.port];
            let changes = operator.pointstamps.update_iter(Some((time, diff)));

            for (time, diff) in changes {
                self.total_counts += diff;
                for (output, summaries) in operator.output_summaries.iter().enumerate() {
                    let output_changes = &mut self.output_changes[output];
                    summaries
                        .elements()
                        .iter()
                        .flat_map(|summary| summary.results_in(&time))
                        .for_each(|out_time| output_changes.update(out_time, diff));
                }
                self.worklist.push(Reverse((time, Location::from(target), diff)));
            }
        }

        for ((source, time), diff) in self.source_changes.drain() {

            let operator = &mut self.per_operator[source.node].sources[source.port];
            let changes = operator.pointstamps.update_iter(Some((time, diff)));

            for (time, diff) in changes {
                self.total_counts += diff;
                for (output, summaries) in operator.output_summaries.iter().enumerate() {
                    let output_changes = &mut self.output_changes[output];
                    summaries
                        .elements()
                        .iter()
                        .flat_map(|summary| summary.results_in(&time))
                        .for_each(|out_time| output_changes.update(out_time, diff));
                }
                self.worklist.push(Reverse((time, Location::from(source), diff)));
            }
        }

        // Step 2: Circulate implications of changes to `self.pointstamps`.
        //
        // TODO: The argument that this always terminates is subtle, and should be made.
        //       The intent is that that by moving forward in layers through `time`, we
        //       will discover zero-change times when we first visit them, as no further
        //       changes can be made to them once we complete them.
        while let Some(Reverse((time, location, mut diff))) = self.worklist.pop() {

            // Drain and accumulate all updates that have the same time and location.
            while self.worklist.peek().map(|x| ((x.0).0 == time) && ((x.0).1 == location)).unwrap_or(false) {
                diff += (self.worklist.pop().unwrap().0).2;
            }

            // Only act if there is a net change, positive or negative.
            if diff != 0 {

                match location.port {
                    // Update to an operator input.
                    // Propagate any changes forward across the operator.
                    Port::Target(port_index) => {

                        let changes =
                        self.per_operator[location.node]
                            .targets[port_index]
                            .implications
                            .update_iter(Some((time, diff)));

                        for (time, diff) in changes {
                            let nodes = &self.nodes[location.node][port_index];
                            for (output_port, summaries) in nodes.iter().enumerate() {
                                let source = Location { node: location.node, port: Port::Source(output_port) };
                                for summary in summaries.elements().iter() {
                                    if let Some(new_time) = summary.results_in(&time) {
                                        self.worklist.push(Reverse((new_time, source, diff)));
                                    }
                                }
                            }
                            self.pushed_changes.update((location, time), diff);
                        }
                    }
                    // Update to an operator output.
                    // Propagate any changes forward along outgoing edges.
                    Port::Source(port_index) => {

                        let changes =
                        self.per_operator[location.node]
                            .sources[port_index]
                            .implications
                            .update_iter(Some((time, diff)));

                        for (time, diff) in changes {
                            for new_target in self.edges[location.node][port_index].iter() {
                                self.worklist.push(Reverse((
                                    time.clone(),
                                    Location::from(*new_target),
                                    diff,
                                )));
                            }
                            self.pushed_changes.update((location, time), diff);
                        }
                    },
                };
            }
        }
    }

    /// Implications of maintained capabilities projected to each output.
    pub fn pushed_output(&mut self) -> &mut [ChangeBatch<T>] {
        &mut self.output_changes[..]
    }

    /// A mutable reference to the pushed results of changes.
    pub fn pushed(&mut self) -> &mut ChangeBatch<(Location, T)> {
        &mut self.pushed_changes
    }

    /// Reveals per-operator frontier state.
    pub fn node_state(&self, index: usize) -> &PerOperator<T> {
        &self.per_operator[index]
    }

    /// Indicates if pointstamp is in the scope-wide frontier.
    ///
    /// Such a pointstamp would, if removed from `self.pointstamps`, cause a change
    /// to `self.implications`, which is what we track for per operator input frontiers.
    /// If the above do not hold, then its removal either 1. shouldn't be possible,
    /// or 2. will not affect the output of `self.implications`.
    pub fn is_global(&self, location: Location, time: &T) -> bool {
        match location.port {
            Port::Target(port) => self.per_operator[location.node].targets[port].is_global(time),
            Port::Source(port) => self.per_operator[location.node].sources[port].is_global(time),
        }
    }
}

/// Determines summaries from locations to scope outputs.
///
/// Specifically, for each location whose node identifier is non-zero, we compile
/// the summaries along which they can reach each output.
///
/// Graph locations may be missing from the output, in which case they have no
/// paths to scope outputs.
fn summarize_outputs<T: Timestamp>(
    nodes: &Vec<Vec<Vec<Antichain<T::Summary>>>>,
    edges: &Vec<Vec<Vec<Target>>>,
    ) -> HashMap<Location, Vec<Antichain<T::Summary>>>
{
    // A reverse edge map, to allow us to walk back up the dataflow graph.
    let mut reverse = HashMap::new();
    for (node, outputs) in edges.iter().enumerate() {
        for (output, targets) in outputs.iter().enumerate() {
            for target in targets.iter() {
                reverse.insert(
                    Location::from(*target),
                    Location { node, port: Port::Source(output) }
                );
            }
        }
    }

    let mut results: HashMap<Location, Vec<Antichain<T::Summary>>> = HashMap::new();
    let mut worklist = VecDeque::<(Location, usize, T::Summary)>::new();

    let outputs =
    edges
        .iter()
        .flat_map(|x| x.iter())
        .flat_map(|x| x.iter())
        .filter(|target| target.node == 0);

    // The scope may have no outputs, in which case we can do no work.
    for output_target in outputs {
        worklist.push_back((Location::from(*output_target), output_target.port, Default::default()));
    }

    // Loop until we stop discovering novel reachability paths.
    while let Some((location, output, summary)) = worklist.pop_front() {

        match location.port {

            // This is an output port of an operator, or a scope input.
            // We want to crawl up the operator, to its inputs.
            Port::Source(output_port) => {

                // Consider each input port of the associated operator.
                for (input_port, summaries) in nodes[location.node].iter().enumerate() {

                    // Determine the current path summaries from the input port.
                    let location = Location { node: location.node, port: Port::Target(input_port) };
                    let antichains = results
                        .entry(location)
                        .and_modify(|antichains| antichains.reserve(output))
                        .or_insert_with(|| Vec::with_capacity(output));

                    while antichains.len() <= output { antichains.push(Antichain::new()); }

                    // Combine each operator-internal summary to the output with `summary`.
                    for operator_summary in summaries[output_port].elements().iter() {
                        if let Some(combined) = operator_summary.followed_by(&summary) {
                            if antichains[output].insert(combined.clone()) {
                                worklist.push_back((location, output, combined));
                            }
                        }
                    }
                }

            },

            // This is an input port of an operator, or a scope output.
            // We want to walk back the edges leading to it.
            Port::Target(_port) => {

                // Each target should have (at most) one source.
                if let Some(&source) = reverse.get(&location) {
                    let antichains = results
                        .entry(source)
                        .and_modify(|antichains| antichains.reserve(output))
                        .or_insert_with(|| Vec::with_capacity(output));

                    while antichains.len() <= output { antichains.push(Antichain::new()); }

                    if antichains[output].insert(summary.clone()) {
                        worklist.push_back((source, output, summary.clone()));
                    }
                }

            },
        }

    }

    results
}

/// Logging types for reachability tracking events.
pub mod logging {
    use std::rc::Rc;
    use crate::logging::{Logger, ProgressEventTimestampVec};

    /// A logger with additional identifying information about the tracker.
    pub struct TrackerLogger {
        path: Rc<[usize]>,
        logger: Logger<TrackerEvent>,
    }

    impl TrackerLogger {
        /// Create a new tracker logger from its fields.
        pub fn new(path: Rc<[usize]>, logger: Logger<TrackerEvent>) -> Self {
            Self { path, logger }
        }

        /// Log source update events with additional identifying information.
        pub fn log_source_updates(&mut self, updates: Box<dyn ProgressEventTimestampVec>) {
            self.logger.log({
                SourceUpdate {
                    tracker_id: self.path.to_vec(),
                    updates,
                }
            })
        }
        /// Log target update events with additional identifying information.
        pub fn log_target_updates(&mut self, updates: Box<dyn ProgressEventTimestampVec>) {
            self.logger.log({
                TargetUpdate {
                    tracker_id: self.path.to_vec(),
                    updates,
                }
            })
        }
    }

    /// Events that the tracker may record.
    pub enum TrackerEvent {
        /// Updates made at a source of data.
        SourceUpdate(SourceUpdate),
        /// Updates made at a target of data.
        TargetUpdate(TargetUpdate),
    }

    /// An update made at a source of data.
    pub struct SourceUpdate {
        /// An identifier for the tracker.
        pub tracker_id: Vec<usize>,
        /// Updates themselves, as `(node, port, time, diff)`.
        pub updates: Box<dyn ProgressEventTimestampVec>,
    }

    /// An update made at a target of data.
    pub struct TargetUpdate {
        /// An identifier for the tracker.
        pub tracker_id: Vec<usize>,
        /// Updates themselves, as `(node, port, time, diff)`.
        pub updates: Box<dyn ProgressEventTimestampVec>,
    }

    impl From<SourceUpdate> for TrackerEvent {
        fn from(v: SourceUpdate) -> TrackerEvent { TrackerEvent::SourceUpdate(v) }
    }

    impl From<TargetUpdate> for TrackerEvent {
        fn from(v: TargetUpdate) -> TrackerEvent { TrackerEvent::TargetUpdate(v) }
    }
}

// The Drop implementation for `Tracker` makes sure that reachability logging is correct for
// prematurely dropped dataflows. At the moment, this is only possible through `drop_dataflow`,
// because in all other cases the tracker stays alive while it has outstanding work, leaving no
// remaining work for this Drop implementation.
impl<T: Timestamp> Drop for Tracker<T> {
    fn drop(&mut self) {
        let logger = if let Some(logger) = &mut self.logger {
            logger
        } else {
            // No cleanup necessary when there is no logger.
            return;
        };

        // Retract pending data that `propagate_all` would normally log.
        for (index, per_operator) in self.per_operator.iter_mut().enumerate() {
            let target_changes = per_operator.targets
                .iter_mut()
                .enumerate()
                .flat_map(|(port, target)| {
                    target.pointstamps
                        .updates()
                        .map(move |(time, diff)| (index, port, time.clone(), -diff))
                })
                .collect::<Vec<_>>();
            if !target_changes.is_empty() {
                logger.log_target_updates(Box::new(target_changes));
            }

            let source_changes = per_operator.sources
                .iter_mut()
                .enumerate()
                .flat_map(|(port, source)| {
                    source.pointstamps
                        .updates()
                        .map(move |(time, diff)| (index, port, time.clone(), -diff))
                })
                .collect::<Vec<_>>();
            if !source_changes.is_empty() {
                logger.log_source_updates(Box::new(source_changes));
            }
        }
    }
}