1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Pushes column removal down through other operators.
//!
//! This action improves the quality of the query by
//! reducing the width of data in the dataflow. It determines the unique
//! columns an expression depends on, and pushes a projection onto only
//! those columns down through child operators.
//!
//! A `MirRelationExpr::Project` node is actually three transformations in one.
//! 1) Projection - removes columns.
//! 2) Permutation - reorders columns.
//! 3) Repetition - duplicates columns.
//!
//! This action handles these three transformations like so:
//! 1) Projections are pushed as far down as possible.
//! 2) Permutations are pushed as far down as is convenient.
//! 3) Repetitions are not pushed down at all.
//!
//! Some comments have been inherited from the `Demand` transform.
//!
//! Note that this transform is one that can operate across views in a dataflow
//! and thus currently exists outside of both the physical and logical
//! optimizers.
use std::collections::{BTreeMap, BTreeSet};
use itertools::zip_eq;
use mz_expr::{Id, JoinInputMapper, MirRelationExpr, MirScalarExpr, RECURSION_LIMIT};
use mz_ore::assert_none;
use mz_ore::stack::{CheckedRecursion, RecursionGuard};
use crate::{TransformCtx, TransformError};
/// Pushes projections down through other operators.
#[derive(Debug)]
pub struct ProjectionPushdown {
recursion_guard: RecursionGuard,
}
impl Default for ProjectionPushdown {
fn default() -> Self {
Self {
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
}
impl CheckedRecursion for ProjectionPushdown {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl crate::Transform for ProjectionPushdown {
fn name(&self) -> &'static str {
"ProjectionPushdown"
}
// This method is only used during unit testing.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "projection_pushdown")
)]
fn actually_perform_transform(
&self,
relation: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), crate::TransformError> {
let result = self.action(
relation,
&(0..relation.arity()).collect(),
&mut BTreeMap::new(),
);
mz_repr::explain::trace_plan(&*relation);
result
}
}
impl ProjectionPushdown {
/// Pushes the `desired_projection` down through `relation`.
///
/// This action transforms `relation` to a `MirRelationExpr` equivalent to
/// `relation.project(desired_projection)`.
///
/// `desired_projection` is expected to consist of unique columns.
pub fn action(
&self,
relation: &mut MirRelationExpr,
desired_projection: &Vec<usize>,
gets: &mut BTreeMap<Id, BTreeSet<usize>>,
) -> Result<(), TransformError> {
self.checked_recur(|_| {
// First, try to push the desired projection down through `relation`.
// In the process `relation` is transformed to a `MirRelationExpr`
// equivalent to `relation.project(actual_projection)`.
// There are three reasons why `actual_projection` may differ from
// `desired_projection`:
// 1) `relation` may need one or more columns that is not contained in
// `desired_projection`.
// 2) `relation` may not be able to accommodate certain permutations.
// For example, `MirRelationExpr::Map` always appends all
// newly-created columns to the end.
// 3) Nothing can be pushed through a leaf node. If `relation` is a leaf
// node, `actual_projection` will always be `(0..relation.arity())`.
// Then, if `actual_projection` and `desired_projection` differ, we will
// add a project around `relation`.
let actual_projection = match relation {
MirRelationExpr::Constant { .. } => (0..relation.arity()).collect(),
MirRelationExpr::Get { id, .. } => {
gets.entry(*id)
.or_insert_with(BTreeSet::new)
.extend(desired_projection.iter().cloned());
(0..relation.arity()).collect()
}
MirRelationExpr::Let { id, value, body } => {
// Let harvests any requirements of get from its body,
// and pushes the sorted union of the requirements at its value.
let id = Id::Local(*id);
let prior = gets.insert(id, BTreeSet::new());
self.action(body, desired_projection, gets)?;
let desired_value_projection = gets.remove(&id).unwrap();
if let Some(prior) = prior {
gets.insert(id, prior);
}
let desired_value_projection =
desired_value_projection.into_iter().collect::<Vec<_>>();
self.action(value, &desired_value_projection, gets)?;
let new_type = value.typ();
self.update_projection_around_get(
body,
&BTreeMap::from_iter(std::iter::once((
id,
(desired_value_projection, new_type),
))),
);
desired_projection.clone()
}
MirRelationExpr::LetRec {
ids,
values,
limits: _,
body,
} => {
// Determine the recursive IDs in this LetRec binding.
let rec_ids = MirRelationExpr::recursive_ids(ids, values);
// Seed the gets map with empty demand for each non-recursive ID.
for id in ids.iter().filter(|id| !rec_ids.contains(id)) {
let prior = gets.insert(Id::Local(*id), BTreeSet::new());
assert_none!(prior);
}
// Descend into the body with the supplied desired_projection.
self.action(body, desired_projection, gets)?;
// Descend into the values in reverse order.
for (id, value) in zip_eq(ids.iter().rev(), values.iter_mut().rev()) {
let desired_projection = if rec_ids.contains(id) {
// For recursive IDs: request all columns.
let columns = 0..value.arity();
columns.collect::<Vec<_>>()
} else {
// For non-recursive IDs: request the gets entry.
let columns = gets.get(&Id::Local(*id)).unwrap();
columns.iter().cloned().collect::<Vec<_>>()
};
self.action(value, &desired_projection, gets)?;
}
// Update projections around gets of non-recursive IDs.
let mut updates = BTreeMap::new();
for (id, value) in zip_eq(ids.iter(), values.iter_mut()) {
// Update the current value.
self.update_projection_around_get(value, &updates);
// If this is a non-recursive ID, add an entry to the
// updates map for subsequent values and the body.
if !rec_ids.contains(id) {
let new_type = value.typ();
let new_proj = {
let columns = gets.remove(&Id::Local(*id)).unwrap();
columns.iter().cloned().collect::<Vec<_>>()
};
updates.insert(Id::Local(*id), (new_proj, new_type));
}
}
// Update the body.
self.update_projection_around_get(body, &updates);
// Remove the entries for all ids (don't restrict only to
// non-recursive IDs here for better hygene).
for id in ids.iter() {
gets.remove(&Id::Local(*id));
}
// Return the desired projection (leads to a no-op in the
// projection handling logic after this match statement).
desired_projection.clone()
}
MirRelationExpr::Join {
inputs,
equivalences,
..
} => {
let input_mapper = JoinInputMapper::new(inputs);
let mut columns_to_pushdown =
desired_projection.iter().cloned().collect::<BTreeSet<_>>();
// Each equivalence class imposes internal demand for columns.
for equivalence in equivalences.iter() {
for expr in equivalence.iter() {
expr.support_into(&mut columns_to_pushdown);
}
}
// Populate child demands from external and internal demands.
let new_columns =
input_mapper.split_column_set_by_input(columns_to_pushdown.iter());
// Recursively indicate the requirements.
for (input, inp_columns) in inputs.iter_mut().zip(new_columns) {
let inp_columns = inp_columns.into_iter().collect::<Vec<_>>();
self.action(input, &inp_columns, gets)?;
}
reverse_permute(
equivalences.iter_mut().flat_map(|e| e.iter_mut()),
columns_to_pushdown.iter(),
);
columns_to_pushdown.into_iter().collect()
}
MirRelationExpr::FlatMap { input, func, exprs } => {
let inner_arity = input.arity();
// A FlatMap which returns zero rows acts like a filter
// so we always need to execute it
let mut columns_to_pushdown =
desired_projection.iter().cloned().collect::<BTreeSet<_>>();
for expr in exprs.iter() {
expr.support_into(&mut columns_to_pushdown);
}
columns_to_pushdown.retain(|c| *c < inner_arity);
reverse_permute(exprs.iter_mut(), columns_to_pushdown.iter());
let columns_to_pushdown = columns_to_pushdown.into_iter().collect::<Vec<_>>();
self.action(input, &columns_to_pushdown, gets)?;
// The actual projection always has the newly-created columns at
// the end.
let mut actual_projection = columns_to_pushdown;
for c in 0..func.output_type().arity() {
actual_projection.push(inner_arity + c);
}
actual_projection
}
MirRelationExpr::Filter { input, predicates } => {
let mut columns_to_pushdown =
desired_projection.iter().cloned().collect::<BTreeSet<_>>();
for predicate in predicates.iter() {
predicate.support_into(&mut columns_to_pushdown);
}
reverse_permute(predicates.iter_mut(), columns_to_pushdown.iter());
let columns_to_pushdown = columns_to_pushdown.into_iter().collect::<Vec<_>>();
self.action(input, &columns_to_pushdown, gets)?;
columns_to_pushdown
}
MirRelationExpr::Project { input, outputs } => {
// Combine `outputs` with `desired_projection`.
*outputs = desired_projection.iter().map(|c| outputs[*c]).collect();
let unique_outputs = outputs.iter().map(|i| *i).collect::<BTreeSet<_>>();
if outputs.len() == unique_outputs.len() {
// Push down the project as is.
self.action(input, outputs, gets)?;
*relation = input.take_dangerous();
} else {
// Push down only the unique elems in `outputs`.
let columns_to_pushdown = unique_outputs.into_iter().collect::<Vec<_>>();
reverse_permute_columns(outputs.iter_mut(), columns_to_pushdown.iter());
self.action(input, &columns_to_pushdown, gets)?;
}
desired_projection.clone()
}
MirRelationExpr::Map { input, scalars } => {
let arity = input.arity();
// contains columns whose supports have yet to be explored
let mut actual_projection =
desired_projection.iter().cloned().collect::<BTreeSet<_>>();
for (i, scalar) in scalars.iter().enumerate().rev() {
if actual_projection.contains(&(i + arity)) {
scalar.support_into(&mut actual_projection);
}
}
*scalars = (0..scalars.len())
.filter_map(|i| {
if actual_projection.contains(&(i + arity)) {
Some(scalars[i].clone())
} else {
None
}
})
.collect::<Vec<_>>();
reverse_permute(scalars.iter_mut(), actual_projection.iter());
self.action(
input,
&actual_projection
.iter()
.filter(|c| **c < arity)
.map(|c| *c)
.collect(),
gets,
)?;
actual_projection.into_iter().collect()
}
MirRelationExpr::Reduce {
input,
group_key,
aggregates,
monotonic: _,
expected_group_size: _,
} => {
let mut columns_to_pushdown = BTreeSet::new();
// Group keys determine aggregation granularity and are
// each crucial in determining aggregates and even the
// multiplicities of other keys.
for k in group_key.iter() {
k.support_into(&mut columns_to_pushdown)
}
for index in (0..aggregates.len()).rev() {
if !desired_projection.contains(&(group_key.len() + index)) {
aggregates.remove(index);
} else {
// No obvious requirements on aggregate columns.
// A "non-empty" requirement, I guess?
aggregates[index]
.expr
.support_into(&mut columns_to_pushdown)
}
}
reverse_permute(
itertools::chain!(
group_key.iter_mut(),
aggregates.iter_mut().map(|a| &mut a.expr)
),
columns_to_pushdown.iter(),
);
self.action(
input,
&columns_to_pushdown.into_iter().collect::<Vec<_>>(),
gets,
)?;
let mut actual_projection =
desired_projection.iter().cloned().collect::<BTreeSet<_>>();
actual_projection.extend(0..group_key.len());
actual_projection.into_iter().collect()
}
MirRelationExpr::TopK {
input,
group_key,
order_key,
limit,
..
} => {
// Group and order keys and limit support must be retained, as
// they define which rows are retained.
let mut columns_to_pushdown =
desired_projection.iter().cloned().collect::<BTreeSet<_>>();
columns_to_pushdown.extend(group_key.iter().cloned());
columns_to_pushdown.extend(order_key.iter().map(|o| o.column));
if let Some(limit) = limit.as_ref() {
// Strictly speaking not needed because the
// `limit` support should be a subset of the
// `group_key` support, but we don't want to
// take this for granted here.
limit.support_into(&mut columns_to_pushdown);
}
// If the `TopK` does not have any new column demand, just push
// down the desired projection. Otherwise, push down the sorted
// column demand.
let columns_to_pushdown =
if columns_to_pushdown.len() == desired_projection.len() {
desired_projection.clone()
} else {
columns_to_pushdown.into_iter().collect::<Vec<_>>()
};
reverse_permute_columns(
itertools::chain!(
group_key.iter_mut(),
order_key.iter_mut().map(|o| &mut o.column),
),
columns_to_pushdown.iter(),
);
reverse_permute(limit.iter_mut(), columns_to_pushdown.iter());
self.action(input, &columns_to_pushdown, gets)?;
columns_to_pushdown
}
MirRelationExpr::Negate { input } => {
self.action(input, desired_projection, gets)?;
desired_projection.clone()
}
MirRelationExpr::Union { base, inputs } => {
self.action(base, desired_projection, gets)?;
for input in inputs {
self.action(input, desired_projection, gets)?;
}
desired_projection.clone()
}
MirRelationExpr::Threshold { input } => {
// Threshold requires all columns, as collapsing any distinct values
// has the potential to change how it thresholds counts. This could
// be improved with reasoning about distinctness or non-negativity.
let arity = input.arity();
self.action(input, &(0..arity).collect(), gets)?;
(0..arity).collect()
}
MirRelationExpr::ArrangeBy { input, keys: _ } => {
// Do not push the project past the ArrangeBy.
// TODO: how do we handle key sets containing column references
// that are not demanded upstream?
let arity = input.arity();
self.action(input, &(0..arity).collect(), gets)?;
(0..arity).collect()
}
};
let add_project = desired_projection != &actual_projection;
if add_project {
let mut projection_to_add = desired_projection.to_owned();
reverse_permute_columns(projection_to_add.iter_mut(), actual_projection.iter());
*relation = relation.take_dangerous().project(projection_to_add);
}
Ok(())
})
}
/// When we push the `desired_value_projection` at `value`,
/// the columns returned by `Get(get_id)` will change, so we need
/// to permute `Project`s around `Get(get_id)`.
pub fn update_projection_around_get(
&self,
relation: &mut MirRelationExpr,
applied_projections: &BTreeMap<Id, (Vec<usize>, mz_repr::RelationType)>,
) {
relation.visit_pre_mut(|e| {
if let MirRelationExpr::Project { input, outputs } = e {
if let MirRelationExpr::Get {
id: inner_id,
typ,
access_strategy: _,
} = &mut **input
{
if let Some((new_projection, new_type)) = applied_projections.get(inner_id) {
typ.clone_from(new_type);
reverse_permute_columns(outputs.iter_mut(), new_projection.iter());
if outputs.len() == new_projection.len()
&& outputs.iter().enumerate().all(|(i, o)| i == *o)
{
*e = input.take_dangerous();
}
}
}
}
// If there is no `Project` around a Get, all columns of
// `Get(get_id)` are required. Thus, the columns returned by
// `Get(get_id)` will not have changed, so no action
// is necessary.
});
}
}
/// Applies the reverse of [MirScalarExpr.permute] on each expression.
///
/// `permutation` can be thought of as a mapping of column references from
/// `stateA` to `stateB`. [MirScalarExpr.permute] assumes that the column
/// references of the expression are in `stateA` and need to be remapped to
/// their `stateB` counterparts. This methods assumes that the column
/// references are in `stateB` and need to be remapped to `stateA`.
///
/// The `outputs` field of [MirRelationExpr::Project] is a mapping from "after"
/// to "before". Thus, when lifting projections, you would permute on `outputs`,
/// but you need to reverse permute when pushing projections down.
fn reverse_permute<'a, I, J>(exprs: I, permutation: J)
where
I: Iterator<Item = &'a mut MirScalarExpr>,
J: Iterator<Item = &'a usize>,
{
let reverse_col_map = permutation
.enumerate()
.map(|(idx, c)| (*c, idx))
.collect::<BTreeMap<_, _>>();
for expr in exprs {
expr.permute_map(&reverse_col_map);
}
}
/// Same as [reverse_permute], but takes column numbers as input
fn reverse_permute_columns<'a, I, J>(columns: I, permutation: J)
where
I: Iterator<Item = &'a mut usize>,
J: Iterator<Item = &'a usize>,
{
let reverse_col_map = permutation
.enumerate()
.map(|(idx, c)| (*c, idx))
.collect::<BTreeMap<_, _>>();
for c in columns {
*c = reverse_col_map[c];
}
}