1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Pushes column removal down through other operators.
//!
//! This action improves the quality of the query by
//! reducing the width of data in the dataflow. It determines the unique
//! columns an expression depends on, and pushes a projection onto only
//! those columns down through child operators.
//!
//! A `MirRelationExpr::Project` node is actually three transformations in one.
//! 1) Projection - removes columns.
//! 2) Permutation - reorders columns.
//! 3) Repetition - duplicates columns.
//!
//! This action handles these three transformations like so:
//! 1) Projections are pushed as far down as possible.
//! 2) Permutations are pushed as far down as is convenient.
//! 3) Repetitions are not pushed down at all.
//!
//! Some comments have been inherited from the `Demand` transform.
//!
//! Note that this transform is one that can operate across views in a dataflow
//! and thus currently exists outside of both the physical and logical
//! optimizers.

use std::collections::{BTreeMap, BTreeSet};

use itertools::zip_eq;
use mz_expr::{Id, JoinInputMapper, MirRelationExpr, MirScalarExpr, RECURSION_LIMIT};
use mz_ore::assert_none;
use mz_ore::stack::{CheckedRecursion, RecursionGuard};

use crate::{TransformCtx, TransformError};

/// Pushes projections down through other operators.
#[derive(Debug)]
pub struct ProjectionPushdown {
    recursion_guard: RecursionGuard,
}

impl Default for ProjectionPushdown {
    fn default() -> Self {
        Self {
            recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
        }
    }
}

impl CheckedRecursion for ProjectionPushdown {
    fn recursion_guard(&self) -> &RecursionGuard {
        &self.recursion_guard
    }
}

impl crate::Transform for ProjectionPushdown {
    // This method is only used during unit testing.
    #[mz_ore::instrument(
        target = "optimizer",
        level = "debug",
        fields(path.segment = "projection_pushdown")
    )]
    fn transform(
        &self,
        relation: &mut MirRelationExpr,
        _: &mut TransformCtx,
    ) -> Result<(), crate::TransformError> {
        let result = self.action(
            relation,
            &(0..relation.arity()).collect(),
            &mut BTreeMap::new(),
        );
        mz_repr::explain::trace_plan(&*relation);
        result
    }
}

impl ProjectionPushdown {
    /// Pushes the `desired_projection` down through `relation`.
    ///
    /// This action transforms `relation` to a `MirRelationExpr` equivalent to
    /// `relation.project(desired_projection)`.
    ///
    /// `desired_projection` is expected to consist of unique columns.
    pub fn action(
        &self,
        relation: &mut MirRelationExpr,
        desired_projection: &Vec<usize>,
        gets: &mut BTreeMap<Id, BTreeSet<usize>>,
    ) -> Result<(), TransformError> {
        self.checked_recur(|_| {
            // First, try to push the desired projection down through `relation`.
            // In the process `relation` is transformed to a `MirRelationExpr`
            // equivalent to `relation.project(actual_projection)`.
            // There are three reasons why `actual_projection` may differ from
            // `desired_projection`:
            // 1) `relation` may need one or more columns that is not contained in
            //    `desired_projection`.
            // 2) `relation` may not be able to accommodate certain permutations.
            //    For example, `MirRelationExpr::Map` always appends all
            //    newly-created columns to the end.
            // 3) Nothing can be pushed through a leaf node. If `relation` is a leaf
            //    node, `actual_projection` will always be `(0..relation.arity())`.
            // Then, if `actual_projection` and `desired_projection` differ, we will
            // add a project around `relation`.
            let actual_projection = match relation {
                MirRelationExpr::Constant { .. } => (0..relation.arity()).collect(),
                MirRelationExpr::Get { id, .. } => {
                    gets.entry(*id)
                        .or_insert_with(BTreeSet::new)
                        .extend(desired_projection.iter().cloned());
                    (0..relation.arity()).collect()
                }
                MirRelationExpr::Let { id, value, body } => {
                    // Let harvests any requirements of get from its body,
                    // and pushes the sorted union of the requirements at its value.
                    let id = Id::Local(*id);
                    let prior = gets.insert(id, BTreeSet::new());
                    self.action(body, desired_projection, gets)?;
                    let desired_value_projection = gets.remove(&id).unwrap();
                    if let Some(prior) = prior {
                        gets.insert(id, prior);
                    }
                    let desired_value_projection =
                        desired_value_projection.into_iter().collect::<Vec<_>>();
                    self.action(value, &desired_value_projection, gets)?;
                    let new_type = value.typ();
                    self.update_projection_around_get(
                        body,
                        &BTreeMap::from_iter(std::iter::once((
                            id,
                            (desired_value_projection, new_type),
                        ))),
                    );
                    desired_projection.clone()
                }
                MirRelationExpr::LetRec {
                    ids,
                    values,
                    limits: _,
                    body,
                } => {
                    // Determine the recursive IDs in this LetRec binding.
                    let rec_ids = MirRelationExpr::recursive_ids(ids, values);

                    // Seed the gets map with empty demand for each non-recursive ID.
                    for id in ids.iter().filter(|id| !rec_ids.contains(id)) {
                        let prior = gets.insert(Id::Local(*id), BTreeSet::new());
                        assert_none!(prior);
                    }

                    // Descend into the body with the supplied desired_projection.
                    self.action(body, desired_projection, gets)?;
                    // Descend into the values in reverse order.
                    for (id, value) in zip_eq(ids.iter().rev(), values.iter_mut().rev()) {
                        let desired_projection = if rec_ids.contains(id) {
                            // For recursive IDs: request all columns.
                            let columns = 0..value.arity();
                            columns.collect::<Vec<_>>()
                        } else {
                            // For non-recursive IDs: request the gets entry.
                            let columns = gets.get(&Id::Local(*id)).unwrap();
                            columns.iter().cloned().collect::<Vec<_>>()
                        };
                        self.action(value, &desired_projection, gets)?;
                    }

                    // Update projections around gets of non-recursive IDs.
                    let mut updates = BTreeMap::new();
                    for (id, value) in zip_eq(ids.iter(), values.iter_mut()) {
                        // Update the current value.
                        self.update_projection_around_get(value, &updates);
                        // If this is a non-recursive ID, add an entry to the
                        // updates map for subsequent values and the body.
                        if !rec_ids.contains(id) {
                            let new_type = value.typ();
                            let new_proj = {
                                let columns = gets.remove(&Id::Local(*id)).unwrap();
                                columns.iter().cloned().collect::<Vec<_>>()
                            };
                            updates.insert(Id::Local(*id), (new_proj, new_type));
                        }
                    }
                    // Update the body.
                    self.update_projection_around_get(body, &updates);

                    // Remove the entries for all ids (don't restrict only to
                    // non-recursive IDs here for better hygene).
                    for id in ids.iter() {
                        gets.remove(&Id::Local(*id));
                    }

                    // Return the desired projection (leads to a no-op in the
                    // projection handling logic after this match statement).
                    desired_projection.clone()
                }
                MirRelationExpr::Join {
                    inputs,
                    equivalences,
                    ..
                } => {
                    let input_mapper = JoinInputMapper::new(inputs);

                    let mut columns_to_pushdown =
                        desired_projection.iter().cloned().collect::<BTreeSet<_>>();
                    // Each equivalence class imposes internal demand for columns.
                    for equivalence in equivalences.iter() {
                        for expr in equivalence.iter() {
                            expr.support_into(&mut columns_to_pushdown);
                        }
                    }

                    // Populate child demands from external and internal demands.
                    let new_columns =
                        input_mapper.split_column_set_by_input(columns_to_pushdown.iter());

                    // Recursively indicate the requirements.
                    for (input, inp_columns) in inputs.iter_mut().zip(new_columns) {
                        let inp_columns = inp_columns.into_iter().collect::<Vec<_>>();
                        self.action(input, &inp_columns, gets)?;
                    }

                    reverse_permute(
                        equivalences.iter_mut().flat_map(|e| e.iter_mut()),
                        columns_to_pushdown.iter(),
                    );

                    columns_to_pushdown.into_iter().collect()
                }
                MirRelationExpr::FlatMap { input, func, exprs } => {
                    let inner_arity = input.arity();
                    // A FlatMap which returns zero rows acts like a filter
                    // so we always need to execute it
                    let mut columns_to_pushdown =
                        desired_projection.iter().cloned().collect::<BTreeSet<_>>();
                    for expr in exprs.iter() {
                        expr.support_into(&mut columns_to_pushdown);
                    }
                    columns_to_pushdown.retain(|c| *c < inner_arity);

                    reverse_permute(exprs.iter_mut(), columns_to_pushdown.iter());
                    let columns_to_pushdown = columns_to_pushdown.into_iter().collect::<Vec<_>>();
                    self.action(input, &columns_to_pushdown, gets)?;
                    // The actual projection always has the newly-created columns at
                    // the end.
                    let mut actual_projection = columns_to_pushdown;
                    for c in 0..func.output_type().arity() {
                        actual_projection.push(inner_arity + c);
                    }
                    actual_projection
                }
                MirRelationExpr::Filter { input, predicates } => {
                    let mut columns_to_pushdown =
                        desired_projection.iter().cloned().collect::<BTreeSet<_>>();
                    for predicate in predicates.iter() {
                        predicate.support_into(&mut columns_to_pushdown);
                    }
                    reverse_permute(predicates.iter_mut(), columns_to_pushdown.iter());
                    let columns_to_pushdown = columns_to_pushdown.into_iter().collect::<Vec<_>>();
                    self.action(input, &columns_to_pushdown, gets)?;
                    columns_to_pushdown
                }
                MirRelationExpr::Project { input, outputs } => {
                    // Combine `outputs` with `desired_projection`.
                    *outputs = desired_projection.iter().map(|c| outputs[*c]).collect();

                    let unique_outputs = outputs.iter().map(|i| *i).collect::<BTreeSet<_>>();
                    if outputs.len() == unique_outputs.len() {
                        // Push down the project as is.
                        self.action(input, outputs, gets)?;
                        *relation = input.take_dangerous();
                    } else {
                        // Push down only the unique elems in `outputs`.
                        let columns_to_pushdown = unique_outputs.into_iter().collect::<Vec<_>>();
                        reverse_permute_columns(outputs.iter_mut(), columns_to_pushdown.iter());
                        self.action(input, &columns_to_pushdown, gets)?;
                    }

                    desired_projection.clone()
                }
                MirRelationExpr::Map { input, scalars } => {
                    let arity = input.arity();
                    // contains columns whose supports have yet to be explored
                    let mut actual_projection =
                        desired_projection.iter().cloned().collect::<BTreeSet<_>>();
                    for (i, scalar) in scalars.iter().enumerate().rev() {
                        if actual_projection.contains(&(i + arity)) {
                            scalar.support_into(&mut actual_projection);
                        }
                    }
                    *scalars = (0..scalars.len())
                        .filter_map(|i| {
                            if actual_projection.contains(&(i + arity)) {
                                Some(scalars[i].clone())
                            } else {
                                None
                            }
                        })
                        .collect::<Vec<_>>();
                    reverse_permute(scalars.iter_mut(), actual_projection.iter());
                    self.action(
                        input,
                        &actual_projection
                            .iter()
                            .filter(|c| **c < arity)
                            .map(|c| *c)
                            .collect(),
                        gets,
                    )?;
                    actual_projection.into_iter().collect()
                }
                MirRelationExpr::Reduce {
                    input,
                    group_key,
                    aggregates,
                    monotonic: _,
                    expected_group_size: _,
                } => {
                    let mut columns_to_pushdown = BTreeSet::new();
                    // Group keys determine aggregation granularity and are
                    // each crucial in determining aggregates and even the
                    // multiplicities of other keys.
                    for k in group_key.iter() {
                        k.support_into(&mut columns_to_pushdown)
                    }

                    for index in (0..aggregates.len()).rev() {
                        if !desired_projection.contains(&(group_key.len() + index)) {
                            aggregates.remove(index);
                        } else {
                            // No obvious requirements on aggregate columns.
                            // A "non-empty" requirement, I guess?
                            aggregates[index]
                                .expr
                                .support_into(&mut columns_to_pushdown)
                        }
                    }

                    reverse_permute(
                        itertools::chain!(
                            group_key.iter_mut(),
                            aggregates.iter_mut().map(|a| &mut a.expr)
                        ),
                        columns_to_pushdown.iter(),
                    );

                    self.action(
                        input,
                        &columns_to_pushdown.into_iter().collect::<Vec<_>>(),
                        gets,
                    )?;
                    let mut actual_projection =
                        desired_projection.iter().cloned().collect::<BTreeSet<_>>();
                    actual_projection.extend(0..group_key.len());
                    actual_projection.into_iter().collect()
                }
                MirRelationExpr::TopK {
                    input,
                    group_key,
                    order_key,
                    limit,
                    ..
                } => {
                    // Group and order keys and limit support must be retained, as
                    // they define which rows are retained.
                    let mut columns_to_pushdown =
                        desired_projection.iter().cloned().collect::<BTreeSet<_>>();
                    columns_to_pushdown.extend(group_key.iter().cloned());
                    columns_to_pushdown.extend(order_key.iter().map(|o| o.column));
                    if let Some(limit) = limit.as_ref() {
                        // Strictly speaking not needed because the
                        // `limit` support should be a subset of the
                        // `group_key` support, but we don't want to
                        // take this for granted here.
                        limit.support_into(&mut columns_to_pushdown);
                    }
                    // If the `TopK` does not have any new column demand, just push
                    // down the desired projection. Otherwise, push down the sorted
                    // column demand.
                    let columns_to_pushdown =
                        if columns_to_pushdown.len() == desired_projection.len() {
                            desired_projection.clone()
                        } else {
                            columns_to_pushdown.into_iter().collect::<Vec<_>>()
                        };
                    reverse_permute_columns(
                        itertools::chain!(
                            group_key.iter_mut(),
                            order_key.iter_mut().map(|o| &mut o.column),
                        ),
                        columns_to_pushdown.iter(),
                    );
                    reverse_permute(limit.iter_mut(), columns_to_pushdown.iter());
                    self.action(input, &columns_to_pushdown, gets)?;
                    columns_to_pushdown
                }
                MirRelationExpr::Negate { input } => {
                    self.action(input, desired_projection, gets)?;
                    desired_projection.clone()
                }
                MirRelationExpr::Union { base, inputs } => {
                    self.action(base, desired_projection, gets)?;
                    for input in inputs {
                        self.action(input, desired_projection, gets)?;
                    }
                    desired_projection.clone()
                }
                MirRelationExpr::Threshold { input } => {
                    // Threshold requires all columns, as collapsing any distinct values
                    // has the potential to change how it thresholds counts. This could
                    // be improved with reasoning about distinctness or non-negativity.
                    let arity = input.arity();
                    self.action(input, &(0..arity).collect(), gets)?;
                    (0..arity).collect()
                }
                MirRelationExpr::ArrangeBy { input, keys: _ } => {
                    // Do not push the project past the ArrangeBy.
                    // TODO: how do we handle key sets containing column references
                    // that are not demanded upstream?
                    let arity = input.arity();
                    self.action(input, &(0..arity).collect(), gets)?;
                    (0..arity).collect()
                }
            };
            let add_project = desired_projection != &actual_projection;
            if add_project {
                let mut projection_to_add = desired_projection.to_owned();
                reverse_permute_columns(projection_to_add.iter_mut(), actual_projection.iter());
                *relation = relation.take_dangerous().project(projection_to_add);
            }
            Ok(())
        })
    }

    /// When we push the `desired_value_projection` at `value`,
    /// the columns returned by `Get(get_id)` will change, so we need
    /// to permute `Project`s around `Get(get_id)`.
    pub fn update_projection_around_get(
        &self,
        relation: &mut MirRelationExpr,
        applied_projections: &BTreeMap<Id, (Vec<usize>, mz_repr::RelationType)>,
    ) {
        relation.visit_pre_mut(|e| {
            if let MirRelationExpr::Project { input, outputs } = e {
                if let MirRelationExpr::Get {
                    id: inner_id,
                    typ,
                    access_strategy: _,
                } = &mut **input
                {
                    if let Some((new_projection, new_type)) = applied_projections.get(inner_id) {
                        typ.clone_from(new_type);
                        reverse_permute_columns(outputs.iter_mut(), new_projection.iter());
                        if outputs.len() == new_projection.len()
                            && outputs.iter().enumerate().all(|(i, o)| i == *o)
                        {
                            *e = input.take_dangerous();
                        }
                    }
                }
            }
            // If there is no `Project` around a Get, all columns of
            // `Get(get_id)` are required. Thus, the columns returned by
            // `Get(get_id)` will not have changed, so no action
            // is necessary.
        });
    }
}

/// Applies the reverse of [MirScalarExpr.permute] on each expression.
///
/// `permutation` can be thought of as a mapping of column references from
/// `stateA` to `stateB`. [MirScalarExpr.permute] assumes that the column
/// references of the expression are in `stateA` and need to be remapped to
/// their `stateB` counterparts. This methods assumes that the column
/// references are in `stateB` and need to be remapped to `stateA`.
///
/// The `outputs` field of [MirRelationExpr::Project] is a mapping from "after"
/// to "before". Thus, when lifting projections, you would permute on `outputs`,
/// but you need to reverse permute when pushing projections down.
fn reverse_permute<'a, I, J>(exprs: I, permutation: J)
where
    I: Iterator<Item = &'a mut MirScalarExpr>,
    J: Iterator<Item = &'a usize>,
{
    let reverse_col_map = permutation
        .enumerate()
        .map(|(idx, c)| (*c, idx))
        .collect::<BTreeMap<_, _>>();
    for expr in exprs {
        expr.permute_map(&reverse_col_map);
    }
}

/// Same as [reverse_permute], but takes column numbers as input
fn reverse_permute_columns<'a, I, J>(columns: I, permutation: J)
where
    I: Iterator<Item = &'a mut usize>,
    J: Iterator<Item = &'a usize>,
{
    let reverse_col_map = permutation
        .enumerate()
        .map(|(idx, c)| (*c, idx))
        .collect::<BTreeMap<_, _>>();
    for c in columns {
        *c = reverse_col_map[c];
    }
}